Outline of Group Theory: Week 4

Venketasubramanian C G

1. Introduction

This is an outline of four lectures delivered during the 4" week (26 Dec 2022 to 31 Dec
2022) of the Annual Foundation School-I conducted by National Center for Mathematics
at MEPCO Schlenk Engineering College, Sivakasi during December 2022. Each lecture
was accompanied by a tutorial session. Most of the examples in these notes were used
as problems in tutorial sessions. Apart from generalities, I have followed closely Chapter
8 from Serre’s ‘Finite Groups-an introduction’, International Press, (2016). The aim of
the lectures were to give a short and succinct introduction to the theory of complex
representations of finite groups in four lectures.

Unless mentioned otherwise, we will assume that all our groups are finite and all vector
spaces are over complex numbers and finite dimensional.

2. Definitions and Examples

Definition 2.1. — A representation of a group G is a pair (7, V') where V is a C-vector
space and
G — Autc(V)

is a group homomorphism i.e., m(gh) = 7(g) om(h) Yg,h € G.

Remark 2.2. — We shall assume in these notes that V has finite diemsnion.

If V is of dimension n and we fix a basis B of V', we get an isomorphism of C-algebras:
¢: End(V) = M,(C)
T— [T]s
Definition 2.3. — If (m, V) is a representation of group G, then degree of the represen-

tation is defined as follows:
deg(m, V) := dim(V)
It is customary to denote the degree by deg(m).
Example 2.4. — G = (Z/nZ,+), then
Xk (Z/nZ,+) — (S',) = (C*,")
defined by
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for each k such that 0 < £k < n—1. Each of the y; gives a one-dimensional representation
of Z/nZ.

Example 2.5. — Let G = S3.
We get a trivial representation of S3 given by g — 1 € C* for all g € Ss.

Another one dimensional representation, sign representation
sgn : S3 — C*
is defined as
g9 — sgn(g)
where sgn(o) denotes the sign of the permutation o.

We define a degree 2 representation of Sj.

Write Ss = {1,7,72, s, 75,75}

We map
005(2—”) —sin(2—”) 1 0
T sin(3) cos(2) | M0

where n = 3. This gives a representation 7 : Sz — Aut(C?).

The next example is a recollection from Linear Algebra.

Example 2.6. — Suppose X is a finite set. Consider (F(X), +,-) where + is pointwise
addition and - is scalar multiplication. Then,

1. (F(X),+,) is a C -vector space.
2. A basis of F(X) is given by {d, : © € X} where ¢, is the function on X which takes

the value 1 at x and 0 at points y # x.
3. dim(F (X)) = | X|.

Exzample 2.7. — Suppose G acts on X. Let F(X) := {f : X — C}. Then G acts on
F(X) as follows: g€ G,x e X (g- f)(z) = f(g~' - z). Lets denote the action of G on
F(X) by II. Then each II(g) is a linear map of the vector space F(X). Thus,

II:G— Aut(F(X))
given by [II(g)f](z) = f(g~' - z) for ge G, f € F(X) and z € X is a representation of G
on F(X).
We will apply the previous example to G acting on itself via left and right action.

Example 2.8. — Recall that G acts on G via:

(i) left action: A(g)x =g -«
(i) right action: p(g)z = x - g~*
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Applying the general construction in the previous example to A and p, G acts on F(G)
via A and p. Let us write down the representations: A\ : G — Aut(F(G)) and p : G —
Aut(F(G)):

[(Mg)f](x) = f(g ')

and

[p(9) f](z) = f(zg)
forge G, f e F(G),x € X.

The representations (A, F(G)) and (p, F(G)) are called respectively the left-regular and
right regular representation of G.

Ezample 2.9. — Using \ and p, we can define an action of GxG on G: (g, h)-x = grh™!
for g,x,h € G. This induces a representation of G x G on F(G) denoted by A x p: G —
Aut(F(G)) given by

[\ x p)(g, ) f1(w) = f(g™"wh)
forge G, fe F(G),x € X.

We have an algebra structure on the vector space F(G).

Definition 2.10. — Let G be a finite group and let fi, fo € F(G). Define

Jixfa:G—C
by
1 _
(fi*x f2)(z) = €] > o) falg ).
geG
Lemma 2.11. — 1. The multiplication = is associative.

2. (F(G),+,-,*) is a C-algebra.

3. (F(GQ), +, ) is a ring with an identity (5; = |G|é,.

4. For g, h € G, 5Ag*571 =5/g\h.

5. The ring (F(G),+, *) is commutative if and only if the group G is abelian.

Exercise. Can you give an example of a one-dimensional representation of the group
GLy(F,)?(Hint: determinant). What are all the one dimensional representations of the
group GLo(F,)?

3. New representations from old and few basic results

We will see more examples of constructions of representations. First, we will apply the
general construction of representation of the previous lecture to .S,,.
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Example 3.1. — Write J, = {1,...,n}. We can identify F(.J,,) with C". The action
o f(j) = flo7(y)) for c € S,, f € F(J,) and j € J, translates to an action of S,, on C"
via 0 (21,...,20) = (Z6-1(1) - - -, Zo-1(n))- Under this action, o - e; = e,(;). This is easy to
see via functions if we identify the basis vector e; with d;: (o -0,)(i) = 1 if and only if
o 1(i) = j if and only if i = o(j). That is, 0 - §; = 0p(j).

Example 3.2. — In this example, we construct the contragredient or dual of a repre-
sentation. Suppose (7,V) is a representation of a group G. Define
V* = Homg(V,C) = {l : V — C| [ is linear} < F(V)
Let G act on V by 7, so we have ¢ - v = 7(g)v. G acts on F(V) by the action
(g- M) = flg"-v) = flz(g™v).

1. If L € V* define g - [(v) = I(7 (g7 v))
2. It is easy to check that g -1 e V*

Thus we get a natural action of G on V* denoted by 7*:
(m*(9)1)(v) = Um (g~ v))

(m*,V*) is called the dual/contragradient representation of (w, V). Note that V* is a
subspace of F(V') and has the following property: For any /€ V* and ge G, g-l e V*.
We call such a subspace a G-invariant subspace of F (V). It allowed us to define a
representation of G on the subspace V*.

From the previous example, we are led to the notion of a subrepresentation.

Definition 3.3. — Let (7, V) be a representation of a group G. We say that a subspace
W of V is G-invariant if for each g € G, w(g)(W) < W.
This gives a representation of G on W.

7w :G—Aut(W)
g9 —m(g)

(m|lw, W) is said to be a subrepresentation of (m, V).

Next, we construct representations using direct sums.

Example 3.4. — Suppose (71, V}) and (m, V3) are representations of G. Define
m @ G— Aut(Vy @ Vs)
defined by

(m1 @ 72)(9g)(v1,v2) = (m1(g)(v1), m2(g)(v2))
It is easy to check that (m @ m, V) @ V3) is a representation of G.
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Example 3.5. — Let (m,V) and (7, W) be representations of a group. We can define a
representation on the vector space Homg(V, W) consisting of all linear maps from V' to
W. Define for ¢ € Hom¢(V, W) , ge G and v e V|

(9-0)(v) = 7(9)(¢(m(g~")(v)))

It is easy to check that this is indeed a representation of (. This representation will be
denoted by Hom(r, 7).

Definition 3.6. — A representation (m, V') of G is said to be irreducible if V' # 0 and
V' has no G-invariant subspaces other than V' and 0.

Example 3.7. — Any degree one representation of a group is irreducible by definition.

Ezample 3.8. — The representation (m,C?) of S3 we defined in class is irreducible.
What about the two dimensional representation of D, we defined in class?

Example 3.9. — Consider the left regular representation (A, F(G)) of G. Define W to
be the subspace of F(G) consisting of all constant functions. Then, W is a G-invariant
subspace of F(G). In fact, A(g)f = f for all f € W and g € G. Thus (A, W) is a one
dimensional representation of G and hence irreducible. Note that W is spanned by the
constant function 1. If G is a non-trivial group, then (A, F(G)) is not irreducible.

Example 3.10. — Consider the action of S, on C, via A : from the previous example,
the constant function 1 generates a one dimensional invariant subspace which can be
identified with the subspace of C" spanned by e; + - - - + e,,.

Definition 3.11. — Suppose (m, V) is a finite dimensional representation of a group G.
Define

VY ={veV :n(g)v=moforall ge G}.

V& is a G-invariant subspace known as the space of G-fixed vectors.

Example 3.12. — If (7, V) is a finite dimensional representation of a group G the space
of G-fixed vectors is a subrepresentation of V.

Example 3.13. — Suppose (7, V) is a representation of a finite group G.

1. Let v € V' be a non-zero vector. The smallest G-invariant subspace of V' containing
v is the subspace W, := Span({m(g)v : g € G}). Observe that the dimension of W, is
at most |G].

2. If (m,V) is irreducible and v € V' is non-zero, we have W, = V.

3. If (m, V) is irreducible, we have deg(m) < |G|. That is, the degree of any irreducible
representation of a finite group cannot exceed the order of the group.

Our next aim is to prove a basic theorem in the subject, namely, any finite dimensional
complex representation of a finite group can be written as a direct sum of its irreducible
subrepresentations.
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Remark 3.14. — Let V be an n-dimensional C-vector space.We may identify V' with
C" and transfer the standard inner-product {(z,w) = >;7_, zjw; on C" to V.

Proposition 3.15. — Suppose (w,V) is a representation of a finite group G. Then,
there exists an inner product {—,—) on V" such that {w(g)v, 7(g9)w) = {v,w) Yg € G,v,w €
V. That is, {—,—) is a G-invariant inner product on V.

Proof. — 1If {, )¢ is any arbitrary inner product on G, define

1
W) 1= 1z Yoy, wlo)u)

geG
It is easy to verify that ;) is as claimed in the statement of the theorem. O
Proposition 3.16. — Suppose (m,V) is a representation of a finite group G. Assume

that W is a G-invariant subspace of V. Then, there exists a subspace U of V' such that
U s G-invariant and V =W @ U.

Proof. — For any subspace W of V' which is G-invariant consider its orthogonal comple-
ment W+ with respect to the G-invariant inner product given by the previous the previous
theorem. O

Theorem 3.17 (Maaschke’s theorem). — Let (m,V) be a finite dimensionl repesen-
tation of a finite group G. Then there exist irreducible subrepresentations, Wy, ..., W, of
V' such that

V=Wo oW,

Proof. — Apply induction on dimension of V. If dim(V') = 1 there is nothing to prove.
Assume that dim (V') > 1. If (7, V) is irreducible then there is nothing to prove. Assume
(7, V') is not irreducible to get a proper non-zero G-invariant subspace W. Apply previous

result to get V. = W @ W+. Apply induction hypothesis to W and W+. O]
Ezxzample 3.18. — Assume G is finite. On F(G), define a form: fi, fo € F(G), define
1 _
(3.1) Sy f2) = @Zfl(g>f2(g)
geG

1. Show that () is a G-invariant inner product on F(G).
2. Let W denote the subspace of constant functions on G. Show that W is G-invariant.
3. What is a G-invariant complement of W in F(G)?

4. Character of a group representation and its properties

Definition 4.1. — Let G be a finite group. Let (7, V') be a finite dimensional represen-
tation of the group G. Define x, : G — C by

Xx(9) = tr(m(g)).
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This invariant of the representation is called the character of the representation (m,V').

Remark 4.2. — Suppose |G| = n. Note that ¢" = e implies that 7(g)" = I ;. Therefore,
7(g) satisfies the polynomial X" —1 € C[X], which has n distinct zeroes in C. Hence there
exists a basis B of V' such that

A1(9)
[7(9)]s =
An(g)

Hence, x,(g) = tr[m(g)]s = A\i(g) + - - + Au(g). Since Ai(g), ... A\n() are roots of X" — 1,
A(g),. .- Aalg) € ST

Proposition 4.3. — The character of a finite dimensional representation of a finite
group has the following properties.

1. If g,h e G, xz(ghg™") = Xx(h).
2. Xm@®re = Xm + Xy

8 Xax = Xat-

4. Xx(e) = deg()

5. XHom(m,r)(9) = X (97" )X+(9)-

Proof. — Exercise. m
Remark 4.4. — It is easier to prove (e) using the tensor product. The rest are straight-
forward.

Corollary 4.5. — 1. Xx(g7") = Xa*(9) = Xx(9)

2. xx(9)] < deg(r).
3. Xx(g) = deg(m) < the action of G on V is by scalar multiplication (that is each

7T(g) - agIV)'
4. Xx = dim(V) < action of G on'V s trivial i.e., each w(g) = I.

Lemma 4.6. — Let a finite group G act on a finite set X and let representation obtained
by the induced action on F(X) be denoted by , i.e.,

(m(9)f)(@) = flg~" )
for ge G, f e F(X),z € X. The character of the representation  is given by

(4.1) Xr(9) ={zeX g -z =2z}

Proof. — Recall that J, denotes a basis vector of F(X.) Note that [7(g)d.](y) = 1 if and
only if 6,(¢7"-y) = 1 if and only if y = ¢g-x if and only if d,.,(y) = 1. Thus, 7(g)d; = 0.
Note that x(9) = D,cx 05(7(9)d,), where {0% : € X} is the dual basis of {d, : v € X}.

But 6%(m(g)6,) = 65(d4) = 1 if and only if g - x = 2. The statement follows. O
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Corollary 4.7. — Let (N, F(G)) and (p, F(G)) denote the left and right regular repre-
sentations of a finite group G. Then, we have

G| ifg=e
4.2 = =
(4.2) 0(9) = x(9) {0 otherwise.
Definition 4.8. — Let (m,V) and (7, W) be representations on a group G. Suppose
T:V — W is a linear map with
(4.3) T(m(g)v) =7(9)(T(v)), VgeG, veV.

We then say that the linear map 7" is G-linear (or G-equivariant map). Thus, a linear
map 1" : V — W is G-equivariant if and only if, for each g € GG, the following diagram
commutes

VL1 w

7T(g)l lT(g) :

VLI w
Definition 4.9. — Denote Homg(m,7) :={T : V — W|T is G — equivariant maps} <
Home(V, W).
Remark 4.10. — Homg(7, 1) is a complex vector space.

Definition 4.11. — A map T € Homg(m, 7) is said to be an isomorphism if 7" is a
bijection. T'wo representations (7, V") and (7, W) on a group G are said to be equivalent
if there exists T'€ Homg(m, 7) such that T is bijective map.

Remark 4.12. — If T is an isomorphism, then we set from (4.3),

(4.4) 7(9) =Ton(g)oT™?

for each g € G.

Example 4.13. — (A, F(G)) and (p, F(G)) are equivalent representations.

Ezxzample 4.14. — Let (7,C?) be the representation of S given by r — and s . Are
7 and 7w equivalent?

Lemma 4.15. — Let (m,V) and (7,W) be representations on a group G and let T €
Homg(m,T). Then

1. Ker(T) is a G-invariant subspace of V.
2. Img(T) is a G-invariant subspace of W.

Proof. — Exercise. O]

Lemma 4.16 (Schur’s Lemma). — Let G be a finite group. Suppose that (7, V) and
(1, W) be irreducible finite dimensional representations on G. Then

1. If w is not equivalent to 7, then Homg(m, 7) = {0}.
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2. IfW =W, Tt =7, and T € Homg(m,7), then T = Ay, for some A € C. In fact,
Homg(m,m) = {\|\ e C}.

3. If T is equivalent to m then Homg(w, T) is a one-dimensional C-vector space.

Corollary 4.17 — Suppose G is a finite abelian group, and (mw, V') is an irreducible
representation of G. Then dim(V') = 1.

Recall the inner product on F(G) from (3.1).

Theorem 4.18 (Basic Formula). — Let (7, V) be a finite dimensional representation
of a finite group G. Then
. 1
(4.5) dim(VE) = (xr, 1) = il Z X (9)-
geG

where V& denotes the subspace of G-fized vectors.

Proof. — Define T' = |—1| Z 7(g). It is easy to verify the following:
geG

1. TeEnd(V) and 7% =T

2. Img(T) = V¢,

3. V=Ker(T)®VC

4. Consequently, tr(T) = dim(V%).

Computing trace from the definition of T above and comparing gives us the desired
result. O

5. Schur orthogonality relations of characters and consequences

Proposition 5.1. — Let (7, V1), (7, V3) be two finite dimensional representations of G
a finite group. Then

<X7r17 X7r2> = dlm(HomG <7T1> 7T2)>

Proof. — Tt is easy to check that, Homg (7, m) = (Hom(m, 7)), By Theorem 4.18,
dim((Hom(7ry, m2))¢) 1). Now, we apply Proposition 4.3 (5) and apply a
change of variables g — g~! to prove the theorem. O]

- <X(Hom<n,w2>>c’

Theorem 5.2 (Schur Orthogonality Relations). — Let m,m be two irreducible
representations of a finite group G. Then

1 if w1 1s equivalent to mo

(5'1) <X7r17X7T2> = {

0 otherwise

Proof. — Follows from Schur’s Lemma and the previous proposition. O



Outline of Group Theory: Week 4

Put
Irr(G) = set of all irreducible representations of G upto equivalence

= {[n]|r irreducible representation of G}.

Corollary 5.8. — The subset {x.|m € Irr(GQ)} of F(G) is linearly independent.

Proof. — An orthogonal set in an inner product space is linearly independent. O

Corollary 5.4. — Let G be a finite group. We have |Irr(G)| < |G|

Proof. — Since dim(F(G)) = |G|, the statement follows. O

Theorem 5.5 (Uniqueness of decomposition into irreducibles)
Let (m, V) be a finite dimensional representation of G. Let (w, V) = (1, W1)®- - -®(7,-, W}.)
be a decomposition of V into a direct sum of irreducible representations. Let (p, W) be

any irreducible representation of G. Let (p, F(G)) denote the right reqular representation
of G. We have

The number of representations (7;, W;) equivalent to the representation (p, W)=(xxr, Xs)-

Proof. — Follows from Schur Orthogonality relations. m

Remark 5.6. — Theorem 5.5 says that the decomposition of a finite dimensional rep-
resentation of a finite group into irreducible ones is independent of the choice of the
irreducible components appearing in the decomposition up to isomorphism. Putting this
along with Maaschke’s theorem, we get an existence and uniqueness theorem for the de-
composition of a finite dimensional representation of a finite group into irreducible ones.
The reader may compare it with prime factorization of positive integers or a factorization
of polynomials in one indeterminate over a filed into irreducible factors.

We now prove a fundamental result in the subject as a consequence to the previous
theorem.

Corollary 5.7. — Suppose (w1, V1) and (w2, Vo) are two finite dimensional representa-
tions of a finite group G. Then the following are equivalent:

1. (m, V1) is equivalent to (mq, V3)
2. Xm = X

Proof. — (1) implies (2) is obvious. (2) implies (1) follows from Maaschke’s theorem and
Theorem 5.5. [

Next, we are going to prove a fundamental theorem of finite group representation theory.

Theorem 5.8. — Let Irr(G) denote the set of inequivalent irreducible representations of
a finite group G.

10
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Lxa=xo= ), Xel@xx= D, deg(m)xx
welrr(Q) welrr(Q)

216G = ) (€)= ) (deg(m)™
melrr(G) welrr(G)

3. Z X=(1)xx(g9) = 0 for each g € G such that g # e.
welrr(G)

Proof. — First note that, for any 7w € Irr(G), the number of irreducible component of A
which are equivalent to 7 equals {xx, x») = deg(m). This proves (1).

(2) follows from considering (x», x») and Schur’s orthogonality relations.
(3) follows from (?) O

In the lectures, for lack of time, an outline of the proof that the number of conjugacy
classes equals the number of distinct inequivalent irreducible representations of G was
given. We state it here for completeness.

Definition 5.9 (Center of F(G)). — Z(F(G)) ={fe F(G)|f=p == fVpe F(G)}

Lemma 5.10. — f € Z(F(G)) < f is a class function i.e. f(grg™') = f(x) for all
g € G. In other words, a function on G belongs to Z(F(G)) if and only if f is constant
on conjugacy classes.

Proof. — A function f belongs to Z(F(G)) if and only if f «d, = J, = f for each g € G.
The statement follows from this. m

Theorem 5.11. — Let G be a finite group and let h denote the number of conjugacy
classes in G. Then, |Irr(G)| = h.

Proof. — We outline the proof in few simpler steps. The strategy for the proof is that
the center Z(F(G)) of the algebra F(G) is isomorphic to C'™ (@ and that Z(F(G)) has
as basis the set of characteristic functions of conjugacy classes of G.

Step 1. — It is straightforward to check that Z(F(G)) is a vector subspace of F(G)
and moreover a C-subalgbera of F(G), i.e, if fi, fo € Z(F(G)) then fi = fo € Z(F(G)).
This follows since * is associative.

Step 2. — We have a map ¢ : F(G) — 1_[ End(V;) given by f — (7(f))rerrr(c)

1
where 7(f) = €] 2 f(g)m(g). Endow the right hand side with addition, scalar multi-
geG
plication and composition component-wise to make it a C-algebra. It is straightforward
that ® is a linear map. More importantly,

O(f1# f2) = ®(f1) o D(f2)

11
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for all fi, fo € F(G). This last equality is easy to verify once we show that m(f; * fo) =
7(f1) onm(fe) for all fi, fo € F(G), which follows from the definition of * and a change of
variables. Thus the map ® is a homomorphism of C-algebras.

Step 3. — The map ® is one-one. If f € Ker(®), then 7(f) = 0 for each 7 € Irr(G).
In particular /\( f) = 0 for the left regular representation A. Remember that A(f) =

Z f(g)A(g) € End(F(G)). Thus, if A(f) = 0, we get in particular that A\(f)(d.) = 0.

geG
NOW, [A(f)](de) = 0 implies ¥, . f(9)A(9)(de) = O which in turn gives
Z f(g)dy = 0.
geG
Evaluating at a point z € G, we get f(x) = 0. As z € G is arbitrary, we get f = 0.

Step 4. — The map ® is onto as the dimension of the C-vector spaces on both sides
are equal by Burnside’s formula.

Step 5. — Since the map & is an isomorphism of C-algebras, the centers on either side
are isomorphic. Thus, Z(F(()) is isomorphic to the center of [ [ ;. ) End(V7) which is

isomorphic to CH (I,

Step 6. — Let {C)...,Ch} denote the conjugacy classes in G. Denote by 1¢, the
characteristic function of the conjugacy class C; i.e., 1¢, : G — C is defined by

1 € Cz
1e,(g) = { g

0 otherwise.

It is easy to see that {1¢,,...,1¢,} forms a linearly independent set in F(G). Fix repre-
sentatives x; € C; for each i. Then, by Lemma 5.10, each f € Z(F(G)) can be written as

f =" f(z)lei Thus, {1¢,,...,1¢,} is a basis of Z(F(G)).
Combining all the steps together, we get
| conjugacy classes in G| = h = dim(Z(F(G))) = dim(CT" D) = |Irr(G)).

The proof of the theorem is now complete. n

6. Exercises for tutorial sessions

1. Suppose G acts on X. Let F(X) := {f X — C}. Show that G acts on F(X) as
follows: ge G,z e X (g- f)(z) = f(g~' - ).
(F

2. Suppoe X is a finite set. Consider
is scalar multiplication
(a) Show that (F(X),+,-) is a C -vector space. What is the dim(F(X))?. Can
you give a basis of F(X)?

(X),+, ) where + is pointwise addition and -

12
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(b) Is the action of G on F(X) linear ? If so, what is the representation of G on
F(X) obtained via this action?

3. G acts on G via:
(i) left action: A(g)x =g -«
(ii) right action: p(g)z = x- g~
From Problem 1, G acts on F(G) via A and p. What are the actions and write down
the representations: A : G — Aut(F(G)) and p : G — Aut(F(G)).
4. Using Problem 3, i.e. A and p, we can define action of G x G on G; (g,h) - x =
grh™' g,z ,h e G. What is the induced action of G x G on F(G)?
5. Assume that G is finite. On F(G), define a new operation * as follows: Given
fi1, f2 € F(G), define

1

fiefo:G— C by
(f1= Zfl ) f2(g™ )

geG’
(a) Show that = is associative.
(b) Show that (F(G), +, -, *) is a C-algebra.
(¢) Does (F(G),+, *) have an identity element?

6. Show that the representation (m,C?) of S3 we defined in the lecture is irreducible.
What about the two dimensional representation of D, we defined in the lecture?

7. Assume G is finite. On F(G), define a form: fi, fo € F(G), define

(fry fo) = Z f1(9) f2(9)

geG’

(a) Show that (,) is a G-invariant inner product on F(G).

(b) Let W denote the subspace of constant functions on G. Show that W is G-
invariant.

(c) What is a G-invariant complement of W in F(G)?

8. Suppose (7, V) is a finite dimensional representation of a group G. Define
={veV :m(g)v=wforall ge G}.

Verify that V¢ is a G-invariant subspace. This subspace is called the space of
G-fixed vectors.

9. Suppose (7, V) is a representation of a finite group G.
(a) Let v € V be a non-zero vector. What is the smallest G-invariant subspace of
V' containing v?
(b) If (7, V) is irreducible, what can you say about the subspace you obtained in
(a)?

(c) If (m, V) is irreducible, what can you conclude about dim(V')?

13
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10.

11.

12.

13.

14.

15.

Given a representation (m, V') of a finite group G, define a function y, : G — C as
follows:

Xr(g) = tr[m(g)]

for each g € . This invariant of the representation is called the character of the
representation (7, V).

Verify the following:

(a) If g, h € G, show that x,(ghg™') = xx(h).

( ) Xmi@my = Xﬂ'1 + Xy

(€) X = Xz -

(d) Xx(e) = dim(V)

€) Xtom(r,r)(9) = X« (97" )x-(g).(It is easier to do this using tensor product).

Let a finite group G act on a finite set X and let representation obtained by the
induced action on F(X) be denoted by 7, i.e.,

forge G, fe F(X),x e X.
(a) Calculate the character of the representation .
(b) If X = G and 7 = A, the left regular action, what is x,?
(c) If X = G and 7 = p, the right regular action, what is x,?
Can you give an example of a one-dimensional representation of the group
GLy(F,)?(Hint: determinant). What are all the one dimensional representations of
the group GLy(F,)?
What is the center of
(a) the group S,.
(b) the group D,,.
(c) the group A,.
(d) the group GLy(F,).
(e) the group SLy(IF,).
What are the conjugacy classes in
(a) the group S,.
(b) the group D,.
c¢) the group A,.
d) the group GLy(F,).
e) the group SLy(F,).
mpute the character tables of the groups:
) the group Z/nZ.
) the group Zg x Zs.
) the group Z,, x Z,.
) the group Ss.
) the group Dj.
) the group Ay.
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