
PROBLEM SET FOR THE 1ST WEEK (COMPLEX ANALYSIS)

Fundamental structures of C:

(1) As we know C has a pair of binary operations on it namely, addition and multiplica-
tion satisfying certain basic axioms, out of which every algebraic property/theorem
of complex numbers can in principle (even if the chains of logic involved in the
derivation are quite long) be derived; these axioms are essentially associativity,
existence of an additive and multiplicative identity, existence of additive inverse
for all z ∈ C, existence of multiplicative inverse for every z ∈ C∗ := C \ {0} and
the distributivity of multiplication over addition. All of these are enjoyed by real
numbers as well, which also has an order structure in it. Prove that it is impos-
sible to linearly/totally order the complex numbers by an order relation which is
compatible with its algebraic structure (unlike the reals). To make this assertion
precise, we have the following definitions:
Let X be any (abstract) set. A relation R ⊂ X ×X, which we shall denote ⪯ is
called a preorder if it satisfies the following axioms:
(i) Reflexivity: x ⪯ x holds for all x ∈ X,
(ii) Transitivity: if x ⪯ y and y ⪯ z for some x, y, z ∈ X, then x ⪯ z also holds.
The relation ⪯ is called a partial order if it also satisfies:
(iii) Anti-symmetry axiom: if x ⪯ y and y ⪯ x then x = y.
A partial order is called a total/linear order if every pair of elements are compa-
rable i.e., given any pair x1, x2 ∈ X, we must either x1 ⪯ x2 or x2 ⪯ x1. The
strict-ordering associated to a given preorder ⪯ on X is the relation defined (and
denoted) by x1 ≺ x2 if x1 ⪯ x2 but x1 ̸= x2.

Examples/Exercises:
(a) Pick any set S and define A ⪯ B if A ⊂ B; then (verify that) this gives a

partial order on the power set of S which is not a total order.
(b) For z, w ∈ C define z ⪯ w if |z| ≤ |w|; this gives a pre-order which is not a

partial order.
(c) For z, w ∈ C define a total order relation by comparing their real and imagi-

nary parts as follows. Declare z ⪯ w if ℜ(z1) ≺ ℜ(z2) or if ℜ(z1) = ℜ(z2) and
ℑ(z1) ⪯ ℑ(z2). This is called the lexicographic/dictionary order and it gives
a total order on C but it is not compatible with the algebraic operations of
C.

(d) For z, w ∈ C define z ⪯ w if ℜ(z1) ⪯ ℜ(z2) and ℑ(z1) ⪯ ℑ(z2) (this is es-
sentially what is known as the ‘product order’ on R2). Then this is a partial
order which is not a total order, which is compatible with addition but not
with multiplication.

Finally, prove that there does not exist a total ordering on C which is compatible
with the field operations in the following sense. Whenever z1 ⪯ z2 and 0 ⪯ z3, we
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have: z3z1 ⪯ z3z2. If we also have another pair of complex numbers w1, w2 satis-
fying w1 ⪯ w2, then we have z1 + w1 ⪯ z2 + w2. Prove then, that it is impossible
to put an order relation ⪯ on C satisfying the above conditions.
Remark: The example in (b) above namely, z ⪯ w if |z| ⪯ |w| is compatible with
multiplication in this sense (but not with addition). However, more importantly as
already noted above, it does not give even a partial order, let alone a total ordering.

(2) Show that d(z, w) = |z−w| defines a distance function which makes C into a com-
plete metric space. Next, verify the reverse triangle inequality |w−z| ≥

∣∣|w|− |z|
∣∣

for all z, w ∈ C with equality iff either z and w are positive multiples of each other.
Conclude that the absolute value function z → |z| is continuous on C.

(3) Show that C defined as the set of all expressions of the form a+ ib where a, b are
real numbers, with addition and multiplication defined by

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1)

is ‘isomorphic’ to

M :=
{[

a −b
b a

]
: a, b ∈ R

}
where by ‘isomorphic’, we mean the existence of a bijective mapping F : C → M
satisfying: F (z + w) = F (z) + F (w) and F (zw) = F (z)F (w) wherein the op-
erations on the right-hand-side of this pair of equations are matrix-addition and
matrix-multiplication respectively; such a map F is called a field isomorphism.

(4) Show that F[t], the polynomial ring in the single variable t with coefficients from a
field F is a PID (principal ideal domain), thereby the rings R[x] and C[z] are PIDs.
Show that the element x2+1 is irreducible in R[x] and thereby is a prime element
in R[x] and therefore the quotient ring R[x]/⟨x2 + 1⟩ is an integral domain. Show
that the ideal ⟨x2 + 1⟩ is a maximal ideal in R[x] and thereby the quotient ring
R[x]/⟨x2 + 1⟩ is actually field and finally show that this field is isomorphic to the
field of complex numbers.

(5) Prove that the conjugation mapping is the only field automorphism of C which
maps R into itself and is different from the identity map. (Hint: First prove that
a field automorphism f of C with f(R) ⊂ R must fix R pointwise (i.e., f(x) = x
for each x ∈ R) by showing that any such f must be order preserving).

‘Real’ applications of complex algebra and calculus:

(6) Application of complex algebra to deriving trigonometric identities:
(i) Prove/Recall that for any complex number ̸= 1, we have for each n ∈ N the
following equality of a polynomial and a rational function:

1 + z + z2 + . . .+ zn =
zn+1 − 1

z − 1
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Use this to derive the following trigonometric identities valid for all real numbers
θ which are not an integer multiples of 2π:

1 + cos θ + cos 2θ + . . .+ cosnθ =
1

2
+

sin
(
(2n+ 1)θ/2

)
2 sin θ/2

and

sin θ + sin 2θ + . . .+ sinnθ =
sin(n θ

2
) sin

(
(n+ 1) θ

2

)
sin θ

2

.

(ii) Derive a ‘real’-identity for cos4 θ in terms of multiples of θ i.e., an expression of
cos4 θ which is expressed as a (finite) linear combination of functions of the form
cosnθ where n ∈ Z and which is valid at-once for all real values of θ.

Remark: These identities arise in (the basic) theory of Fourier series.

(7) (Application to finding indefinite integrals of functions of a real variable – later
in the course, applications of complex calculus to challenging definite integrals of
functions of a real variable will be discussed): Compute∫

e3x cos 2xdx

i.e., determine (upto additive constants) an antiderivative of e3x cos 2x. It’s pos-
sible to do this by integrating by parts twice; to do this with much fewer com-
putations, use the relation that exists between the integrand to a complex-valued
function of a real variable (i.e., view the integrand as the real-part of a complex-
valued function of a real variable).

(8) For which values of θ does the sequence einθ converge? Needless to say, you must
justify your answer. Indeed, your justification/analysis must help you to show
that both the limits lim

n→∞
cosnθ and lim

n→∞
sinnθ fail to exist whenever θ is not an

integer multiple of π.

CR (Cauchy – Riemann) equations and ‘Wirtinger derivatives’.

(9) Recall the partial differential operators (called the ‘Wirtinger derivative’ opera-
tors):

∂

∂z
=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
=

1

2

(
∂

∂x
+ i

∂

∂y

)
Express the CR equations as a single equation in terms of the above operators.
Show that if f is holomorphic at z0, then

∂f

∂z
= 0, and f ′(z0) =

∂f

∂z
(z0) = 2

∂u

∂z
(z0)

where we write f in-terms of its real and imaginary parts as f = u + iv. Further
next, if we write f as F (x, y), then show that: F is differentiable in the sense of
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real variables and det(JF (x0, y0) = |f ′(z0)|2.

(10) Show that the CR-equations can be written in polar coordinates in the form:

∂u

∂r
=

1

r

∂v

∂θ
, and

1

r

∂u

∂θ
= −∂v

∂r
.

Use these equations, to show that the (principal branch of the complex) logarithm
function defined by

log(z) = log r + iθ

where z = reiθ with −π < θ < π, is holomorphic in the region r > 0 and
−π < θ < π.

(11) Show that the standard Laplace operator in 2 real variables namely, ∂2/∂x2 +
∂2/∂y2 can also be expressed as:

4
∂

∂z

∂

∂z
= 4

∂

∂z

∂

∂z

Deduce that if f is holomorphic on an open set U , then the real and imaginary
parts of f are harmonic functions i.e., their Laplacian vanishes identically.

Basic Complex Line integrals:

(12) Evaluate the line-integrals ∫
γ

zndz

for all integers n. Here γ is any circle centered at the origin, with the positive
(counterclockwise) orientation. Do the same, for circles γ not containing the origin
in its ‘inside’.

(13) Show that if |a| < r < |b|, then:∫
γ

1

(z − a)(z − b)
dz =

2πi

a− b
,

where γ denotes the circle centered at the origin, of radius r, with positive orien-
tation.

Anti-derivatives/primitives

(14) Suppose f is continuous on a region/domain Ω. Prove that any two primitives of
f (if they exist) differ by a constant.

Goursat’s theorem, Cauchy’s theorem, Cauchy Integral formula and its consequences

(15) Suppose f is continuously complex differentiable on a domain Ω ⊂ C. Suppose T
is a triangle whose interior/inside is also contained within Ω. Show using Green’s
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theorem that ∫
γ

f(z)dz = 0.

(Remark: This provides a proof of Goursat’s theorem under the additional as-
sumption that f ′ is continuous).

(16) Let Ω be a domain in C and T is a triangle whose interior/inside is also contained
within Ω. Suppose that f is a function holomorphic in Ω, except possibly at a
point w inside T . Prove that if f is bounded near w, then:∫

T

f(z)dz = 0.

(17) Suppose f : D → C is holomorphic. Let d denote the diameter of the image, given
precisely by

d := sup
z,w∈D

|f(z)− f(w)|

Show that this diameter satisfies 2|f ′(0)| ≤ d.
(Hint: For all 0 < r < 1, we have

2f ′(0) =
1

2πi

∫
|ζ|=r

(
f(ζ)− f(−ζ)

ζ2
dζ

)
.

(18) Suppose that Ω is a bounded domain in C and φ : Ω → Ω, a holomorphic map
with the properties that, there exists z0 ∈ Ω such that:

φ(z0) = z0, and φ′(z0) = 1

Prove that φ must be a linear map.

(19) Let f be a holomorphic function on the disc DR0 centered at the origin, of radius
R0. Prove that for all 0 < R < R0 and |z| < R, we have

f(z) =
1

2πi

∫ 2π

0

f(Reiφ)Re

(
Reiφ + z

Reiφ − z

)
dφ.

(20) Let u be a twice continuously differentiable function on the standard unit disc D,
which is harmonic. Prove that there exists a holomorphic function f on the unit
disc such that Re(f) = u. Also show that the imaginary part of f is uniquely
defined upto an additive (real) constant.
(Hint: Recall from an earlier problem that f ′(z) = 2∂u/∂z. Therefore, let
g(z) = 2∂u/∂z and prove that g is holomorphic. Why can one find F with F ′ = g?
Prove that Re(f) differs from u by a real constant).

(21) From the above result, deduce the Poisson integral representation formula from
the Cauchy Integral Formula: if u is harmonic in the unit disc and continuous on
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its closure, then if z = reiθ, one has

u(z) =
1

2π

∫ 2π

0

Pr(θ − φ)u(φ)dφ,

where Pr(φ) is the Poisson kernel for the unit disc give by

Pr(γ) =
1− r2

1− 2r cos γ + r2
.

(22) Suppose f is a non-vanishing continuous function on D which is holomorphic in
D. Prove that if

|f(z)| = 1, whenever |z| = 1

then f is constant.


