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CHAPTER 6 OF ARTIN’S ALGEBRA: “MORE GROUP THEORY”

NOTES AND TUTORIAL SHEET 2B

Abstract. Proofs of Sylow’s theorems by means of group actions

Let p be a prime and G a finite group of order n “ pem, where p does not divide m. A subgroup
of order pe of G is called a Sylow p-subgroup. Sylow’s theorems are usually stated as follows:

(1) There exists a Sylow p-subgroup.
(2) The Sylow p-subgroups are all conjugate.
(3) The number np of Sylow p-subgroups divides m and satisfies np ” 1 mod p.

We prove the above theorems and provide some context in the following series of tutorial
exercises:

(1) A p-group G satisfies the converse of Lagrange’s theorem: that is, for any integer d
such that 0 ď d ď e, where |G| “ pe, there exists a subgroup in G of order pd. (Hint:
We have already seen, as a consequence of the class equation, that a p-group has non-trivial
centre. Use this and induction on |G|.)

(2) Combining item (1) with the first Sylow theorem, one obtains the following (partial)
converse to Lagrange’s theorem: given a prime power q that divides the order of a
finite group G, there exists a subgroup of G of order q. In particular, we get Cauchy’s
theorem: if a prime p divides the order of a finite group G, there exists an element of
order p in G.

(3) Show that
`

pem
pe

˘

is not divisible by p (where p is a prime and m an integer coprime to p).
(4) A subgroup H of a finite group G is a Sylow p-subgroup if and only if H is a p-group and

the index of H in G is coprime to p. (On the face of it, this appears to be an innocuous
characterization of a Sylow p-subgroup, but it plays a crucial role in the proofs below
of the first and second Sylow theorems in items (5), (7b) below.)

(5) We now prove the existence of a Sylow p-subgroup (Sylow’s first theorem). Let us first
explain our strategy.

Given item (4), we look for a subgroup H that is in some sense large enough (has
index coprime to p) and in another sense small enough (is a p-subgroup). To stage this
balancing act, we try to realize H as the stabiliser of some point in a suitable G-orbit O.
By the counting formula, the index of H in such a case equals the cardinality of O. So
we look for an O which is small enough (has cardinality coprime to p) and is also large
enough (its stabiliser is a p-subgroup).

Consider the action of G by left multiplication on the collection C of subsets of G of
cardinality pe.
(a) By item (3), |C | is coprime to p, so C has a G-orbit whose cardinality is coprime

to p.
(b) Let U be an element of C belonging to such an orbit and let H be the stabiliser of U .

Then U is the union of right cosets of H (see problem (4b) in Tutorial sheet 2A),
and hence |H| divides |U | “ pe, so H is a p-group.

The subgroup H thus has the desired properties.
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(6) Show that the second Sylow theorem follows from the following finer claim:
Let K be a subgroup of G and P a Sylow p-subgroup of G. Then there exists
a conjugate gP :“ gPg´1 of P (for some g in G) such that K X gP is a Sylow
p-subgroup of K.

(7) Let us now prove the claim in the previous item. Let P be a Sylow p-subgroup of G.
(a) Consider G{P with the natural G action on it. We restrict the action to K and

decompose G{P into a disjoint union of K-orbits. Since |G{P | “ m is not divisible
by p, it follows that at least one of these K-orbits has cardinality not divisible
by p. Let g in G be such that the K-orbit of the coset gP in G{P has cardinality
not divisible by p. Let Q denote the stabiliser in K of the coset gP . We claim that
Q is a Sylow p-subgroup of K.

(b) On the one hand, by the “counting formula” we have

|K| “ |K-orbit of gP | ¨ |Q|

and so the index of Q in K is coprime to p. On the other hand, the stabiliser of gP
in G being gPg´1, we have Q “ K X gPg´1, so Q is a p-group. It follows that Q is
a Sylow p-subgroup of K (see item (4) above).

(8) (a) A Sylow p-subgroup of a finite group is unique if and only if it is normal.
(b) Let P and P 1 be Sylow p-subgroups of a finite group G. If P ‰ P 1, then P does

not normalise P 1. (Hint: Suppose that P Ď NGpP
1q. Then P and P 1 are distinct Sylow

p-subgroups of NGpP
1q, with P 1 being normal, a contradiction to the previous item.)

(9) Let us now prove Sylow’s third theorem.
(a) The group G acts on the set S of its Sylow p-subgroups by conjugation. By Sylow’s

second theorem, this action is transitive. So the number np of Sylow p-subgroups
is the index in G of the stabiliser of any one particular Sylow p-subgroup, say P .
This stabiliser is the normaliser NGpP q of P in G and contains P . Hence its index
divides the index of its subgroup P , which is m.

(b) Restrict the action on S in the previous item to the Sylow p-subgroup P . By
item (8) the only P -fixed point in S for this action is P . Now, by the “fixed point
theorem for p-group actions” (item (13) in Sheet 1), the cardinality of S and that
of the fixed point set are equal modulo p.

(10) For a Sylow p-subgroup P of a finite group G, we have NGpNGpP qq “ NGpP q.
(11) Let q be the power of a prime p, and Fq a finite field with q elements. Put G “ GLpn,Fqq

(where n is some positive integer).
(a) What is the cardinality of a Sylow p-subgroup of G?
(b) Describe explicitly a Sylow p-subgroup of G.
(c) What is the number of Sylow p-subgroups in G?
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