Assignment sheet The Fourier transform - 1. Let $f \in \mathfrak{F}_a$ with a > 0, then $\forall n \in \mathbb{N}$, show that $f^{(n)} \in \mathfrak{F}_b$, $0 \le b < a$. - 2. Suppose $f \in \mathfrak{F}_a$, $0 < b < a, x, R \in \mathbb{R}$ and V is the line joining R ib, R + ib, then find $\lim_{R \to \infty} \int\limits_V \frac{f(z)}{z x} dz$, $\lim_{R \to \infty} \int\limits_V \frac{f(z)}{z x} dz$. - 3. Compute the Fourier transform of (i) $e^{-\pi x^2}$, (ii) $\frac{1}{\pi} \frac{y}{y^2 + x^2}$, (iii) $\operatorname{sech}(\pi x)$. - 4. Suppose f is continuous and of moderate decrease, and $\hat{f}(\xi) = 0$, $\forall \xi \in \mathbb{R}$. Show that f = 0. Hint: Fix $$t \in \mathbb{R}$$. Set $A(z) = \int_{-\infty}^{t} f(x)e^{-2\pi iz(x-t)}dx$, $B(z) = -\int_{t}^{\infty} f(x)e^{-2\pi iz(x-t)}dx$, $$F(z) = \begin{cases} A(z), & \text{Im}(z) \ge 0, \\ B(z), & \text{Im}(z) < 0. \end{cases}$$ Show that F is entire, bounded function. Then show that $$F \equiv 0$$. From this deduce that $\int_{-\infty}^{t} f(x)dx = 0$, $\forall t$, and conclude $f \equiv 0$. 5. Verify the Fourier inversion formula for the functions given in Exercise 3. 6. If $$A > 0$$, $B \in \mathbb{R}$, then find $\int_{0}^{\infty} e^{-(A+iB)x} dx$. 7. If $$g: \mathbb{R} \to \mathbb{C}$$ be continuous, then show that $f(z) = \int_{-n}^{n} g(t)e^{2\pi itz}dt$ is entire. 8. Let f has moderate decrease, $a \in \mathbb{R}$, t > 0. Then prove that following: (i) If $$g_1(x) = f(x)e^{2\pi iax}$$, then $\hat{g}_1(\xi) = \hat{f}(\xi - a)$, (ii) If $$g_2(x) = f(x - a)$$, then $\hat{g}_2(\xi) = \hat{f}(\xi)e^{-2\pi i a \xi}$, (iii) If $$g_3(x) = f(\frac{x}{t})$$, then $\hat{g}_3(\xi) = t\hat{f}(t\xi)$. 9. Prove the following identities for $a \in \mathbb{R}$, t > 0. $$(i) \; \sum_{n=-\infty}^{\infty} e^{-\pi t (n+a)^2} = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi n^2}{t}} \frac{e^{2\pi i a n}}{\sqrt{t}},$$ (ii) $$\sum_{n=-\infty}^{\infty} \frac{e^{-2\pi i a n}}{\cosh(\frac{n\pi}{t})} = \sum_{n=-\infty}^{\infty} \frac{t}{\cosh(\pi t (n+a))},$$ (iii) $$\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{a}{a^2 + n^2} = \sum_{n=-\infty}^{\infty} e^{-2\pi a|n|} = \coth(\pi a).$$ 10. Prove or disprove: The function $f(z) = e^{z^2}$ satisfies the maximum priciple in any unbounded domain. 11. Let S be a sector whose vertex is the origin, and forming an angle of $\frac{\pi}{\beta}$. Let F be a holomorphic function in S that is continuous on the closer of S, so that $|F(z)| \leq 1$, $z \in \partial S$. Moreover, let there exist C, a > 0, $\alpha \in (0, \beta)$ such that $|F(z)| \leq Ce^{a|z|^{\alpha}}$, $\forall z \in S$. Prove that $|F(z)| \leq 1$, $\forall z \in S$. <u>Hint</u>: Use the technique employed the proof of Phragmén-Lindelöf theorem.