
Some notes (KNR)

0.1. The nil-Hecke algebra and the Yang-Baxter equation (YBE). Let H n+1 denote the
nil-Hecke algebra, that is, the algebra generated by non-commuting variables u1, . . . , un (where
n + 1 is the superscript in H n+1), and subject to the following sets of relations, with respective
labels (N), (C), and (B) (N stands for “nil”, C for “commuting”, and B for “braid”):

(N): u2i = 0 1 ≤ i ≤ n
(C): uiuj = ujui 1 ≤ i, j ≤ n, |j − i| > 1
(B): uiui+1ui = ui+1uiui+1 1 ≤ i < n

We define a map from the symmetric group Sn to H n as follows: given u in Sn, we choose a
reduced expression si1si2 · · · for u, and take the image of u to be ui1ui2 · · · . This map is well-
defined because relations (C) and (B) hold in H n and the graph of reduced expressions of any
permutation is connected (the latter fact was proved by Vijay Ravikumar with the aid of wiring
diagrams). We abuse notation and denote by u the image under this map of any permutation u.

We note (accept without proof) the fact that H n is freely generated as a module over the
coefficient ring by permutations u in Sn. Set hi(x) := 1 + uix (for arbitrary coefficient x). A
routine verification shows that the following analogues of the relations above hold in H n:

(N): hi(x)hi(y) = hi(x+ y) 1 ≤ i ≤ n
(C): hi(x)hj(y) = hj(y)hi(x) 1 ≤ i, j ≤ n, |j − i| > 1
(B): hi(x)hi+1(x+ y)hi(y) = hi+1(y)hi(x+ y)hi+1(x) 1 ≤ i < n

This analogue (B) is called the Yang-Baxter Equation (YBE).
In the sequel we denote by H the algebra H n[x, y], where the latter just means that the

coefficient ring has been augmented by adding two sets of (commuting) variables x and y (both
labeled by positive integers).

0.2. The map φ from configurations to H . Let u be a permutation in Sn and C be a wiring
diagram for u. We assume tacitly that any such diagram represents a reducecd experssion for u,
or, what amounts to the same, that any two wires cross at most once. Such diagrams are called
“configurations” in Manivel. We associate to C an element of H denoted by φ(C) by a certain
procedure, which we now describe by means of an example.

Shown below is a configuration for the permutation 4213 = s3s1s2s1
1
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level 2

level 3 h3(x1 − y3)

To each crossing we associate an element h`(xp − yq) of H as follows: ` refers to the level of the
crossing, the xp refers to the “x-weight” of the Southeast strand at the crossing (coloured blue)
and yq to the “y-weight” of the Northeast strand (coloured red). We then define φ(C) to be the
product of the elements of H associated to the crossings as we move from left to right. In the
above example, φ(C) = h3(x1 − y3)h1(x2 − y1)h2(x1 − y1)h1(x1 − y2).

1If u is the underlying permutation of a configuration, then u(i) is obtained as follows: at the right end, choose
the ith strand from below; follow it to the left end of the configuration; determine which strand it is, counting from
below; suppose it is the jth strand; then u(i) = j.
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Thanks to the relations ((N), (C), and YBE) in H n and the connectedness of the graph of
reduced expressions of any permutation, we conclude:

Theorem 1. The association φ depends only upon the underlying permutation u and not on the
specific configuration C.

0.3. Double Schubert polynomials. Set ∆ = ∆n(x, y) =
∏

1≤i,j≤n, i+j≤n(xi − yj), where the x

and y are the same (commuting) variables we added to the coefficient ring of H above. We define
the double Schubert polynomial associated to a permutation u of Sn by:

(1) Su = Su(x, y) := ∂u−1w0
∆ (the operators ∂ act only on the x variables)

This makes sense for the same familiar reason: the divided difference operators ∂i satisfy the
commuting and braid relations, and the graph of reduced expressions for u is connected.

By definition, these (double) Schubert polynomials are elements of the coefficient ring of H .
Since the operators ∂i also satisfy (N), it follows that we get an algebra homomorphism from H
to a (suitably defined) ring of operators on the coefficient ring by mapping ui to ∂i.

0.4. The Schubert sweater CSch and coefficients of φ(CSch). We now arrive at what seems
to be by far the most important technical result of Chapter 2 in Manivel (namely his 2.3.7). The
Schubert sweater CSch is the following very particular configuration for the longest permutation
w0 in Sn (drawing shows the case n = 5):
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Let us look at the expression for φ(CSch) as a linear combination of the basis elements u, u ∈ Sn,
of H . It is easy to see that the coefficient of w0 is ∆, which of course is the double Schubert
polynomial Sw0(x, y). What about the other coefficients? Every coefficient is precisely the double
Schubert polynomial:

[t:sweatschub]
Theorem 2.

φ(CSch) =
∑
u∈Sn

Su(x, y)u

The proof involves manipulations with relations in H which we skip for the moment and proceed,
pausing only to record the following corollary (of the proof).

[c:expr]
Corollary 3.

φ(CSch) = S(y)−1S(x)

where
S(x) := H1(x1)H2(x2) · · ·Hn−1(xn−1) and Hi(x) = hn−1(x)hn−2(x) · · ·hi(x)

Putting the theorem and corollary together and setting y = 0, we obtain:

(2) S(x) =
∑
u∈Sn

Su(x)u

where Su(x) is the simple Schubert polynomial. From this we conclude:
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Corollary 4. The Fomin-Kirillov recipe for computing the simple Schubert polynomials is justified.2

In turn we conclude that Schubert polynomials have non-negative coefficients. In fact, we get a
proof of Stanley’s conjecture (for the coefficients of a Schubert polynomial).

Exercise 5. Show that S(y)−1 =
∑

u∈Sn
ε(u)Su−1(y)u =

∑
u∈Sn

Su−1(−y)u.

Let us look at Corollary 3 and equate the coefficient of w0 on both sides of the equality. By
Theorem 2, this coefficient on the left side is ∆. Using the expressions for S(x) and S(y)−1 above
to compute the coefficient on the right, we get:

Corollary 6. (Cauchy identity)∏
i+j≤n

(xi − yj) =
∑
v∈Sn

Sv(x)Svw0(−y)

We will derive a consequence from this to be applied in the next theorem. Let us permute the
x variables by a permutation u, which means that we replace xi by xu(i). Let us permute the y
variables too, by w0. Let us then put y = x. Then the left hand side is zero except when u is the
identity, in which case it is the van der Monde determinant. We thus have:

(3) van der Monde determinant× δu,id =
∑
v∈Sn

ε(v)ε(w0) uSv(x) w0Svw0(x)

Theorem 7. The coinvariant ring is the regular representation of Sn.

Proof: Let us compute the character (trace) of (the action of) a permutation u in the basis Sw.
The coefficient in the row corresponding to w and column corresponding to v is 〈uSv, S∗w〉. The
trace is therefore given by

∑
v∈Sn

〈uSv, S∗v〉, which we want to show is δu,idn!. When u = id, it is
of course clear that the character equals the dimension of coinvariant ring (namely, n!). To show
that it is zero when u 6= id, we plug in the value of S∗v as in the next exercise and use Equation (3):∑

v∈Sn

〈uSv, S∗v〉 = ∂w0

(∑
v∈Sn

ε(v)ε(w0) uSv(x) w0Svw0(x)

)
(0) = 0 (when u 6= id)

2

Exercise 8. Verify the following:

(1) w0∂iw0 = −∂n−i and more generally w0∂uw0 = ε(v)∂w0vw0 (the first is obtained from the
second by putting u = si).

(2) the dual basis (under the form we defined) of the basis of {Sv} of Schubert polynomials for

the coinvariant ring is given by: S∗v = ε(v)ε(w0) w0Svw0

Solution:

(1) Observe that w0siw0 = sn−i and w0xi = xn+1−i. We thus have

w0∂iw0 = w0
w0 − si ◦ w0

xi − xi+1
=

1− w0siw0

w0(xi − xi+1)
= − 1− sn−i

(xn−i − xn−i−1)

2We do in fact have a Fomin-Kirillov recipe for computing the double Schubert polynomials.
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(2) It is clearly enough to show that ε(v)ε(w0)〈Su, w0Svw0〉 = δu,v.

left hand side = ε(v)ε(w0)〈∂u−1w0
xδ, w0Svw0〉 (by definition of ∂u)

= ε(v)ε(w0)〈xδ, ∂w0uw0Svw0〉 (〈∂uP,Q〉 = 〈P, ∂u−1Q〉)

= ε(v)ε(w0)〈xδ, w0 w0∂w0uw0Svw0〉 since w0w0 = id

= ε(v)ε(u)〈xδ, w0∂uw0Svw0〉 (since w0∂w0uw0 = ε(u)ε(w0)∂uw0)

= ε(v)ε(u)∂w0

(
xδ · w0∂uw0Svw0

)
(0) (by definition of the form 〈 , 〉)

Note that ∂uw0Svw0 equals 0 if `(uw0) ≥ `(vw0) except if u = v (in which case it is 1).
If `(uw0) < `(vw0) then ∂uw0Svw0 is homogeneous of positive degree (possibly zero), so
∂w0(xδ ·w0∂uw0Svw0) is homogeneous of positive degree, so it has zero constant term. This
finishes the proof that 〈Su, S∗v〉 = δu,v for S∗v as in the claim. 2
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