
Exercises in Functional Analysis

-R. Srinivasan.

(Baires theorem, Uniform boundedness principle, open mapping theorem, closed graph
theorem.)

1. Show that a perfect subset of a complete metric space is uncountable. (We say a point
x is an accumulation point for S, if for every r > 0, Br(x) ∩ S contains a point other
than x. A set is perfect if it equals to all its accumulation points.)

2. Show that any infinite dimensional Banach space does not admit a countable Hamel
basis. (Hamel Basis is the usual basis, a linear independent set whose linear span is
whole Banach space.)

3. Show that the subspace of piecewise-linear functions is dense in C([0, 1]). (Hint: Use
the uniform continuity of continuous functions on [0, 1] and total boundedness of [0, 1].)

4. Let D = {f ∈ C([0, 1]) : there exists x ∈ [0, 1] such that f is differentiable at x} , and
for n, m ∈ N, let An,m ={

f ∈ C([0, 1]) : there exists x ∈ (0, 1) such that
|f(x)− f(t)|

|x− t|
≤ n if |x− t| < 1

m

}
.

Show that each An,m is closed and D ⊆ ⋃
n,m∈N An,m. (Hint: Bolzono-Weierstrass The-

orem will be useful.)

5. Let X be a complete metric space. Let fn : X 7→ C are continuous for all n ∈ N such
that fn(x) 7→ f(x) as n 7→ ∞ for all n ∈ N. Show that the set of points where f is
discontinuous is meager in X. In particular the set of points where f is continuous is
dense on X.

(Hint: Step 1: Define
osc(f)(x) = inf

r>0
w(f)(r, x)

where w(f)(r, x) = supy,z∈Br(x) |f(z) − f(y)|. Show that f is continuous at x if and
only if osc(f)(x) = 0.

Step 2: Show that for any given open ball B and ε > 0, there exists a ball B0 ⊆ B and
m ∈ N such that |fm(x)− f(x)| ≤ ε ∀x ∈ B0.

Step 3: Define Fn = {x ∈ X : osc(f)(x) ≥ 1
n
}. )
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6. Prove the following version of uniform boundedness principle: If a family of bounded
linear operators {Tλ}λ∈Λ on a Banach space X do not have a uniform bound, that is
supλ∈Λ‖Tλ‖ = ∞, then show that the set

S = {x ∈ X : supλ∈Λ‖Tλx‖ = ∞}

is dense in X.

7. Let X be Banach space and S ⊆ X weakly bounded (i.e. sup{|ϕ(s)| : s ∈ S} < ∞ for
all ϕ ∈ X∗). Show that S is bounded in norm.

8. Let X be a Banach space and {ϕn}∞n=1 ⊆ X∗ be a sequence such that
∑∞

n=1 ϕn(x)

converges for every x ∈ X. Show that
∑∞

n=1
‖ϕn‖
2n is convergent.

9. Let x = {xn}∞n=1 be a sequence of complex number such that the series
∑∞

n=1 xnyn is
convergent for all y = {yn}∞n=1 ∈ c0. Prove that x ∈ l1.

10. Suppose that X and Y are Banach spaces and that B : X × Y 7→ C is a separately
continuous bilinear mapping (that is B(x, ·) : Y 7→ C is continuous for each x ∈ X
and B(·, y) : X 7→ C is continuous for each y ∈ Y ). Then prove that B is jointly
continuous.

11. Suppose that X forms a Banach space with respect to two norms ‖.‖1 and ‖.‖2, and
that there exists a positive constant C such that ‖x‖1 ≤ C‖x‖2 for all x ∈ X. Then
prove that there exists a positive constant D such that ‖x‖2 ≤ D‖x‖1 for all x ∈ X.
Conclude that if X is a Banach space with respect to two different norms then they
are either equivalent or non-comparable (i.e., neither is coarser than the other).

12. Let a Banach space X = X1 ⊕ X2, where the direct sum is algebraic (i.e. X1 and
X2 are closed subspaces such that X1 ∩ X2 = ∅ and X1 + X2 = X). Sow that any
x ∈ X has a unique decomposition x = x1 + x2 and that there exists a c > 0 such that
‖x1‖+ ‖x2‖ ≤ c‖x‖.

13. Let C1([0, 1]) ⊆ C([0, 1]) the subspace of continuously differentiable functions. Define
T : C1([0, 1]) 7→ C([0, 1]) by

Tf = f ′.

Show that T is unbounded but still has closed graph.

14. Let X be a Banach space and P : X 7→ X is a linear map satisfying P 2 = P . Further
if Range(P ) and Ker(P ) are closed, then show that P is continuous.

15. Let X, Y be Banach spaces and T : X 7→ Y a linear map. If there exists a linear map
S : Y ∗ 7→ X∗ satisfying

(Sϕ)(x) = ϕ(Tx) ∀ϕ ∈ Y ∗, x ∈ X,

then prove that T is bounded.
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