
AFS AT MEPCO DEC 2022

CHAPTER 6 OF ARTIN’S ALGEBRA: “MORE GROUP THEORY”

NOTES AND TUTORIAL SHEET 1

Abstract. Group actions: G-sets and G-maps; symmetries and defining actions;
actions of a group on itself: the left regular action and the conjugation action,
Cayley’s theorem; action on cosets; orbits and stablisers; structure of a transi-
tive action and the counting formula; the class equation and its application to
p-groups.

Throughout, let G denote a group (not necessarily finite) and X, Y , . . . sets (not
necessarily finite).

(1) We say that X is a G-set or that G acts on X if there exists a map GˆX Ñ X
given by pg, xq ÞÑ gx satisfying the following axioms1:
(a) gphxq “ pghqx and (b) 1x “ x, for all g, h in G and all x in X.
A map f : X Ñ Y between G-sets is called a G-map if fpgxq “ gfpxq (for all g
in G and all x in X).

(2) Groups arise naturally in mathematics as symmetries of objects. The mathe-
matical objects with which we are familiar are sets with some additional struc-
ture. Consider, for instance, the following hierarchy of three examples: a set,
a vector space, and an inner product space. A symmetry of an object is a self-
map, a bijection of the underlying set that preserves all the structures. Being
a bijection, the inverse of a symmetry is defined, and it too should preserve
all the structures (if this isn’t clear, we demand it). A composition of two sym-
metries is also a symmetry. Thus the symmetries of any object form a group
called the symmetry group. For instance:
(a) The symmetry group of a set X is just the group SX of bijections from X

to X. It is called the “symmetric group”. If X a finite set with n elements,
say rns :“ t1, . . . , nu, this is just the familiar “symmetric group” Sn on the
n symbols 1, . . . , n.

(b) The symmetry group of a vector space V is GLpV q, the group of invertible
linear transformations from V to V . It is called the “general linear group”.

(c) The symmetry group of an inner product space W is the “orthogonal group”
OpW q of invertible linear transformations that preserve the inner product
〈u, v〉: OpW q :“ tg P GLpW q | 〈gu, gv〉 “ 〈u, v〉u.

Given an object, it may be useful to strip it of some of its structures and con-
sider only what is left. For example, an inner product space W may be con-
sidered as just a vector space or even just a set. In such a forgetful situation,

1The notation gx for the result of the action of g on x is natural and suggestive. There are certain
contexts, however, in which it could cause confusion, and in such situations some such alternative
notation as g ¨ x or gx is used. For an instance of such usage, consider the conjugation action of a group
on itself (one of the items below).
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there are natural inclusions of the symmetry groups: OpW q Ď GLpV q Ď SV .
Similarly, for a vector space V , we have GLpV q Ď SV .

(3) The symmetry group of an object naturally acts on the object. Such an action
is called the defining action, because it helps to define the group itself.

(4) If G acts on X, one can use this to define a group homomorphism from G to
the symmetric group SX . Conversely, given such a homomorphism, there is a
corresponding action of G on X. The action is called faithful if the homomor-
phism G Ñ SX is injective, or, equivalently, the kernel of the homomorphism
is the trivial subgroup t1u of G.

(5) A group acts on itself in multiple ways. Here are two ways that we will imme-
diately consider:
(a) This action is variously called left action, left regular action, left regular

action: the result gx of g acting on x is the product gx in the group.
(b) The conjugation action: gx “ gxg´1. (Here we have used gx to denote the

result of g acting on x, for it would be confusing to use gx for that purpose
in this context.)

(c) CAYLEY’S THEOREM: For any group G, the left regular action of G on itself
being faithful (check this), we get an injection of G into SG.

(6) Let H be a subgroup of G and G{H the set of (left) cosets of H. We have a
natural action of G on G{H, with gpxHq :“ gxH.

(7) Let X be a G-set.
(a) Given elements x and y of X, we say that y is the orbit of X (or G-orbit of

x in case we want to emphasise the action of G) and write x „ y, if there
exists g in G such that gx “ y. The relation x „ y is symmetric, reflexive,
and transitive. In other words, it is an equivalence relation on X. The
equivalence classes are called orbits. We suggestively use Gx to denote
the orbit of x.

(b) The orbits being equivalence classes (for an equivalence relation), they
form a partition of X. In other words, X is the disjoint union of its orbits.

(c) A subset Y of X is said to be G-stable if gy P Y for all g P G and y P Y . A
subset Y is G-stable if and only if it is a union of orbits. Given a G-stable
set Y , we can consider Y itself as a G-set. To analyse the G-action on X,
we could consider the partition of X into orbits, and analyse each orbit
separately. This motivates the next definition.

(d) The action of G on X is said to be transitive if the whole of X is a single
orbit, or, equivalently, given any two elements x and y of X, there exists
an element g in the group such that gx “ y. The action of G on the set G{H
of cosets of a subgroup H is transitive. This is significant, since, as we
will presently show, every transitive action is isomorphic to an action on
cosets.
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(e) For an element x in X, the stabiliser of x (also called the isotropy at x),
denoted Gx, is defined by Gx :“ tg P G | gx “ xu.

(i) Gx is a subgroup of G.
(ii) We have an isomorphism of G-sets: G{Gx » Gx given by gGx ÞÑ gx. In

particular, we have, when G is finite, the following counting formula:
|G| “ |Gx| ¨ |Gx|.

(8) By the counting formula, the cardinality of any orbit under the action a finite
group G divides the order of G. In particular, the cardinality of any conjugacy
class of G divides the order of G.

(9) Analyse the orbits and stabilisers for the actions that have been introduced up
to now (and all those that will be introduced from now on). For the conjugacy
action of G on itself, for example, the orbits are the conjugacy classes, and the
stabiliser of an element is its centraliser. Thus, by the counting formula, for
an element x in a finite group G, we have

|G| “ |conjugacy class of x| ¨ |centraliser of x|

(10) Let H be a subgroup of a group G. For g an element of G, let gH denote the
conjugate gHg´1 of the subgroup H.
‚ The G-sets G{H and G{gH with their natural G-actions are isomorphic as
G-sets. (The map xH ÞÑ xHg´1 “ xg´1gH defines an isomorphism).

‚ Conversely, if, for a subgroup H 1 of G, the G-sets G{H and G{H 1 are iso-
morphic (as G-sets) then H 1 “ gH for some g P G.

(11) In this item we discuss various versions of the class equation of a finite group G.
Consider the conjugation action of a such a group on itself. The orbits in this
case are the conjugacy classes. Let C1, . . . , Ck be all the conjugacy classes,
listed in some order. Since these form a partition of G, we have:

|G| “ |C1| ` ¨ ¨ ¨ ` |Ck| (1)

Every summand on the right side is a divisor of |G| (as observed above).
The identity element forms a (conjugacy) class by itself. More generally, any

element in the centre of G forms a class by itself. In fact, the converse is also
true: if an element forms a class by itself, then it belongs to the centre. We
may therefore write:

|G| “ |centre of G| `
ÿ

|C|ą1

|C| (2)

where the sum on the right side is taken over all non-singleton conjugacy
classes. Every summand on the right side is a divisor of |G|; we emphasise
that each of the summands |C| in Eq. (2) is a divisor of G bigger than 1.

(12) A finite group G is called a p-group (where p is understood tacitly to denote a
prime number) if its order is a power of p. Use the class equation to show that
any p-group (that is not itself trivial) has non-trivial centre. (Hint: Consider
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Eq. (2) for a p-group G with |G| ą 1. In this case, |G| ” 0 mod p and |C| ” 0 mod p for
each C in Eq. (2), so |centre of G| ” 0 mod p. In particular, |centre of G| ą 1.)

(13) (FIXED POINT THEOREM FOR p-GROUP ACTIONS) Suppose that a p-group G
acts on a finite set X. Show that |X| ” |XG| mod p, where XG :“ tx P X | gx “
x for all g P Gu. In particular, if |X| ı 0 mod p, then XG is non-empty.

(14) Let p be a prime number. Any group of order p2 is abelian. There are ex-
actly two groups of order p2 up to isomormphism: namely, the cyclic group and
Z{pZ‘ Z{pZ.

(15) Give a proof of Lagrange’s theorem using the language of group actions.

(16) Let G denote the cyclic group of order m. For n a positive integer let qpnq be
the number of G-isomorphism classes of G-sets of cardinality n. Set qp0q “ 1
(by definition). Show that the generating function Qptq :“

ř

ně0 qpnqt
n equals

Qptq “
1

ś

d|m

p1´ tdq
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A FEW AFTERTHOUGHTS

Let G be a group and X a G-set.
(1) For two elements of X belonging to the same orbit, the stabiliser subgroups at

these points are conjugate: in fact, gpGxq “ Ggx.

(2) Let F be a finite field with q elements. Let V be a vector space of finite di-
mension n over F. Let k be an integer 0 ď k ď n. What is the number of
k-dimensional subspaces in V ? (Hint: It may help to try this for k “ 1 and k “ 2

first.)
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