
Outline of Group Theory: Week 4

Venketasubramanian C G

1. Introduction

This is an outline of four lectures delivered during the 4th week (26 Dec 2022 to 31 Dec
2022) of the Annual Foundation School-I conducted by National Center for Mathematics
at MEPCO Schlenk Engineering College, Sivakasi during December 2022. Each lecture
was accompanied by a tutorial session. Most of the examples in these notes were used
as problems in tutorial sessions. Apart from generalities, I have followed closely Chapter
8 from Serre’s ‘Finite Groups-an introduction’, International Press, (2016). The aim of
the lectures were to give a short and succinct introduction to the theory of complex
representations of finite groups in four lectures.

Unless mentioned otherwise, we will assume that all our groups are finite and all vector
spaces are over complex numbers and finite dimensional.

2. Definitions and Examples

Definition 2.1. — A representation of a group G is a pair pπ, V q where V is a C-vector
space and

π : G Ñ AutCpV q

is a group homomorphism i.e., πpghq “ πpgq ˝ πphq @g, h P G.

Remark 2.2. — We shall assume in these notes that V has finite diemsnion.

If V is of dimension n and we fix a basis B of V , we get an isomorphism of C-algebras:

ϕ : EndpV q
–
ÝÑ MnpCq

T ÞÑ rT sB

Definition 2.3. — If pπ, V q is a representation of group G, then degree of the represen-
tation is defined as follows:

degpπ, V q :“ dimpV q

It is customary to denote the degree by degpπq.

Example 2.4. — G “ pZ{nZ,`q, then

χk : pZ{nZ,`q Ñ pS1, ¨q Ă pC˚, ¨q

defined by

χkp1̄q “ e
2πi
n

k
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for each k such that 0 ď k ď n´1. Each of the χk gives a one-dimensional representation
of Z{nZ.

Example 2.5. — Let G “ S3.
We get a trivial representation of S3 given by g ÞÑ 1 P C˚ for all g P S3.

Another one dimensional representation, sign representation

sgn : S3 Ñ C˚

is defined as

g ÞÑ sgnpgq

where sgnpσq denotes the sign of the permutation σ.

We define a degree 2 representation of S3.

Write S3 “ t1, r, r2, s, rs, r2su.

We map

r ÞÑ

„

cos
`

2π
3

˘

´ sin
`

2π
3

˘

sin
`

2π
3

˘

cos
`

2π
3

˘

ȷ

and s ÞÑ

„

1 0
0 ´1

ȷ

where n “ 3. This gives a representation π : S3 Ñ AutpC2q.

The next example is a recollection from Linear Algebra.

Example 2.6. — Suppose X is a finite set. Consider pFpXq,`, ¨q where ` is pointwise
addition and ¨ is scalar multiplication. Then,

1. pFpXq,`, ¨q is a C -vector space.
2. A basis of FpXq is given by tδx : x P Xu where δx is the function on X which takes

the value 1 at x and 0 at points y ‰ x.
3. dimpFpXqq “ |X|.

Example 2.7. — Suppose G acts on X. Let FpXq :“ tf : X Ñ Cu. Then G acts on
FpXq as follows: g P G, x P X pg ¨ fqpxq “ fpg´1 ¨ xq. Lets denote the action of G on
FpXq by Π. Then each Πpgq is a linear map of the vector space FpXq. Thus,

Π : G Ñ AutpFpXqq

given by rΠpgqf spxq “ fpg´1 ¨ xq for g P G, f P FpXq and x P X is a representation of G
on FpXq.

We will apply the previous example to G acting on itself via left and right action.

Example 2.8. — Recall that G acts on G via:

(i) left action: λpgqx “ g ¨ x
(ii) right action: ρpgqx “ x ¨ g´1
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Applying the general construction in the previous example to λ and ρ, G acts on FpGq

via λ and ρ. Let us write down the representations: λ : G Ñ AutpFpGqq and ρ : G Ñ

AutpFpGqq:

rλpgqf spxq “ fpg´1xq

and

rρpgqf spxq “ fpxgq

for g P G, f P FpGq, x P X.

The representations pλ,FpGqq and pρ,FpGqq are called respectively the left-regular and
right regular representation of G.

Example 2.9. — Using λ and ρ, we can define an action of GˆG on G: pg, hq¨x “ gxh´1

for g, x, h P G. This induces a representation of G ˆ G on FpGq denoted by λ ˆ ρ : G Ñ

AutpFpGqq given by

rpλ ˆ ρqpg, hqf spxq “ fpg´1xhq

for g P G, f P FpGq, x P X.

We have an algebra structure on the vector space FpGq.

Definition 2.10. — Let G be a finite group and let f1, f2 P FpGq. Define

f1 ˚ f2 : G Ñ C

by

pf1 ‹ f2qpxq “
1

|G|

ÿ

gPG

f1pgqf2pg
´1xq.

Lemma 2.11. — 1. The multiplication ˚ is associative.
2. pFpGq,`, ¨, ˚q is a C-algebra.
3. pFpGq,`, ˚q is a ring with an identity pδg :“ |G|δg.

4. For g, h P G, pδg ˚ pδh “ xδgh.
5. The ring pFpGq,`, ˚q is commutative if and only if the group G is abelian.

Exercise. Can you give an example of a one-dimensional representation of the group
GL2pFpq?(Hint: determinant). What are all the one dimensional representations of the
group GL2pFpq?

3. New representations from old and few basic results

We will see more examples of constructions of representations. First, we will apply the
general construction of representation of the previous lecture to Sn.
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Example 3.1. — Write Jn “ t1, . . . , nu. We can identify FpJnq with Cn. The action
σ ¨ fpjq “ fpσ´1pjqq for σ P Sn, f P FpJnq and j P Jn translates to an action of Sn on Cn

via σ ¨ pz1, . . . , znq “ pzσ´1p1q, . . . , zσ´1pnqq. Under this action, σ ¨ ej “ eσpjq. This is easy to
see via functions if we identify the basis vector ej with δj: pσ ¨ δjqpiq “ 1 if and only if
σ´1piq “ j if and only if i “ σpjq. That is, σ ¨ δj “ δσpjq.

Example 3.2. — In this example, we construct the contragredient or dual of a repre-
sentation. Suppose pπ, V q is a representation of a group G. Define

V ˚
“ HomCpV,Cq “ tl : V Ñ C| l is linearu Ă FpV q

Let G act on V by π, so we have g ¨ v “ πpgqv. G acts on FpV q by the action

pg ¨ fqpvq “ fpg´1
¨ vq “ fpπpg´1

qvq.

1. If l P V ˚ define g ¨ lpvq “ lpπpg´1vqq

2. It is easy to check that g ¨ l P V ˚

Thus we get a natural action of G on V ˚ denoted by π˚:

pπ˚
pgqlqpvq “ lpπpg´1vqq

pπ˚, V ˚q is called the dual/contragradient representation of pπ, V q. Note that V ˚ is a
subspace of FpV q and has the following property: For any ℓ P V ˚ and g P G, g ¨ l P V ˚.
We call such a subspace a G-invariant subspace of FpV q. It allowed us to define a
representation of G on the subspace V ˚.

From the previous example, we are led to the notion of a subrepresentation.

Definition 3.3. — Let pπ, V q be a representation of a group G. We say that a subspace
W of V is G-invariant if for each g P G, πpgqpW q Ă W .
This gives a representation of G on W .

π|W :GÑAutpW q

g ÞÑπpgq

pπ|W ,W q is said to be a subrepresentation of pπ, V q.

Next, we construct representations using direct sums.

Example 3.4. — Suppose pπ1, V1q and pπ2, V2q are representations of G. Define

π1 ‘ π2 : G Ñ AutpV1 ‘ V2q

defined by

pπ1 ‘ π2qpgqpv1, v2q “ pπ1pgqpv1q, π2pgqpv2qq

It is easy to check that pπ1 ‘ π2, V1 ‘ V2q is a representation of G.

4



Outline of Group Theory: Week 4

Example 3.5. — Let pπ, V q and pτ,W q be representations of a group. We can define a
representation on the vector space HomCpV,W q consisting of all linear maps from V to
W. Define for ϕ P HomCpV,W q , g P G and v P V ,

pg ¨ ϕqpvq “ τpgqpϕpπpg´1
qpvqqq

It is easy to check that this is indeed a representation of G. This representation will be
denoted by Hompπ, τq.

Definition 3.6. — A representation pπ, V q of G is said to be irreducible if V ‰ 0 and
V has no G-invariant subspaces other than V and 0.

Example 3.7. — Any degree one representation of a group is irreducible by definition.

Example 3.8. — The representation pπ,C2q of S3 we defined in class is irreducible.
What about the two dimensional representation of D4 we defined in class?

Example 3.9. — Consider the left regular representation pλ,FpGqq of G. Define W to
be the subspace of FpGq consisting of all constant functions. Then, W is a G-invariant
subspace of FpGq. In fact, λpgqf “ f for all f P W and g P G. Thus pλ,W q is a one
dimensional representation of G and hence irreducible. Note that W is spanned by the
constant function 1. If G is a non-trivial group, then pλ,FpGqq is not irreducible.

Example 3.10. — Consider the action of Sn on Cn via λ : from the previous example,
the constant function 1 generates a one dimensional invariant subspace which can be
identified with the subspace of Cn spanned by e1 ` ¨ ¨ ¨ ` en.

Definition 3.11. — Suppose pπ, V q is a finite dimensional representation of a group G.
Define

V G
“ tv P V : πpgqv “ v for all g P Gu.

V G is a G-invariant subspace known as the space of G-fixed vectors.

Example 3.12. — If pπ, V q is a finite dimensional representation of a group G the space
of G-fixed vectors is a subrepresentation of V.

Example 3.13. — Suppose pπ, V q is a representation of a finite group G.

1. Let v P V be a non-zero vector. The smallest G-invariant subspace of V containing
v is the subspace Wv :“ Spanptπpgqv : g P Guq. Observe that the dimension of Wv is
at most |G|.

2. If pπ, V q is irreducible and v P V is non-zero, we have Wv “ V.
3. If pπ, V q is irreducible, we have degpπq ď |G|. That is, the degree of any irreducible

representation of a finite group cannot exceed the order of the group.

Our next aim is to prove a basic theorem in the subject, namely, any finite dimensional
complex representation of a finite group can be written as a direct sum of its irreducible
subrepresentations.
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Remark 3.14. — Let V be an n-dimensional C-vector space.We may identify V with
Cn and transfer the standard inner-product xz, wy “

řn
j“1 zjw̄j on Cn to V.

Proposition 3.15. — Suppose pπ, V q is a representation of a finite group G. Then,
there exists an inner product x´,´y on V such that xπpgqv, πpgqwy “ xv, wy @g P G, v, w P

V . That is, x´,´y is a G-invariant inner product on V .

Proof. — If x, y0 is any arbitrary inner product on G, define

xv, wy :“
1

|G|

ÿ

gPG

xπpgqv, πpgqwy

It is easy to verify that x, y is as claimed in the statement of the theorem.

Proposition 3.16. — Suppose pπ, V q is a representation of a finite group G. Assume
that W is a G-invariant subspace of V . Then, there exists a subspace U of V such that
U is G-invariant and V “ W ‘ U .

Proof. — For any subspace W of V which is G-invariant consider its orthogonal comple-
mentWK with respect to the G-invariant inner product given by the previous the previous
theorem.

Theorem 3.17 (Maaschke’s theorem). — Let pπ, V q be a finite dimensionl repesen-
tation of a finite group G. Then there exist irreducible subrepresentations, W1, . . . ,Wr of
V such that

V “ W1 ‘ ¨ ¨ ¨ ‘ Wr

Proof. — Apply induction on dimension of V. If dimpV q “ 1 there is nothing to prove.
Assume that dimpV q ą 1. If pπ, V q is irreducible then there is nothing to prove. Assume
pπ, V q is not irreducible to get a proper non-zero G-invariant subspace W. Apply previous
result to get V “ W ‘ WK. Apply induction hypothesis to W and WK.

Example 3.18. — Assume G is finite. On FpGq, define a form: f1, f2 P FpGq, define

(3.1) xf1, f2y “
1

|G|

ÿ

gPG

f1pgqf2pgq

1. Show that x, y is a G-invariant inner product on FpGq.
2. Let W denote the subspace of constant functions on G. Show that W is G-invariant.
3. What is a G-invariant complement of W in FpGq?

4. Character of a group representation and its properties

Definition 4.1. — Let G be a finite group. Let pπ, V q be a finite dimensional represen-
tation of the group G. Define χπ : G Ñ C by

χπpgq “ trpπpgqq.

6
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This invariant of the representation is called the character of the representation pπ, V q.

Remark 4.2. — Suppose |G| “ n. Note that gn “ e implies that πpgq
n

“ IV . Therefore,
πpgq satisfies the polynomial Xn´1 P CrXs, which has n distinct zeroes in C. Hence there
exists a basis B of V such that

rπpgqsB “

»

–

λ1pgq

. . .
λnpgq

fi

fl

Hence, χπpgq “ trrπpgqsB “ λ1pgq ` ¨ ¨ ¨ ` λnpgq. Since λ1pgq, . . . λnpq are roots of Xn ´ 1,
λ1pgq, . . . λnpgq P S1.

Proposition 4.3. — The character of a finite dimensional representation of a finite
group has the following properties.

1. If g, h P G, χπpghg´1q “ χπphq.
2. χπ1‘π2 “ χπ1 ` χπ2 .
3. χπ˚ “ χ´1

π .
4. χπpeq “ degpπq

5. χHompπ,τqpgq “ χπpg´1qχτ pgq.

Proof. — Exercise.

Remark 4.4. — It is easier to prove (e) using the tensor product. The rest are straight-
forward.

Corollary 4.5. — 1. χπpg´1q “ χπ˚pgq “ χπpgq

2. |χπpgq| ď degpπq.
3. χπpgq “ degpπq ô the action of G on V is by scalar multiplication (that is each

πpgq “ αgIV ).
4. χπ “ dimpV q ô action of G on V is trivial i.e., each πpgq “ I.

Lemma 4.6. — Let a finite group G act on a finite set X and let representation obtained
by the induced action on FpXq be denoted by π, i.e.,

pπpgqfqpxq “ fpg´1
¨ xq

for g P G, f P FpXq, x P X. The character of the representation π is given by

(4.1) χπpgq “ |tx P X : g ¨ x “ xu|.

Proof. — Recall that δx denotes a basis vector of FpX.q Note that rπpgqδxspyq “ 1 if and
only if δxpg´1 ¨ yq “ 1 if and only if y “ g ¨x if and only if δg¨xpyq “ 1. Thus, πpgqδx “ δg¨x.
Note that χπpgq “

ř

xPX δ˚
xpπpgqδxq, where tδ˚

x : x P Xu is the dual basis of tδx : x P Xu.
But δ˚

xpπpgqδxq “ δ˚
xpδg¨xq “ 1 if and only if g ¨ x “ x. The statement follows.
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Corollary 4.7. — Let pλ,FpGqq and pρ,FpGqq denote the left and right regular repre-
sentations of a finite group G. Then, we have

(4.2) χλpgq “ χρpgq “

#

|G| if g “ e

0 otherwise.

Definition 4.8. — Let pπ, V q and pτ,W q be representations on a group G. Suppose
T : V Ñ W is a linear map with

(4.3) T pπpgqvq “ τpgqpT pvqq, @g P G, v P V.

We then say that the linear map T is G-linear (or G-equivariant map). Thus, a linear
map T : V Ñ W is G-equivariant if and only if, for each g P G, the following diagram
commutes

V W

V W

T

πpgq τpgq

T

.

Definition 4.9. — Denote HomGpπ, τq :“ tT : V Ñ W |T is G ´ equivariant mapsu Ď

HomCpV,W q.

Remark 4.10. — HomGpπ, τq is a complex vector space.

Definition 4.11. — A map T P HomGpπ, τq is said to be an isomorphism if T is a
bijection. Two representations pπ, V q and pτ,W q on a group G are said to be equivalent
if there exists T P HomGpπ, τq such that T is bijective map.

Remark 4.12. — If T is an isomorphism, then we set from (4.3),

(4.4) τpgq “ T ˝ πpgq ˝ T´1

for each g P G.

Example 4.13. — pλ,FpGqq and pρ,FpGqq are equivalent representations.

Example 4.14. — Let pτ,C2q be the representation of S3 given by r ÞÑ and s ÞÑ. Are
τ and π equivalent?

Lemma 4.15. — Let pπ, V q and pτ,W q be representations on a group G and let T P

HomGpπ, τq. Then

1. KerpT q is a G-invariant subspace of V .
2. ImgpT q is a G-invariant subspace of W .

Proof. — Exercise.

Lemma 4.16 (Schur’s Lemma). — Let G be a finite group. Suppose that pπ, V q and
pτ,W q be irreducible finite dimensional representations on G. Then

1. If π is not equivalent to τ , then HomGpπ, τq “ t0u.

8
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2. If W “ W, τ “ π, and T P HomGpπ, τq, then T “ λIV , for some λ P C. In fact,
HomGpπ, πq “ tλI|λ P Cu.

3. If τ is equivalent to π then HomGpπ, τq is a one-dimensional C-vector space.

Corollary 4.17. — Suppose G is a finite abelian group, and pπ, V q is an irreducible
representation of G. Then dimpV q “ 1.

Recall the inner product on FpGq from (3.1).

Theorem 4.18 (Basic Formula). — Let pπ, V q be a finite dimensional representation
of a finite group G. Then

(4.5) dimpV G
q “ xχπ, 1y “

1

|G|

ÿ

gPG

χπpgq.

where V G denotes the subspace of G-fixed vectors.

Proof. — Define T “
1

|G|

ÿ

gPG

πpgq. It is easy to verify the following:

1. T P EndpV q and T 2 “ T.
2. ImgpT q “ V G.
3. V “ KerpT q ‘ V G

4. Consequently, trpT q “ dimpV Gq.

Computing trace from the definition of T above and comparing gives us the desired
result.

5. Schur orthogonality relations of characters and consequences

Proposition 5.1. — Let pπ, V1q, pπ2, V2q be two finite dimensional representations of G
a finite group. Then

xχπ1 , χπ2y “ dimpHomGpπ1, π2qq

Proof. — It is easy to check that, HomGpπ1, π2q “ pHompπ1, π2qqG. By Theorem 4.18,
dimppHompπ1, π2qqGq “ xχ

pHompπ1,π2qqG
, 1y. Now, we apply Proposition 4.3 (5) and apply a

change of variables g ÞÑ g´1 to prove the theorem.

Theorem 5.2 (Schur Orthogonality Relations). — Let π1, π2 be two irreducible
representations of a finite group G. Then

(5.1) xχπ1 , χπ2y “

#

1 if π1 is equivalent to π2

0 otherwise

Proof. — Follows from Schur’s Lemma and the previous proposition.
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Put

IrrpGq “ set of all irreducible representations of G upto equivalence

“ trπs|π irreducible representation of Gu.

Corollary 5.3. — The subset tχπ|π P IrrpGqu of FpGq is linearly independent.

Proof. — An orthogonal set in an inner product space is linearly independent.

Corollary 5.4. — Let G be a finite group. We have |IrrpGq| ď |G|

Proof. — Since dimpFpGqq “ |G|, the statement follows.

Theorem 5.5 (Uniqueness of decomposition into irreducibles)

Let pπ, V q be a finite dimensional representation of G. Let pπ, V q “ pτ,W1q‘¨ ¨ ¨‘pτr,Wrq

be a decomposition of V into a direct sum of irreducible representations. Let pρ,W q be
any irreducible representation of G. Let pρ,FpGqq denote the right regular representation
of G. We have

The number of representations pτj,Wjq equivalent to the representation pρ,W q=xχπ, χρy.

Proof. — Follows from Schur Orthogonality relations.

Remark 5.6. — Theorem 5.5 says that the decomposition of a finite dimensional rep-
resentation of a finite group into irreducible ones is independent of the choice of the
irreducible components appearing in the decomposition up to isomorphism. Putting this
along with Maaschke’s theorem, we get an existence and uniqueness theorem for the de-
composition of a finite dimensional representation of a finite group into irreducible ones.
The reader may compare it with prime factorization of positive integers or a factorization
of polynomials in one indeterminate over a filed into irreducible factors.

We now prove a fundamental result in the subject as a consequence to the previous
theorem.

Corollary 5.7. — Suppose pπ1, V1q and pπ2, V2q are two finite dimensional representa-
tions of a finite group G. Then the following are equivalent:

1. pπ1, V1q is equivalent to pπ2, V2q

2. χπ1 “ χπ2

Proof. — (1) implies (2) is obvious. (2) implies (1) follows from Maaschke’s theorem and
Theorem 5.5.

Next, we are going to prove a fundamental theorem of finite group representation theory.

Theorem 5.8. — Let Irr(G) denote the set of inequivalent irreducible representations of
a finite group G.
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1. χλ “ χρ “
ÿ

πPIrrpGq

χπpeqχπ “
ÿ

πPIrrpGq

degpπqχπ.

2. |G| “
ÿ

πPIrrpGq

pχπpeqq2 “
ÿ

πPIrrpGq

pdegpπqq2.

3.
ÿ

πPIrrpGq

χπp1qχπpgq “ 0 for each g P G such that g ‰ e.

Proof. — First note that, for any π P IrrpGq, the number of irreducible component of λ
which are equivalent to π equals xχλ, χπy “ degpπq. This proves (1).

(2) follows from considering xχλ, χλy and Schur’s orthogonality relations.

(3) follows from (?)

In the lectures, for lack of time, an outline of the proof that the number of conjugacy
classes equals the number of distinct inequivalent irreducible representations of G was
given. We state it here for completeness.

Definition 5.9 (Center of FpGq). — ZpFpGqq “ tf P FpGq|f ˚ϕ “ ϕ ˚f @ϕ P FpGq}

Lemma 5.10. — f P ZpFpGqq ðñ f is a class function i.e. fpgxg´1q “ fpxq for all
g P G. In other words, a function on G belongs to ZpFpGqq if and only if f is constant
on conjugacy classes.

Proof. — A function f belongs to ZpFpGqq if and only if f ˚ δg “ δg ˚ f for each g P G.
The statement follows from this.

Theorem 5.11. — Let G be a finite group and let h denote the number of conjugacy
classes in G. Then, |IrrpGq| “ h.

Proof. — We outline the proof in few simpler steps. The strategy for the proof is that
the center ZpFpGqq of the algebra FpGq is isomorphic to C|IrrpGq| and that ZpFpGqq has
as basis the set of characteristic functions of conjugacy classes of G.

Step 1. — It is straightforward to check that ZpFpGqq is a vector subspace of FpGq

and moreover a C-subalgbera of FpGq, i.e, if f1, f2 P ZpFpGqq then f1 ˚ f2 P ZpFpGqq.
This follows since ˚ is associative.

Step 2. — We have a map Φ : FpGq ÝÑ
ź

πPIrrpGq

EndpVπq given by f ÞÑ pπpfqqπPIrrpGqq

where πpfq “
1

|G|

ÿ

gPG

fpgqπpgq. Endow the right hand side with addition, scalar multi-

plication and composition component-wise to make it a C-algebra. It is straightforward
that Φ is a linear map. More importantly,

Φpf1 ˚ f2q “ Φpf1q ˝ Φpf2q

11
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for all f1, f2 P FpGq. This last equality is easy to verify once we show that πpf1 ˚ f2q “

πpf1q ˝ πpf2q for all f1, f2 P FpGq, which follows from the definition of ˚ and a change of
variables. Thus the map Φ is a homomorphism of C-algebras.

Step 3. — The map Φ is one-one. If f P KerpΦq, then πpfq “ 0 for each π P IrrpGq.
In particular, λpfq “ 0 for the left regular representation λ. Remember that λpfq “
1

|G|

ÿ

gPG

fpgqλpgq P EndpFpGqq. Thus, if λpfq “ 0, we get in particular that λpfqpδeq “ 0.

Now, rλpfqspδeq “ 0 implies
ř

gPG fpgqλpgqpδeq “ 0 which in turn gives
ÿ

gPG

fpgqδg “ 0.

Evaluating at a point x P G, we get fpxq “ 0. As x P G is arbitrary, we get f “ 0.

Step 4. — The map Φ is onto as the dimension of the C-vector spaces on both sides
are equal by Burnside’s formula.

Step 5. — Since the map Φ is an isomorphism of C-algebras, the centers on either side
are isomorphic. Thus, ZpFpGqq is isomorphic to the center of

ś

πPIrrpGq
EndpVπq which is

isomorphic to C|IrrpGq|.

Step 6. — Let tC1 . . . , Chu denote the conjugacy classes in G. Denote by 1Ci
the

characteristic function of the conjugacy class Ci i.e., 1Ci
: G Ñ C is defined by

1Ci
pgq “

#

1 g P Ci

0 otherwise.

It is easy to see that t1C1 , . . . , 1Ch
u forms a linearly independent set in FpGq. Fix repre-

sentatives xi P Ci for each i. Then, by Lemma 5.10, each f P ZpFpGqq can be written as

f “
řh

i“1 fpxiq1Ci. Thus, t1C1 , . . . , 1Ch
u is a basis of ZpFpGqq.

Combining all the steps together, we get

| conjugacy classes in G| “ h “ dimpZpFpGqqq “ dimpC|IrrpGq|
q “ |IrrpGq|.

The proof of the theorem is now complete.

6. Exercises for tutorial sessions

1. Suppose G acts on X. Let FpXq :“ tf : X Ñ Cu. Show that G acts on FpXq as
follows: g P G, x P X pg ¨ fqpxq “ fpg´1 ¨ xq.

2. Suppoe X is a finite set. Consider pFpXq,`, ¨q where ` is pointwise addition and ¨

is scalar multiplication
(a) Show that pFpXq,`, ¨q is a C -vector space. What is the dimpFpXqq?. Can

you give a basis of FpXq?

12
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(b) Is the action of G on FpXq linear ? If so, what is the representation of G on
FpXq obtained via this action?

3. G acts on G via:
(i) left action: λpgqx “ g ¨ x
(ii) right action: ρpgqx “ x ¨ g´1

From Problem 1, G acts on FpGq via λ and ρ. What are the actions and write down
the representations: λ : G Ñ AutpFpGqq and ρ : G Ñ AutpFpGqq.

4. Using Problem 3, i.e. λ and ρ, we can define action of G ˆ G on G; pg, hq ¨ x “

gxh´1 , g, x, h P G. What is the induced action of G ˆ G on FpGq?
5. Assume that G is finite. On FpGq, define a new operation ˚ as follows: Given

f1, f2 P FpGq, define

f1 ˚ f2 : G Ñ C by

pf1 ˚ f2qpxq “
1

|G|

ÿ

gPG

f1pgqf2pg
´1xq

(a) Show that ˚ is associative.
(b) Show that pFpGq,`, ¨, ˚q is a C-algebra.
(c) Does pFpGq,`, ˚q have an identity element?

6. Show that the representation pπ,C2q of S3 we defined in the lecture is irreducible.
What about the two dimensional representation of D4 we defined in the lecture?

7. Assume G is finite. On FpGq, define a form: f1, f2 P FpGq, define

xf1, f2y “
1

|G|

ÿ

gPG

f1pgqf2pgq

(a) Show that x, y is a G-invariant inner product on FpGq.
(b) Let W denote the subspace of constant functions on G. Show that W is G-

invariant.
(c) What is a G-invariant complement of W in FpGq?

8. Suppose pπ, V q is a finite dimensional representation of a group G. Define

V G
“ tv P V : πpgqv “ v for all g P Gu.

Verify that V G is a G-invariant subspace. This subspace is called the space of
G-fixed vectors.

9. Suppose pπ, V q is a representation of a finite group G.
(a) Let v P V be a non-zero vector. What is the smallest G-invariant subspace of

V containing v?
(b) If pπ,Vq is irreducible, what can you say about the subspace you obtained in

(a)?
(c) If pπ, V q is irreducible, what can you conclude about dimpV q?

13
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10. Given a representation pπ, V q of a finite group G, define a function χπ : G Ñ C as
follows:

χπpgq “ trrπpgqs

for each g P G. This invariant of the representation is called the character of the
representation pπ, V q.
Verify the following:
(a) If g, h P G, show that χπpghg´1q “ χπphq.
(b) χπ1‘π2 “ χπ1 ` χπ2 .
(c) χπ˚ “ χ´1

π .
(d) χπpeq “ dimpV q

(e) χHompπ,τqpgq “ χπpg´1qχτ pgq.(It is easier to do this using tensor product).

11. Let a finite group G act on a finite set X and let representation obtained by the
induced action on FpXq be denoted by π, i.e.,

pπpgqfqpxq “ fpg´1
¨ xq

for g P G, f P FpXq, x P X.
(a) Calculate the character of the representation π.
(b) If X “ G and π “ λ, the left regular action, what is χλ?
(c) If X “ G and π “ ρ, the right regular action, what is χρ?

12. Can you give an example of a one-dimensional representation of the group
GL2pFpq?(Hint: determinant). What are all the one dimensional representations of
the group GL2pFpq?

13. What is the center of
(a) the group Sn.
(b) the group Dn.
(c) the group An.
(d) the group GL2pFpq.
(e) the group SL2pFpq.

14. What are the conjugacy classes in
(a) the group Sn.
(b) the group Dn.
(c) the group An.
(d) the group GL2pFpq.
(e) the group SL2pFpq.

15. Compute the character tables of the groups:
(a) the group Z{nZ.
(b) the group Z2 ˆ Z2.
(c) the group Zn ˆ Zn.
(d) the group S3.
(e) the group D4.
(f) the group A4.
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