AFS: Complex Analysis, module 3, Exercises

1. Path homotopy is an equivalence relation.

2. If α and β are curves in Ω from z_0 to z_1 and z_1 to z_2 , respectively, define $\alpha * \beta$ from z_0 to z_2 by

$$\alpha \ast \beta(t) = \begin{cases} \alpha(2t), & 0 \le t \le \frac{1}{2}, \\ \beta(2t-1), & 1/2 \le t \le 1. \end{cases}$$

If α_0 and α_1 are path homotopic and β_0 and β_1 are path homotopic, then $\alpha_0 * \beta_0$ is path homotopic to $\alpha_1 * \beta_1$.

3. Define the reverse $\overleftarrow{\alpha}$ of α by $\overleftarrow{\alpha}(t) = \alpha(1-t)$. If α is path homotopic to β , then $\overleftarrow{\alpha}$ is path homotopic to $\overleftarrow{\beta}$ and $\alpha * \overleftarrow{\alpha}$ and $\overleftarrow{\alpha} * \alpha$ are path homotopic to the constant paths ϵ_{z_0} and ϵ_{z_1} , respectively.

4. Ω is simply connected iff every closed curve at $z_0 \in \Omega$ is null homotopic, i.e. is path homotopic to the constant loop at z_0 .

5. A star-like domain is simply connected. Give an example of a simply connected domain that is not star-like.

6. $\gamma_0(t) = e^{2\pi i t}, 0 \leq t \leq 1$ is homotopic (not path homotopic) to the constant path $\gamma_1(t) \equiv 1$ in \mathbb{C}^* .

5. Which of the following are simply connected?

a) $H \setminus [0, i]$ where $H = \{z = x + iy : y > 0\}.$

- b) $H \setminus [\imath, 99\imath]$
- c) $\mathbb{C} \setminus [0,\infty)$
- d) $\mathbb{C} \setminus [-2022, 2022].$

6. There is no continuous function $\theta : \mathbb{C}^* \to \mathbb{R}$ such that $z = |z|e^{i\theta(z)}$ for $z \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

7. If u is harmonic, then $g = u_x - i u_y$ is holomorphic.

8. In a simply connected domain, every harmonic function has a harmonic conjugate.

9. Find a harmonic function in \mathbb{C}^* having no harmonic conjugate.

10. If f is holomorphic and never vanishes on Ω , then $\log |f|$ is harmonic.