SCHUBERT POLYNOMIALS DAY 1

ATMW SCHUBERT VARIETIES 2017

Problem 1. For each permutation $w \in \{4612375, 6174235, 6324571\} \subset S_7$,

- (a) Compute the inversion set I(w), draw the Rothe diagram D(w), write the Lehmer code c(w), draw the shape $\lambda(w)$, and mark the values of the rank function on the essential set Ess(w).
- (b) Verify that the permutation w can be reconstructed from its Lehmer code, as well as from the values of the rank function on the essential set.
- (c) Give a reduced decomposition for w.
- **Problem 2.** (a) Give an algorithm for producing a reduced decomposition for a permutation $w \in S_n$, and show that your algorithm does indeed produce a decomposition whose length is equal to l(w) (i.e. the cardinality of the inversion set I(w)). Does your algorithm agree with either of the 'magic tricks' described in lecture?
- (b) Show that any decomposition for w must have length at least l(w). Hence the shortest possible decompositions for w have length exactly equal to l(w).

Problem 3. Suppose $v \leq w$ in S_n , and let $v = s_{j_1} \dots s_{j_m}$ be a reduced decomposition. Can we always find a reduced decomposition for $w = s_{i_1} \dots s_{i_l}$ such that (j_1, \dots, j_m) is a subsequence of (i_1, \dots, i_l) ?

Problem 4. We define the *left* weak and strong Bruhat orders by using left multiplication to define our covering relations. In particular we say v precedes w in the left weak (respectively strong) Bruhat order if l(v) + 1 = l(w) and $s_iv = w$ for some simple transposition s_i (respectively $t_{ij}v = w$ for some transposition t_{ij}).

- (a) Show (without using the subword property) that the left strong Bruhat order coincides with the right strong Bruhat order defined in lecture.
- (b) Does the left weak Bruhat order coincide with the right weak Bruhat order?

Problem 5 (Deletion Property). Suppose $s_{i_1} \cdots s_{i_m}$ is a nonreduced decomposition of a permutation w. Show that there exist integers p < q such that $w = s_{i_1} \cdots s_{i_p} \cdots s_{i_q} \cdots s_{i_l}$. Here you may want to use the exchange lemma from lecture.

Date: October 23, 2017.