LINEAR GROUPS - PROBLEM SHEETS COMBINED (3rd WEEK)

1. PROBLEMS ON LINEAR GROUPS

- (1) State and prove Cayley's Theorem (using group action). Prove that every finite group of order n is isomorphic to a closed subgroup of the orthogonal group O(n).
- (2) Prove that the following defines a group action of the group $GL_n(\mathbb{R})$ on $M_n(\mathbb{R})$

$$A \to (P^t)^{-1} A(P^{-1}).$$

Find the orbit and stabilizer of various choice of matrices in $M_n(C)$.

- (3) Let $\alpha \in [-1, 1]$. Define $C_{\alpha} = \{M \in SU_2(\mathbb{C}) : \operatorname{Trace}(M) = 2\alpha\}$. Prove that every conjugacy class in $SU_2(\mathbb{C})$ is of this form C_{α} for some α .
- (4) Prove that the group $SU_2(\mathbb{C})$ is homeomorphic to the unit 3-sphere in \mathbb{R}^4 . Further, describe/identify the latitudes and longitudes of the 3-sphere under this homeomorphism.
- (5) Prove that the center of the group $SU_2(\mathbb{C})$ is equal $\{\pm I\}$.
- (6) Consider the set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$. Give an example of a topological space X and a subspace Y such that $A \subsetneq Y$ and A is closed in Y.
- (7) Let Y be a subspace of X. Prove that a set $A \subseteq Y$ is closed in Y if and only if $A = Y \cap C$ where C is closed in X.
- (8) Show that the group $O_1(\mathbb{R})$ is isomorphic to the cyclic group of order 2 and that $SO_2(\mathbb{R})$ is isomorphic as a topological group to the circle group S^1 . Conclude that $O_2(\mathbb{R})$ is homeomorphic as a topological space to $SO_2(\mathbb{R}) \times O_1(\mathbb{R})$, but that as a group these objects are not isomorphic to each other.
- (9) Prove that $\frac{O(n)}{O(n-1)}$ is homeomorphic to S^{n-1} .
- (10) Prove that $\frac{SO(n)}{SO(n-1)}$ is homeomorphic to S^{n-1} .
- (11) Prove that $O_n(\mathbb{R})$ has exactly two connected components.
- (12) Show that $GL_n(\mathbb{F})$ is a subgroup of $SL_{n+1}(\mathbb{R})$.
- (13) Prove that $GL_n(\mathbb{Q})$ is a subgroup of $GL_n(\mathbb{R})$ but it is not closed.
- (14) Prove that the exponential of a matrix is well-defined.
- (15) Prove the Lie product formula for two complex matrices X and Y:

$$e^{X+Y} = \lim_{m \to \infty} \left(e^{\left(\frac{X}{m}\right)} \left(e^{\left(\frac{Y}{m}\right)} \right) \right)^m.$$

(16) Prove that, for a complex matrix X

$$\det(e^X) = e^{\operatorname{tr}(X)}$$

Please turn over...

(17) Let G be a matrix Lie group. Define its Lie algebra to be the set

$$\mathfrak{g} := \{ X \in M_n(\mathbb{C}) : e^{tX} \in G \ \forall t \in G \}.$$

Prove that \mathfrak{g} satisfies all the conditions of an abstract Lie algebra for a suitable choice of the bracket.

- (18) Compute the dimensions of the following groups.
 - (a) $SU_n(\mathbb{C})$
 - (b) $SO_n(C)$
 - (c) $SP_{2n}((R)$
 - (d) $O_{3,1}$.
- (19) Let a be an irrational real number and define

$$G = \left\{ \begin{bmatrix} e^{it} & 0\\ 0 & e^{ita} \end{bmatrix} : t \in \mathbb{R} \right\}$$

Prove that G is not a matrix Lie group. Also, prove that G is a subgroup of $GL_2(\mathbb{C})$.

- (20) The Lie algebra of U(n) consists of all complex matrices X satisfying $X^* = X$ and tr(X) = 0.
- (21) The Lie algebra of orthogonal group O(n) consists of all real matrices X satisfying $X^{\text{tr}} = X$.
- (22) Prove that the Lie algebra of the Heisenberg group

$$H = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

is the space of all matrices of the form

$$\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix},$$

where $a, b, c \in \mathbb{R}$.

Please turn over...

Fundamental Group																			
Simply connected																			
Components																			
Connected																			
Compact																			
Bounded																			
Closed																			
Groups	$GL_n(\mathbb{C})$	$SL_n(\mathbb{C})$	$GLn(\mathbb{R})$	$SL_n(\mathbb{R})$	$O_n(\mathbb{R})$	$SO_n(\mathbb{R})$	$On(\mathbb{C})$	$SO_n(\mathbb{C})$	$U_n(\mathbb{C})$	$SU_n(\mathbb{C})$	$Sp_n(\mathbb{R})$	$Sp_n(\mathbb{C})$	O(n,1)	SO(n,1)	O(n,k)	SO(n,k)	Heisenberg	E(n)	P(n,1)

Fill in the blanks by Yes/No with the justification.