Exercises in Functional Analysis

-R. Srinivasan.

(Baires theorem, Uniform boundedness principle, open mapping theorem, closed graph theorem.)

- 1. Show that a perfect subset of a complete metric space is uncountable. (We say a point x is an accumulation point for S, if for every r > 0, $B_r(x) \cap S$ contains a point other than x. A set is perfect if it equals to all its accumulation points.)
- 2. Show that any infinite dimensional Banach space does not admit a countable Hamel basis. (Hamel Basis is the usual basis, a linear independent set whose linear span is whole Banach space.)
- 3. Show that the subspace of piecewise-linear functions is dense in C([0,1]). (Hint: Use the uniform continuity of continuous functions on [0,1] and total boundedness of [0,1].)
- 4. Let $\mathcal{D}=\{f\in C([0,1]): \text{there exists } x\in[0,1] \text{ such that } f \text{ is differentiable at } x\}$, and for $n,m\in\mathbb{N},$ let $A_{n,m}=$

$$\left\{f\in C([0,1]): \text{there exists } x\in (0,1) \text{ such that } \frac{|f(x)-f(t)|}{|x-t|}\leq n \text{ if } |x-t|<\frac{1}{m}\right\}.$$

Show that each $A_{n,m}$ is closed and $\mathcal{D} \subseteq \bigcup_{n,m\in\mathbb{N}} A_{n,m}$. (Hint: Bolzono-Weierstrass Theorem will be useful.)

5. Let X be a complete metric space. Let $f_n: X \mapsto \mathbb{C}$ are continuous for all $n \in \mathbb{N}$ such that $f_n(x) \mapsto f(x)$ as $n \mapsto \infty$ for all $n \in \mathbb{N}$. Show that the set of points where f is discontinuous is meager in X. In particular the set of points where f is continuous is dense on X.

(Hint: Step 1: Define

$$osc(f)(x) = \inf_{r>0} w(f)(r,x)$$

where $w(f)(r,x) = \sup_{y,z \in B_r(x)} |f(z) - f(y)|$. Show that f is continuous at x if and only if osc(f)(x) = 0.

Step 2: Show that for any given open ball B and $\epsilon > 0$, there exists a ball $B_0 \subseteq B$ and $m \in \mathbb{N}$ such that $|f_m(x) - f(x)| \le \epsilon \ \forall x \in B_0$.

1

Step 3: Define $F_n = \{x \in X : osc(f)(x) \ge \frac{1}{n}\}.$)

6. Prove the following version of uniform boundedness principle: If a family of bounded linear operators $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ on a Banach space X do not have a uniform bound, that is $\sup_{{\lambda}\in\Lambda}\|T_{\lambda}\|=\infty$, then show that the set

$$S = \{ x \in X : \sup_{\lambda \in \Lambda} ||T_{\lambda}x|| = \infty \}$$

is dense in X.

- 7. Let X be Banach space and $S \subseteq X$ weakly bounded (i.e. $\sup\{|\varphi(s)| : s \in S\} < \infty$ for all $\varphi \in X^*$). Show that S is bounded in norm.
- 8. Let X be a Banach space and $\{\varphi_n\}_{n=1}^{\infty} \subseteq X^*$ be a sequence such that $\sum_{n=1}^{\infty} \varphi_n(x)$ converges for every $x \in X$. Show that $\sum_{n=1}^{\infty} \frac{\|\varphi_n\|}{2^n}$ is convergent.
- 9. Let $x = \{x_n\}_{n=1}^{\infty}$ be a sequence of complex number such that the series $\sum_{n=1}^{\infty} x_n y_n$ is convergent for all $y = \{y_n\}_{n=1}^{\infty} \in c_0$. Prove that $x \in l^1$.
- 10. Suppose that X and Y are Banach spaces and that $B: X \times Y \mapsto \mathbb{C}$ is a separately continuous bilinear mapping (that is $B(x,\cdot): Y \mapsto \mathbb{C}$ is continuous for each $x \in X$ and $B(\cdot,y): X \mapsto \mathbb{C}$ is continuous for each $y \in Y$). Then prove that B is jointly continuous.
- 11. Suppose that X forms a Banach space with respect to two norms $\|.\|_1$ and $\|.\|_2$, and that there exists a positive constant C such that $\|x\|_1 \leq C\|x\|_2$ for all $x \in X$. Then prove that there exists a positive constant D such that $\|x\|_2 \leq D\|x\|_1$ for all $x \in X$. Conclude that if X is a Banach space with respect to two different norms then they are either equivalent or non-comparable (i.e., neither is coarser than the other).
- 12. Let a Banach space $X = X_1 \oplus X_2$, where the direct sum is algebraic (i.e. X_1 and X_2 are closed subspaces such that $X_1 \cap X_2 = \emptyset$ and $X_1 + X_2 = X$). Sow that any $x \in X$ has a unique decomposition $x = x_1 + x_2$ and that there exists a c > 0 such that $||x_1|| + ||x_2|| \le c||x||$.
- 13. Let $C^1([0,1]) \subseteq C([0,1])$ the subspace of continuously differentiable functions. Define $T: C^1([0,1]) \mapsto C([0,1])$ by

$$Tf = f'$$
.

Show that T is unbounded but still has closed graph.

- 14. Let X be a Banach space and $P: X \mapsto X$ is a linear map satisfying $P^2 = P$. Further if Range(P) and Ker(P) are closed, then show that P is continuous.
- 15. Let X, Y be Banach spaces and $T: X \mapsto Y$ a linear map. If there exists a linear map $S: Y^* \mapsto X^*$ satisfying

$$(S\varphi)(x) = \varphi(Tx) \ \forall \varphi \in Y^*, x \in X,$$

then prove that T is bounded.