SCHUBERT POLYNOMIALS DAY 3

ATMW SCHUBERT VARIETIES 2017

Problem 1 (Wiring Diagrams for Words). (a) Show that a decomposition for a permutation w is reduced if and only if no two wires cross twice in its wiring diagram.

- (b) Suppose no two wires cross twice in a wiring diagram for w. Show that wires i and j in the wiring diagram cross if and only if $(i, j) \in I(w)$.
- (c) Can you use this result to give a quick proof of the Deletion Property? What about the Strong Exchange Property?

Problem 2 (Wiring Diagrams and Connectedness of Reduced Word Graph). Let $w = s_{i_1} \cdots s_{i_l}$ be reduced, and let $m = \min\{i_1, \ldots, i_l\}$. Check what happens to the wiring diagram as you follow the algorithm from class for pushing s_m to the right as far as possible.

- **Problem 3** (Basic properties of divided difference operators). (a) Show that for any polynomial $P \in \mathbb{Z}[x_1, \ldots, x_n]$, we have that $(x_i x_{i+1})$ divides $P s_i(P)$. Thus $\partial_i(P)$ is a well-defined polynomial for all $1 \le i \le n-1$.
- (b) Show that if P is homogeneous of degree d, then $\partial_i(P)$ is either homegeneous of degree d-1, or zero.
- (c) Show that $\partial_i(PQ) = (\partial_i P)Q + (s_i P)(\partial_i Q)$ for polynomials P and Q. Thus ∂_i behaves a bit like a derivative.
- (d) Show that if $\partial_i(P) = 0$, then P is symmetric in x_i and x_{i+1} .

Problem 4 (Playing with the operators). Let $P = x^2 y \in \mathbb{Z}[x, y, z]$. Find all polynomials we can generate using the operators ∂_1 and ∂_2 . You can save some time by invoking the results of the next problem below!

Problem 5 (Relations satisfied by the operators). Prove the following facts about the operators ∂_i on $\mathbb{Z}[x_1, \ldots, x_n]$.

- (a) $\partial_i^2 = 0$,
- (b) $\partial_i \partial_j = \partial_j \partial_i$ if |i j| > 1, and
- (c) $\partial_i \partial_j \partial_i = \partial_j \partial_i \partial_j$ if |i j| = 1.

Date: October 25, 2017.