AIS IN COMMUTATIVE ALGEBRA, CMI, DEC 2015

TUTORIAL PROBLEMS

1. 2015-12-28

1

2

3

4

5

6

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

- (1.a) Show that $X_1X_2X_3 + Y_1Y_2Y_3 \notin \mathbb{F}_2[X_i + Y_i, X_iY_i, X_iY_j + X_jY_i, 1 \le i \le 3]$ using the \mathbb{N}^3 grading where deg $X_i = \deg Y_i$ is the i standard vector in \mathbb{N}^3 .
- (1.b) Let $R = \mathbb{k}[X_1, X_2, X_3, Y_1, Y_2, Y_3]$ where char $\mathbb{k} \neq 2$. Compute $R^{\langle \sigma \rangle}$ where $\sigma(X_i) = Y_i$ and $\sigma(Y_i) = X_i$ for every i.
- (1.c) K. R. Nagarajan's example. Let $\mathbb{k} = \mathbb{F}_2(a_1, b_1, a_2, b_2, \dots)$ and $R = \mathbb{k}[[X, Y]]$. Define $p_n = a_n X + b_n Y$, $\sigma(X) = X$, $\sigma(Y) = Y$, $\sigma(a_n) = a_n + Y p_{n+1}$ and $\sigma(b_n) = b_n + X p_{n+1}$. Let $G = \langle \sigma \rangle$. Observe that $p_n \in R^G$ for every n. Show that $p_{n+1} \notin (p_1, \dots, p_n) R^G$ for every n following the steps below:
 - (a) If $f \in \mathbb{F}_2[a_1, b_1, a_2, b_2, \dots]$, then $\sigma(f) \equiv f \mod \mathfrak{m}^2$ where $\mathfrak{m} = (X, Y)R$.
 - (b) If $f \in \mathbb{k}$, then $\sigma(f) \equiv f \mod \mathfrak{m}^2$.
 - (c) For $r \in R$, set \bar{r} to be the constant term of r. If $r \in R^G$, then $\sigma(\bar{r}) \equiv \bar{r} \mod (X^2, Y^2)R$.
 - (d) If $p_{n+1} = \sum_{k=1}^{n} r_k p_k$ with $r_k \in R^G$, then $a_{n+1} = \sum_{k=1}^{n} \overline{r_k} a_k$.
 - (e) Use the above result to show that

$$a_{n+2} = \sum_{k=1}^{n} \overline{r_k} a_{k+1}$$
$$a_{n+3} = \sum_{k=1}^{n} \overline{r_k} a_{k+2}$$
$$\dots$$

- (f) Show that this is not possible.
- (1.d) Let $R = \mathbb{F}_3[X, Y, Z]$. Is there an R^{S_3} -linear projection $R \longrightarrow R^{S_3}$? Is there an R^{A_3} -linear projection $R \longrightarrow R^{A_3}$?

2. 2015-12-29

- (2.a) Let X be a 2×3 matrix of variables, and $R = \mathbb{k}[X]/I_2(X)$. Compute depth R, dim R, $H_R(t)$ (the Hilbert series) and $\deg_R(R)$.
- (2.b) Let $G \subseteq GL_n(\mathbb{k})$ consist of diagonal matrices. Show that $\mathbb{k}[X_1, \ldots, X_n]^G$ is generated by monomials in X_1, \ldots, X_n .
- (2.c) Let G be a finite subgroup of $GL_n(\mathbb{C})$ and $\chi: G \longrightarrow \mathbb{C}^*$ a character. Compute $\deg_{R^G} R_\chi^G$.
- (2.d) Compute R^G where $R = \mathbb{F}_p[X,Y]$ and G is the subgroup of $GL_2(\mathbb{F}_p)$ generated by

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

problem:diagonal

- (2.e) Fix $d \in \mathbb{N}$ and $\zeta = e^{\frac{2\pi i}{d}}$.
 - (a) Let G be the subgroup of $GL_n(\mathbb{C})$ generated by ζI_n . Let $R = \mathbb{C}[X_1, \ldots, X_n]$. Compute R^G and $H_{R^G}(t)$.

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

50

51

52

53

54

55

57

58

59

60

62

63

64

(b) Evaluate

$$\sum_{n=1}^{d-1} \frac{1}{(1-\zeta^n)(1-\overline{\zeta^n})}.$$

3. 2015-12-30

- (3.a) Let $R = \mathbb{k}[x^4, x^3y, xy^3, y^4]$ generated by elements of degree 1. Compute $H_R(t)$. Is R Cohen-Macaulay?
 - (3.b) Let $\phi: R \longrightarrow S$ be a surjective k-algebra morphism. Let $\{s_i\}$ be k-basis for S and let $\{r_i \in R\}$ be such that $\phi(r_j) = s_j$. Suppose that $I \subseteq \ker \phi$. If each element of R is congruent to an element in the k-span of $\{r_i\}$ modulo I, then $I = \ker \phi_{\text{rem:twobythree}}$
 - (3.c) Let $\phi: R := \mathbb{k}[u, v, w, x, y, z] \longrightarrow \mathbb{k}[ar, br, cr, as, bs, cs] =: S$ be \mathbb{k} -linear with $\phi(u) = ar, \cdots, \phi(z) = cs$.
 - (a) Show that $\ker \phi = (uy vx, vz wy, wx uz)$
 - (b) Check that $k[u, v x, w y, z] \subseteq S$ is a Noether normalization and that S is free over this normalization.
 - (3.d) Are the following CM?
 - (a) $\mathbb{k}[x,y,z]/(xy,yz,zx)$
 - (b) $\mathbb{k}[w,x,y,z]/(wx,wy,zx,zy)$
 - (3.e) Let $G \subseteq GL_3(\mathbb{C})$ be the subgroup generated by

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i \end{bmatrix}$$

Compute \mathbb{R}^G and $H_{\mathbb{R}^G}(t)$. What is the number of pseudo-reflections in G?

4. 2015-12-31

(4.a) Disprove the following statement: Let G is a finite subgroup of $GL_n(\mathbb{k})$, where char $\mathbb{k} = 0$. If

$$H_{R^{G}}(t) = \frac{\sum t^{c_j}}{\prod (1 - t_i^k)}$$

then there exists a homogeneous system of parameters f_1, \ldots, f_n with deg $f_i = k_i$ and a basis $\{a_j\}$ with deg $a_j = c_j$ such that $R^G = \bigoplus a_j \mathbb{k}[f_1, \ldots, f_n]$.

- (4.b) Let p be a prime number. Find $G \subseteq SL_2(\mathbb{F}_p)$ such that $\deg H_{R^G}(t) \neq -2$.
- (4.c) Let G be a finite subgroup of $GL_n(\mathbb{k})$, where char $\mathbb{k} = 0$. Suppose that $\mathbb{k}[f_1, \ldots, f_n]$ is a Noether normalization. Prove that R^G is generated over \mathbb{k} by elements with degree at most $\max\{\deg f_1, \ldots, \deg f_n, (\sum_i \deg f_i n)\}$.
- (4.d) Show that the bound above is sharp for A_n and better than the Noether bound.
- (4.e) Suppose that $\mathbb{k}[f_1,\ldots,f_n]\subseteq R^G$ is a Noether normalization. Then |G| divides $\prod_i \deg f_i$.

5. 2016-01-01

- (5.a) Are the following rings Gorenstein?
 - (a) R^G from (2.e).
 - (b) Is k[ar, br, cr, as, bs, cs, at, bt, ct] Gorenstein? (It is CM.)
- (c) R^G from (3.c).
 - (5.b) Determine R^G for the subgroup G of $SL_2(\mathbb{C})$ generated by

$$\begin{bmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

where $\zeta = e^{\frac{2\pi i}{2n}}$.