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1. Transversality

Definition 1.1. Let M and N be manifolds, and Z be a submanifold of N . Then
a smooth map f : M −→ N is called transverse to Z at a point x ∈ f−1(Z)
(written ftxZ) if

dfx(τ(M)x) + τ(Z)f(x) = τ(N)f(x) (not necessarily a direct sum) .

We say that f is transverse to Z (written ftZ) if

either (1) f−1(Z) = ∅, or (2) ftxZ for every x ∈ f−1(Z).

If dimM +dimZ < dimN , then the condition (2) is not possible, so in this case
ftZ means that f(M) does not intersect Z.

The condition (2) is equivalent to saying that dfx induces an epimorphism dfx =
π ◦ dfx : τ(M)x −→ τ(N)f(x)/τ(Z)f(x), where π : τ(N)f(x) → τ(N)f(x)/τ(Z)f(x)

is the canonical projection. Indeed, dfx is an epimorphism if and only if for every
v ∈ τ(N)f(x) there is a w ∈ τ(M)x such that v − dfx(w) ∈ τ(Z)f(x). Thus f is
always transverse to any open subset of N , because then the target of dfx is zero.
Also if f is a submersion, then it is transverse to any submanifold Z of N . If Z is a
point y in N , then the transversality condition (2) means that y is a regular value
of f .

Exercise 1.2. Show that the set of points in f−1(Z) at which f is transverse to
Z is an open subset of f−1(Z).

Definition 1.3. Two submanifolds Z1 and Z2 of a manifold N are called trans-
verse (written Z1tZ2) if the inclusion map i : Z1 −→ N is transverse to Z2. Then
the condition (2) means that, for every x ∈ Z1 ∩ Z2,

τ(Z1)x + τ(Z2)x = τ(N)x,

since dix is the inclusion of τ(Z1)x into τ(N)x.

In this case we also say that Z1 and Z2 are in a general position in N . It may
be seen that a smooth map f : M −→ N is transverse to a submanifold Z ⊂ N if
and only if the graph of f and M × Z are in general position in M ×N .

Note that we may interchange the role of Z1 and Z2 in this definition.

Example 1.4. Two curves in R2 which intersect at a point are non-transverse if
the curves are tangent to each other at the point.

In all the results that we shall prove in this section, it is assumed that f−1(Z) 6= ∅
whenever ftZ.
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Lemma 1.5. Let f : M −→ N be a smooth map, and Z a submanifold of N with
dim Z = m−k (or codim Z = k). Let x ∈ f−1(Z) and U be an open neighbourhood
of f(x) in N , and g : U −→ Rk a submersion such that g−1(0) = Z ∩ U (U and g
exist by Lemma 4.3, Part 1). Then ftxZ if and only if x is a regular point ( or 0
is a regular value) of g ◦ f .

Proof. We have ker dgf(x) = τ(Z)f(x), since g is constant on Z ∩ U . Then ftxZ if
and only if

dfx(τ(M)x) + ker dgf(x) = τ(N)f(x),

or equivalently, d(g ◦f)x = dgf(x) ◦dfx is an epimorphism. To see this, take any a ∈
Rk, then, since dgf(x) is an epimorphism, a = dgf(x)(u) for some u ∈ τ(N)f(x), and
u = dfx(v)+w for some v ∈ τ(M)x and w ∈ ker dgf(x), therefore a = dgf(x)◦dfx(v),
and d(g ◦ f)x is an epimorphism.

Conversely, if d(g ◦ f)x is an epimorphism, then, for any v ∈ τ(N)f(x), there is
a w ∈ τ(M)x such that dgf(x) ◦ dfx(w) = dgf(x)(v), so v − dfx(w) ∈ ker dgf(x),and
the above equality of vector spaces holds. �

Theorem 1.6. If a smooth map f : M −→ N is transverse to a submanifold Z
of N , where none of M , N , and Z has boundary, then f−1(Z) is a submanifold of
M , whose codimension in M is equal to the codimension of Z in N . In particular,
if dimM = codim Z, then f−1(Z) consists of isolated points only.

Proof. It is sufficient to show that f−1(Z) is locally a submanifold, that is, each
point x of f−1(Z) has an open neighbourhood V in M such that V ∩ f−1(Z) is a
manifold.

By Lemma 1.5, each x ∈ f−1(Z) is a regular point of g ◦ f , and the open
neighbourhood V = f−1(U) of x is such that V ∩f−1(Z) = (g◦f)−1(0). Therefore,
by Theorem 4.8, Part 1, V ∩ f−1(Z) is a submanifold of M of dimension n − k,
where n = dimM and k = codim Z. �

Corollary 1.7. The intersection of two transverse submanifolds Z1 and Z2 of N ,
where none of them has boundary, is a submanifold, and

codim (Z1 ∩ Z2) = codim Z1 + codim Z2.

Proof. This is a special case of the above theorem. �

Note that the transversality of two submanifolds depends on the dimension of
the manifold where they are embedded. For example, the two coordinate axes are
transverse in R2, but they are not in R3.

Lemma 1.8. Let M be a manifold with boundary, and π : M −→ R is a smooth
map with a regular value at 0, then π−1[0,∞) is a manifold of M with boundary
π−1(0)

Proof. The set π−1(0,∞) is open in M , so it is a submanifold of M . A point x ∈M
for which π(x) = 0 is a regular point, and so it has an open neighbourhood in M
where π looks like the canonical submersion. The proof now follows, because the
lemma is obviously true for the canonical submersion Rn −→ R. �
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NOTATION. If M is a manifold with boundary and f : M −→ N is a smooth
map, then ∂f will denote the restriction map f |∂M : ∂M −→ N .

Theorem 1.9. Let M be a manifold with boundary, N a boundaryless manifold,
Z a boundaryless submanifold of N , and f : M −→ N a smooth map. Then, if
both f and ∂f = f |∂M are transverse to Z, the inverse image f−1(Z) is a neat
submanifold of M with boundary

∂(f−1(Z)) = f−1(Z) ∩ ∂M,

and the codimension of f−1(Z) in M equals that of Z in N .

Proof. The map f |Int M : Int M −→ N is transverse to Z, and therefore
(f |IntM)−1(Z) = f−1(Z) ∩ IntM is a boundaryless submanifold, by Theorem
1.6. Therefore it is necessary only to examine f−1(Z) in a neighbourhood of a
point x ∈ f−1(Z) ∩ ∂M (note that f−1(Z) = (f−1(Z) ∩ IntM) ∪ (f−1(Z ∩ ∂M)).
Applying Lemma 4.3, Part 1 to f(x) ∈ Z, we get an open neighbourhood P
of f(x) in N and a submersion g : P −→ Rk (k = codim Z) such that
g−1(0) = Z ∩ P . Then (g ◦ f)−1(0) = f−1(Z) ∩ Q, where Q = f−1(P ). Let U
be a coordinate neighbourhood of x and φ : U −→ Rn

+ be a coordinate system with
φ(U ∩ Q) = V an open set in Rn

+ (n = dim M). Let h denote the smooth map
g ◦ f ◦ φ−1 : V −→ Rk. Then f−1(Z) will be a manifold with boundary near x if
and only if φ(f−1(Z)∩Q∩U) = h−1(0) is a manifold with boundary near φ(x) = a.

We have by Lemma 1.5,

ftxZ ⇔ g ◦ f is regular at x⇔ h is regular at a.

Extend h : V −→ Rk to a smooth map h̃ : Ṽ −→ Rk on an open set Ṽ of Rn.
Since dh̃a = dha, h is regular at a implies h̃ is regular at a. This means that the
intersection of h̃−1(0) with some open neighbourhood of the regular point a is a
boundaryless submanifold A of Rn, since h̃ is a smooth map of the boundaryless
manifold Ṽ . Without loss of generality, we may suppose that A = h̃−1(0).

As h−1(0) = A∩Rn
+, we must show that A∩Rn

+ is a manifold with boundary. For
this purpose, let π : A −→ R be the restriction to A of the first coordinate function
on Rn. Then A ∩ Rn

+ = π−1[0,∞). By Lemma 1.8, this will be a manifold with
boundary if 0 is a regular value of π. Suppose that 0 is not a regular value of π. Then
π(z) = 0 and dπz = 0 for some point z ∈ A. Now π(z) = 0 implies z ∈ A ∩ ∂Rn

+,
and, since dπz = π (π being linear), dπz = 0 implies that the first coordinate of
every vector in the tangent space τ(A)z is zero, or τ(A)z ⊂ τ(∂Rn

+)z = Rn−1. Since
h̃−1(0) = A, τ(A)z is the kernel of dh̃z, and, since dhz = dh̃z, ker dhz = τ(A)z ⊂
Rn−1. This means that the maps dhz : Rn −→ Rk and d(∂h)z : Rn−1 −→ Rk have
the same kernel, because d(∂h)z = dhz|Rn−1. By transversality conditions both the
linear maps are epimorphisms. But the dimension relation for linear maps says that
dim ker dhz = n− k, whereas dim ker d(∂h)z = n− 1− k. This is a contradiction.
Therefore 0 must be a regular value of h. �

Exercise 1.10. Let M be a manifold with boundary, N a manifold without bound-
ary, Z a submanifold of N with boundary, and f : M −→ N a smooth map. Then,
if both f and ∂f = f |∂M are transverse to Z and f is transverse to ∂Z, the inverse
image f−1(Z) is a submanifold of M with boundary

∂(f−1(Z)) = [f−1(Z) ∩ ∂M ] ∪ f−1(∂Z),
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and the codimension of f−1(Z) in M equals that of Z in N .

Theorem 1.11 (Generalization of Sard’s Theorem). Let f : M → N be a
smooth map, where ∂M 6= ∅ and ∂N = ∅. Then almost every point of N is a
regular value of both f : M → N and ∂f : ∂M → N .

Proof. If x ∈ ∂M , then the restriction of the derivative map dfx to the subspace
τ(∂M)x ⊂ (τ(M))x is the derivative map d(∂f)x : τ(∂M)x → τ(N)x. Therefore f
is regular at x, if ∂f is so. Therefore a point y ∈ N fails to be a regular value of both
f : M → N and ∂f : ∂M → N only when it is a critical value of f : Int(M) → N
or ∂f : ∂M → N . Now, since Int(M) and ∂M are both boundaryless manifolds,
both the set of critical values have measure zero. Thus the complement of the set
of common regular values for f and ∂f has measure zero, since it is the union of
two sets of measure zero. �

Exercise 1.12 (Transitivity of transverse maps). Let f : M −→ N and
g : N −→ R be smooth maps, and A is a submanifold of R such that gtA. Then
show that ft g−1(A) if and only if (g ◦ f)tA.

In particular, if M = N and f is a diffeomorphism, then (g ◦ f)tA.

Theorem 1.13 (Transversality Theorem). Suppose M , N , A, and B are
manifolds, where only M has boundary, and A is a submanifold of N . Suppose
F : M × B −→ N is a smooth map such that both F and ∂F are transverse to A.
Suppose, for each b ∈ B, fb : M −→ N is the map fb(x) = F (x, b). Then. for
almost all b ∈ B, both fb and ∂fb are transverse to A.

Proof. By Theorem 1.9, C = F−1(A) is a manifold with boundary ∂C = C∩∂(M×
B). Let π : M ×B −→ B be the projection onto the second factor. We shall show
that (1) if b ∈ B is a regular value of π|C, then fb is transverse to A, and (2) if
b ∈ B is a regular value of ∂π|∂C, then ∂fb is transverse to A. This will complete
the proof, because, by Sard’s theorem, almost every point b of B is a regular value
of both the maps π|C and ∂π|∂C.

It is sufficient to prove only (1), because (2) follows from the fact that (1) is true
for the special case of the boundaryless manifold ∂M .

Let x be any point of f−1
b (A). Then fb(x) = F (x, b) = a ∈ A, and the transver-

sality condition of F gives that

dF(x,b)(τ(M ×B)(x,b)) + τ(A)a = τ(N)a.

Therefore, there is always a u ∈ τ(M × B)(x,b) for any given v ∈ τ(N)a such
that dF(x,b)(u) − v ∈ τ(A)a. The problem here is to find a w ∈ τ(M)x such
that dfb(w) − v ∈ τ(A)a. Since τ(M × B)(x,b) = τ(M)x × τ(B)b, we may write
u = (r, t) where r ∈ τ(M)x and t ∈ τ(B)b. If b is a regular value of π|C :
C −→ B, then d(π|C)(x,b) : τ(C)(x,b) −→ τ(B)b is onto, and it is the restriction
of dπ(x,b) : τ(M)x × τ(B)b −→ τ(B)b which is just the projection onto the second
factor. Therefore for t ∈ τ(B)b we can find a (s, t) ∈ τ(C)(x,b), s ∈ τ(M)x, which
is mapped onto t by dπ(x,b). Since F maps C onto A, and F (x, b) = a, we have
dF(x,b)(s, t) ∈ τ(A)a. Then w = r − s ∈ τ(M)x is a solution of our problem. To
see this, first note that, since F |(M × {b}) = fb, we have dF(x,b)(w, 0) = dfb(w).
Therefore

dfx(w)− v = dF(x,b)(w, 0)− v = dF(x,b)[(r, t)− (s, t)]− v
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= [dF(x,b)(r, t)− v]− dF(x,b)(s, t) = [dF(x,b)(u)− v]− dF(x,b)(s, t) ∈ τ(A)a.

This completes the proof. �

A consequence of the transversality theorem is that transverse maps are generic,
in the sense that almost all C∞ maps M −→ N are transverse to any submanifold
A of N . We show this first for the case when N = Rm.

Corollary 1.14. Any smooth map f : M −→ Rm is arbitrarily close to a smooth
map g : M −→ Rm which is transverse to any boundaryless submanifold A of Rm.
Moreover, f is homotopic to g by a small homotopy.

Proof. Let B be an open ball about the origin in Rm. Define F : M × B −→ Rm

by F (x, b) = f(x) + b. For a fixed x ∈ M , F simply translates the ball B, and
so it a submersion on {x} × B. Then, both F and ∂F are submersions, because
the Jacobian matrix of each contains the matrix of this translation as a submatrix.
Therefore F and ∂F are transverse to any boundaryless submanifold A of Rm.
Then Theorem 1.13 implies that for almost every b ∈ B, the map fb(x) = f(x) + b
is transverse to A. Choosing such a b, f may be deformed into the transverse
map g = fb by the homotopy H : M × I −→ Rm given by H(x, t) = f(x) + tb.
Finally, the map g may be made arbitrarily closed to f by making the radius of B
sufficiently small. �

The next theorem deals with the general case.

Theorem 1.15 (Transversality Homotopy Theorem). For any smooth map
f : M −→ N , ∂N = ∅, and any boundaryless submanifold A of N , there is a smooth
map g : M −→ N such that both g and ∂g are transverse to A, and f is homotopic
to g.

Proof. Embed N in some Rm, and let N(ε) = {x ∈ Rm|d(x,N) < ε(x)} be an
ε-neighbourhood of N in Rm with retraction r : N(ε) −→ N , where ε is a smooth
positive function on N . Let B be the open unit ball in Rm. Define F : M×B −→ N
by F (x, b) = r[f(x) + ε(f(x))ḃ]. Since r is a retraction onto M , F (x, 0) = f(x).
Also, both F and ∂F are submersions on {x}×B for a fixed x, being the composition
of two submersions b 7→ f(x)+ε(f(x))b and r. Since each point of M×B, and each
point of ∂M ×B, lies on a submanifold {x} ×B, both F and ∂F are submersions.

Therefore both F and ∂F are transverse to any boundaryless submanifold A
of N , and hence both fb and ∂fb are transverse to A for all most all b ∈ B.
Finally, f is homotopic to each such fb by homotopy H : M × I −→ N given by
H(x, t) = F (x, tb). �

Theorem 1.16 (Extension Theorem). Let f : M −→ N be a smooth map, K
a closed subset of M , and A a closed subset and a submanifold of N . Let both A
and N be without boundary. Let ftA on K and ∂ftA on K ∩ ∂M . Then there is
a smooth map g : M −→ N such that f is smoothly homotopic to g, gtA, ∂gtA,
and f = g on a neighbourhood of K.

Proof. First show that ftA on a neighbourhood of K by considering the following
two cases.

(1) x ∈ K and x /∈ f−1(A), and
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(2) x ∈ K ∩ f−1(A).

In case (1), M−f−1(A) is an open neighbourhood of x (as A is closed) on which
f is obviously transverse to A. In case (2), there is a neighbourhood U of f(x) in
N and a submersion φ : U −→ Rk such that ftA implies that φ ◦ f is regular at x,
and hence in a neighbourhood of x. Thus ftA on a neighbourhood of every point
of K, so ftA on a neighbourhood U of K.

Next, construct a map α : M −→ [0, 1] such that α = 1 on M − U , and α = 0
on a neighbourhood of K. The construction of α may be seen easily by applying
the Smooth Urysohn’s Lemma (Lemma 1.17, Part 2) to the open neighbourhood
M −K of the closed set M −U . Define β = α2. Then dβx = 2α(x) ·dαx. Therefore
dβx = 0 whenever α(x) = 0, that is, β(x) = 0. Now, the proof of Transversality
Homotopy Theorem (Theorem 1.15) gives a smooth map F : M ×B −→ N , B an
open ball in some Rm, such that F (x, 0) = f(x), both F and ∂F are submersions,
and, for fixed x ∈M , the map b 7→ F (x, b) is a submersion B −→ N . Define a map
G : M ×B −→ N by G(x, b) = F (x, β(x) · b). Then GtA.

To see this, suppose that (x, b) ∈ G−1(A) and β(x) 6= 0. Then the map B −→ N
given by b 7→ G(x, b) is a submersion, because it is the composition of a diffeomor-
phism b 7→ β(x) · b and a submersion b 7→ F (x, b). Therefore G is a submersion at
(x, b), and hence GtA at (x, b) in this case. Next, if β(x) = 0 the conclusion can be
arrived at by computing dG(x,b) at a point (v, w) ∈ τ(M)x× τ(B)b = τ(M)x×Rm.
Note that G = F ◦H, where H : M×B −→M×B is given by H(x, b) = (x, β(x)·b).
Then

dH(x,b)(v, w) = (v, β(x) · w + dβx(v) · b) = (v, 0),
since β(x) = 0 and dβx = 0, and we have

dG(x,b)(v, w) = dF(x,0)(v, 0) = dfx(v),

as F | M × 0 = f . This implies that Im dG(x,b) = Im dfx. But, if β(x) = 0, then
α(x) = 0, so x belongs to the neighbourhood U of K, and therefore ftA at x. This
means that GtA, since Im dG(x,b) = Im dfx, and G(x, b) = f(x) for x ∈ U .

Similarly, it can be shown that ∂GtA. Therefore, by Transversality Theorem
(Theorem 1.13), there is a b ∈ B such that the map g : M −→ N given by
g(x) = G(x, b), and the map ∂g are both transverse to A. Also, f is homotopic
to g by homotopy H : M × I −→ N given by H(x, t) = G(x, tb) = F (x, tβ(x) · b).
Moreover, if x is in the neighbourhood U of K on which α = 0, then g(x) =
G(x, b) = F (x, 0) = f(x). �

Corollary 1.17. If for a smooth map f : M −→ N , the restriction to boundary
∂f : ∂M −→ N is transverse to A, where ∂N = ∅ and ∂A = ∅, then there is a
smooth map g : M −→ N homotopic to f such that ∂f = ∂g and gtA.

Proof. This is a special case of the previous theorem, since the boundary ∂M is
always closed in M . �

2. Orientation

Let V be a finite dimensional real vector space, and α = (α1, . . . , αn) and β =
(β1, . . . , βn) be two ordered bases of V . Then there is a unique linear map L : V →
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V such that L(αi) = βi. The columns of the matrix of L are the components of the
vectors L(α1), . . . , L(αn) with respect to the basis α1, . . . , αn. Since β1, . . . , βn are
linearly independent, the matrix of L is non-singular. We say that the bases α and
β are equivalently oriented if det L > 0. This defines an equivalence relation and
the set of all ordered bases is partitioned into two disjoint classes. We denote the
equivalence class of (α1, . . . , αn) by [α1, . . . , αn], and it is called an orientation
of V . Note that the ordering of the vectors is important here. We pick up a
class arbitrarily and assign a positive sign to it, and a negative sign to the other
class. The vector space V with an ordered basis α is called positively or negatively
oriented depending on which orientation class α belongs. Thus each vector space
with positive dimension has precisely two orientations. If the vector space is of
dimension zero, we denote its orientation as one of the symbols +1 and −1.

Let J : V −→ W be a linear isomorphism between oriented vector spaces. If
α and β are bases of V , and L : V −→ V is a linear transformation sending α
to β, then J ◦ L ◦ J−1(J(α)) = J(β). Since detL = detJ ◦ L ◦ J−1, the sign
of the orientation of J(α) is either the same as the sign of the orientation of α,
or opposite. Therefore the isomorphism J is either orientation preserving or
orientation reversing. We may define sign J = sign α · sign J(α), where α is a
basis of V , so that J is orientation preserving or reversing according as sign J is
+1 or −1.

The standard orientation of an Euclidean space Rn, n ≥ 1, is given by any basis
whose coordinate matrix has positive determinant. The standard orientation of R0

is the number +1.

Recall from Theorem 6.2, Part 1 that the tangent bundle τ(M) of a manifold M
of dimension n is a manifold of dimension 2n with a smooth atlas {(π−1(Ui), τφi)},
where

τφi : π−1(Ui) → φi(Ui)× Rn ⊂ Rn × Rn,

, corresponding to a smooth atlas {(Ui, φi)} of M .

Definition 2.1. An orientation of the tangent bundle τ(M) is a family

ω = {ωx : ωxis an orientation ofτ(M)x, x ∈M}

such that there exists a smooth atlas Φ = {(Ui, φi)} of M with the condition that,
for x ∈ Ui, the isomorphism dφx : (τ(M)x, ωx) → (R2n, λ), where λ is the standard
orientation of R2n, is orientation preserving.

A manifold M is called orientable if its tangent bundle τ(M) ia orientable. If
ω is an orientation of τ(M), then we say that (M,ω) is an oriented manifold. In
this case M admits another orientation −ω defined by (−ω)p = −ωp, p ∈M .

Note that for any coordinate chart (U, φ) inM with φ = (x1, . . . , xn), the linearly
independent vector fields ∂/∂x1, . . . , ∂/∂xn on U define an orientation on U . The
orientations defined in this way by two coordinate charts (U, φ) and (V, ψ) agree
on U ∩ V if and only if det(ψ ◦ φ−1) > 0, and they define an orientation on U ∪ V .
This consideration leads us to the following alternative definition of orientation of
a manifold.

Definition 2.2. A manifold M is orientable if there is an atlas Φ = {(Ui, φi)}
such that whenever Ui∩Uj 6= ∅ the Jacobian matrix of ψj ◦φ−1

i has strictly positive
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determinant at every point of φi(Ui ∩ Uj). The atlas Φ is called an oriented atlas.
A manifold is oriented if an oriented atlas has been chosen for it.

3. Boundary and preimage orientations

Here we describe two standard orientations, namely, boundary orientation and
preimage orientation. They will be in force throughout the rest of the chapter.

Boundary orientation. Suppose that dimM = n ≥ 1. Then, since

codim ∂M = 1,

at each point x ∈ ∂M , there are exactly two unit vectors in τ(M)x which are
orthogonal to τ(∂M)x. One of them is inward pointing and the other is outward
pointing. Here is their precise definition. At the origin 0 ∈ Rn

+, the unit vector
e1 = (1, 0, . . . , 0) is the inward pointing normal vector to ∂Rn

+, and −e1 is the
outward pointing normal vector. If φ : U −→ Rn

+ is a coordinate system with
φ(x) = 0, then (dφx)−1(e1) is the inward pointing normal vector to ∂M at x, and
its negative is outward pointing. This distinction between inward and outward
directions does not depend on the choice of φ. Because if φ′ is another compatible
coordinate system, then the isomorphism d(φ′φ−1)0 maps the half space Rn

+ onto
itself (Lemma 7.1 Part 1). The boundary orientation on ∂M is defined as follows.
If α = {α1, . . . , αn} is an ordered basis of τ(∂M)x, then sign α is the sign of
the ordered basis {νx, α} = {νx, α1, . . . , αn} of τ(M)x, where νx is the outward
normal vector at x. It can be seen easily that this defines an orientation on ∂M .
If dimM = 1, then the orientation of the zero-dimensional vector space τ(∂M)x is
the sign of the basis {νx} of τ(M)x = R, x ∈ ∂M .

Remark 3.1. The orientation of τ(∂M)x is obtained from the direct sum decom-
position τ(M)x = 〈νx〉 ⊕ τ(∂M)x. It is not necessary to take the outward unit
normal vector νx in the definition of the boundary orientation. We might just as
well replace νx by any outward pointing vector, which is a vector like rνx + w,
where r > 0, and w ∈ τ(∂M)x, and get the same orientation of ∂M .

Example 3.2. The standard orientation of the closed unit diskD2 induces counter-
clockwise orientation on the boundary circle S1.

Example 3.3. The standard orientation of the unit interval 0 ≤ t ≤ 1 induces the
orientation −1 and +1 at the end points 0 and 1 respectively.

Example 3.4. Let M be an oriented manifold without boundary, and I be the
unit interval [0, 1] with the standard orientation. Then the product M × I has two
boundary components M0 = M × {0} and M1 = M × {1}, and each of them is
diffeomorphic to M . At a point (x, 0) ∈ M0, the outward normal vector ν(x,0) is
(0,−1) ∈ τ(M)x × τ(I)0, and at a point (x, 1) ∈ M1, the outward normal vector
ν(x,1) is (0, 1) ∈ τ(M)x × τ(I)1. Therefore if α is an ordered basis of τ(M)x, the
signs of the induced orientation of M0 and M1 are given respectively as

sign (ν(x,0), α) = sign (−1) · sign α = − sign α.

sign (ν(x,1), α) = sign (1) · sign α = sign α.
Thus the induced orientations on M0 and M1 are opposite, and we may write

∂(M × I) = M1 ∪ (−M0).
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Preimage orientation. Let M , N , and A be oriented manifolds, where A
is a submanifold of N , and A and N are without boundary. Let f : M −→ N
be a smooth map with ftA and ∂ftA.transverse to A. Then the manifold B =
f−1(A) receives a natural orientation from the orientations on M , N , and A. This
orientation on B, which is called the preimage orientation induced by f , is defined
as follows.

Let x ∈ M and y = f(x) ∈ A. Then, τ(B)x = df−1
x (τ(A)y) is a subspace of the

vector space τ(M)x. Let ν(B)x be the orthogonal complement of τ(B)x in τ(M)x

so that

(3.1) τ(M)x = ν(B)x ⊕ τ(B)x.

Then, dfx(τ(M)x) = dfx(ν(B)x) + dfx(τ(B)x). Substituting this in the transver-
sality condition τ(N)y = dfx(τ(M)x) + τ(A)y, we get

(3.2) τ(N)y = dfx(ν(B)x)⊕ τ(A)y.

The sum is direct, because the dimensions of both sides are equal (note that, since
ker dfx ⊂ τ(B)x, dfx maps ν(B)x isomorphically onto its image). The orientations
of τ(N)y and τ(A)y induce an orientation of dfx(ν(B)x) via the direct sum decom-
position (2), this induces an orientation of ν(B)x via the isomorphism dfx, finally,
the orientations of τ(M)x and ν(B)x induce an orientation of τ(B)x via the decom-
position (1). In this way, we may define orientation on each tangent space τ(B)x

smoothly, because dfx varies smoothly with x.

With this knowledge, we can summarize the rule for finding the preimage orien-
tation as follows. If α, β, and γ are the orientations of M , A, and N respectively,
then the preimage orientation ω of B is given by

sign ω =
sign α · sign β

sign γ
.(3.3)

Remark 3.5. Note that in this definition of the preimage orientation, the orthog-
onality of the complement of τ(B)x is unnecessary. In fact, for any complement P
of τ(B)x in τ(M)x, the equations τ(M)x = P ⊕τ(B)x and dfx(P )⊕τ(A)y = τ(N)y

will define the same preimage orientation on B.

Recall that if M is a manifold with boundary ∂M , and if f : M −→ N and
∂f : ∂M −→ N are both transverse to a submanifold A of N , where both N and
A are without boundary, then B = f−1(A) is a manifold with boundary

∂B = f−1(A) ∩ ∂M.

Then ∂B receives two orientations, one as the preimage of A under ∂f : ∂M −→ N ,
and the other as the boundary of B. The follows lemma shows that these two
orientations are the same if codim A is even.

Lemma 3.6. ∂(f−1(A)) = (−1)codim A(∂f)−1(A).

Proof. At any point x ∈ B, τ(∂B)x is a subspace of τ(∂M)x. Let P be a comple-
ment of τ(∂B)x in τ(∂M)x so that

(3.4) τ(∂M)x = P ⊕ τ(∂B)x



10

Therefore, since τ(∂B)x = τ(B)x ∩ τ(∂M)x, P ∩ τ(B)x = 0. This means that P is
also a complement of τ(B)x in τ(M)x, and we have the direct sum decomposition

(3.5) τ(M)x = P ⊕ τ(B)x,

since dimP + dim τ(B)x = dim τ(M)x. Thus P is complementary to both τ(B)x

and τ(∂B)x. Now, dfx and d(∂f)x agree on P , because P ⊂ τ(∂M)x. Therefore P
receives the same orientation by the maps dfx and d(∂f)x, via the decomposition

τ(N)f(x) = dfx(P )⊕ τ(A)f(x).

Then decomposition (3.5) (resp. (3.4)) defines the preimage orientation of B (resp.
∂B) induced by f (resp. ∂f) (see Remark 3.5).

The boundary orientation of ∂B induced from the orientation of B is defined
by the decomposition τ(B)x = 〈νx〉 ⊕ τ(∂B)x, where νx is the outward normal to
∂B in B, and 〈νx〉 denotes the one-dimensional space spanned by it, oriented so
that {vx} is a positively oriented basis. This vx may not be orthogonal to τ(∂M)x.
But we may suppose that vx is an outward pointing vector (see Remark 3.1) so
that the orientations of τ(∂M)x and τ(M)x are related by the direct sum relation
τ(M)x = 〈vx〉⊕ τ(∂M)x. Substituting the preimage orientations of B and ∂B into
this, we obtain

P ⊕ τ(B)x = 〈νx〉 ⊕ P ⊕ τ(∂B)x.

Then, further imposition of the boundary orientation of ∂B yields

P ⊕ 〈νx〉 ⊕ τ(∂B)x = 〈νx〉 ⊕ P ⊕ τ(∂B)x = (−1)kP ⊕ 〈νx〉 ⊕ τ(∂B)x,

where the last equality is obtained by making k = dimP number of transpositions
to move νx from left to right. Therefore, we have τ(∂B)x = (−1)kτ(∂B)x, where
on the left hand side τ(∂B)x has the boundary orientation and on the right hand
side it has the preimage orientation. Since dimP = codim B = codim A, this
completes the proof. �

4. Intersection numbers, and Degrees of maps

Let M , N , and A be oriented manifolds without boundary, where M is compact,
and A is a closed submanifold of N , such that

(4.1) dimM + dimA = dimN.

Now, if f : M −→ N is a smooth map transverse to A, then f−1(A) is a finite set
of points, since it is compact and its dimension is zero (see that codim f−1(A) =
codim A = dimM by the dimension condition (4.1)). If x ∈ f−1(A), then the
transversality condition at x and the dimension condition (4.1) imply that we have
a direct sum decomposition

(4.2) dfx(τ(M)x ⊕ τ(A)f(x) = τ(N)f(x),

and dfx is an isomorphism onto its image.

Definition 4.1. The preimage orientation at a point x ∈ f−1(A) is called the
orientation number of f , and is denoted by n(f, x). This number is +1 if in the
direct sum decomposition (4.2), the orientation on dfx(τ(M)x) plus the orientation
on τ(A)f(x) (in this order) is the prescribed orientation on τ(N)f(x), and it is −1
otherwise.
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An alternative definition of n(f, x) may be obtained in the following way. The
composition π ◦ dfx

τ(M)x
dfx−→ τ(N)f(x)

π−→ τ(N)f(x)/τ(A)f(x),

where π is the canonical projection, is an isomorphism. Then n(f, x) is +1 or −1
according to whether this isomorphism π ◦ dfx preserves or reverses orientation.

The intersection number I(f,A) is defined to be the sum of the orientation
numbers n(f, x) over all x ∈ f−1(A).

If f : M −→ N is any smooth map, then Theorem 1.15 says that there is a
smooth map g : M −→ N homotopic to f such that both g and ∂g are transverse
to A. In this case the intersection number I(f,A) is defined to be the intersection
number I(g,A). That this definition in independent of the choice of g will be seen
in Lemma 4.4 below.

Exercise 4.2. Let f : M −→ N and g : M −→ (N−A) be smooth maps homotopic
in N . Then show that I(f,A) = 0.

Theorem 4.3 (Extendability Theorem). Let M , N , and A be oriented mani-
folds, where M is compact with boundary, and both N and A are boundaryless. Let
A be a closed subset and a submanifold of N such that

dim ∂M + dimA = dimN.

Let f : ∂M −→ N be a smooth map which extends to a smooth map g : M −→ N
such that both g and ∂g are transverse to A. Then I(f,A) = 0.

Note that f may be a map from a component of ∂M into N .

Proof. In view of the given dimension condition, g−1(A) is a compact oriented one-
dimensional manifold with boundary ∂(g−1(A)) = g−1(A) ∩ ∂M = f−1(A), which
consists of pairs of points with orientation numbers +1 and −1. Consequently,
I(f,A) = 0. �

Lemma 4.4. Let M , N , and A be oriented boundaryless manifolds, where M is
compact. Let A be a closed subset and a submanifold of N . Let g0 and g1 be
smooth maps from M into N which are homotopic and both transverse to A. Then
I(g0, A) = I(g1, A).

Proof. If G : M × I −→ N is a homotopy between g0 and g1, then I(∂G,A) = 0
by the above lemma. Now, by Example 3.4, ∂(M × I) = M1 −M0, where M0 and
M1 are diffeomorphic copies of M , and ∂G agrees with g0 and g1 on M0 and M1

respectively. Therefore (∂G)−1(A) = g−1
1 (A)− g−1

0 (A), and hence

I(g1, A)− I(g0, A) = I(∂G,A) = 0.

�

In the special case when dimM = dimN , A is a point y ∈ N , andN is connected,
the intersection number I(f, {y}) is called the degree of f , and denoted by deg f .
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Here y is a regular value of f , and for x ∈ f−1(y), n(f, x) is +1 or −1 according as
dfx preserves or reverses orientation. Then

deg f =
∑

x∈f−1(y)

n(f, x).

In general, we may allow y to be any point of N (not necessarily a regular value
of f), and define deg f by the above formula. This is justified by the following
lemma.

Lemma 4.5. The number deg f is the same for all y ∈ N .

Proof. Given y, we may find a smooth map g : M −→ N such that y is a regular
value of g, and g is homotopic to f . Then g−1(y) is a finite set {x1, . . . , xk}, say.
Because dimM = dimN , we may invoke the local submersion theorem to find
disjoint open neighbourhoods Ui of xi such that g maps each Ui diffeomorphically
onto an open neighbourhood V of y, and g−1(V ) = U1 ∪ · · · ∪ Uk (disjoint union).
Then, for any z ∈ V , g−1(z) consists of k points, and, for all x′ in an Ui, the
orientation number n(g, x′) is the same. This means that the map N −→ Z given
by y′ 7→ I(g, {y′}) is locally constant. Since N is connected, this map must be
constant on the whole of N . �

For example, The identity map of M has degree +1, And the anti-podal map
Sn −→ Sn, sending x to −x, has degree (−1)n+1.

Exercise 4.6. Let M , N , and P be connected boundaryless manifolds of the same
dimension. Then for smooth maps f : M −→ N and g : N −→ P show that
deg(g ◦ f) = deg f · deg g.

Lemma 4.7. Represent the circle S1 as the set of complex numbers z with |z| = 1,
and let m be an integer. Then the map f of the circle S1 onto itself, given by
z 7→ zm, has degree m.

Proof. If m > 0 (resp. m < 0), the image point f(z) moves around the circle in
the counterclockwise (resp. clockwise) sense m times as z moves around the circle
once in the counterclockwise sense. Therefore the inverse image f−1(z) of a point
z ∈ S1 contains |m| number of points, unless m = 0. In terms of the coordinate
systems arising from the exponential map R −→ S1 given by θ 7→ exp(iθ). local
representation of f is θ 7→ mθ. Therefore f is regular everywhere if m 6= 0. If
m > 0, f is orientation preserving, and deg f is the number of points in f−1(z)
which is m. If m < 0, f is orientation reversing, and deg f is −|m| = m. If m = 0,
then f is a constant map, and so deg f = 0. �

Thus, given any integer m, there is a smooth map S1 −→ S1 whose degree is m.

Example 4.8. Any smooth map f : S1 −→ S1 may be written as

f(exp(iθ)) = exp(ig(θ)),

where g : R −→ R is a smooth map. Then, since θ and θ + 2π represent the same
point of the circle, we must have g(θ + 2π) = g(θ) + 2kπ for all θ. where k is
a fixed integer which is positive or negative according to whether f is orientation
preserving or reversing. In particular, g(2π) = g(0) + 2kπ. Thus as z moves round
the circle once, the image f(z) moves round the circle k times. Thus deg f = k.
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Theorem 4.9. Two maps f0, f1 : S1 −→ S1 are homotopic if and only if they have
the same degree.

Proof. We already know that the condition is necessay. To prove the sufficiency,
suppose that deg f0 = deg f1. Then, as in Example 4.8, we may write, for j = 1, 2,
fj as fj(exp(iθ)) = exp(igj(θ)), where gj : R −→ R are smooth maps such that
gj(θ + 2π) = gj(θ) + 2kπ. Then g0 and g1 are homotopic by homotopy

gt = (1− t)g0 + tg1, 0 ≤ t ≤ 1.

Then gt(θ + 2π) = gt(θ) + 2kπ and so exp(igt(θ)) is a homotopy between f0 and
f1. �

This theorem is a special case of the Hopf degree theorem. One-half of the Hopf
degree theorem is contained in the extendability theorem, which in terms of the
degree reads as follows.

Theorem 4.10. Let M be a compact oriented manifold which is the boundary of a
manifold P , and N another oriented boundaryless manifold of the same dimension
as M . If a smooth map f : M −→ N extends to a smooth map on all of P , then
deg f = 0.

The Hopf degree theorem says that f : M −→ Sn extends to a smooth map on
all of P if and only if deg f = 0. We omit the proof, and look at a simple application
of Theorem 4.10 instead.

Let p(z) = zm + a1z
m−1 + · · ·+ am be a monic polynomial with complex coeffi-

cients. Consider a family of polynomials of pt(z), 0 ≤ t ≤ 1, given by

pt(z) = tp(z) + (1− t)zm = zm + t(a1z
m−1 + · · ·+ am).

Since

lim
z→∞

pt(z)
zm

= 1,

there is a closed ball B of sufficiently large radius such that none of the polynomials
pt(z) vanish on ∂B. Therefore the homotopy pt/|pt| : ∂B −→ S1 is defined for all
t, and so deg(p/|p|) = deg(p0/|p0|) = m, by Lemma 4.7. This implies that p has at
least one zero inside B. Otherwise, the map p/|p| : ∂B −→ S1 will extend on all of
B, and deg(p/|p|) will be zero, by the extendability property. This proves

Theorem 4.11 (Fundamental Theorem of Algebra). Any non-constant com-
plex polynomial has a zero.

Let M , N , and A be oriented boundaryless manifolds, where M is a compact
submanifold of N . Let A be a closed subset and a submanifold of N of comple-
mentary dimension (so that (4.1) is satisfied). Let i : M −→ N be the inclusion
map, and MtA. Then the intersection number I(M,A;N) is defined to be the
number I(i, A). This is the sum of the orientation numbers +1 and −1 of the points
x ∈ M ∩ A, where the number for x is +1 if the orientations of M and A (in this
order) at x give the orientation of N at x, otherwise the number is −1.

We often write I(M,A;N) simply as I(M,A), when it is not necessary to mention
the ambient manifold N .
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Exercise 4.12. Show that if M and A are compact submanifolds of N of dimen-
sions n and k respectively such that dimN = n+ k, then

I(M,A) = (−1)nkI(A,M).

In particular, if dimN = 2dimM , then the self-intersection number I(M,M) is
defined. Moreover, if dimM is odd, then I(M,M) = 0.

Definition 4.13. Let M be a compact connected manifold without boundary,
π : τ(M) −→ M be the tangent bundle of M , and i : M −→ τ(M) be the zero
section. Identify M with the zero section. Then the Euler characteristic of M ,
denoted by χ(M), is defined to be the number I(M,M) = I(M,M ; τ(M)).

Definition 4.14. Let g : M −→ τ(M) be a smooth vector field transverse to the
zero-section i(M). Let x ∈ M be a zero of g (i.e. x ∈ g−1(i(M))). Then the
orientation number n(g, x) is called the index of the vector field g at x, and is
denoted by Ind xg.

Lemma 4.15. A compact oriented manifold M without boundary admits a vector
field g : M −→ τ(M) transverse to the zero-section i(M) such that

χ(M) =
∑

x∈g−1(i(M))

Ind xg.

Proof. Approximate the zero section i : M −→ τ(M) by a smooth map

f : M −→ τ(M)

homotopic to i and transverse to the zero section i(M) (Theorem 1.15). If the ap-
proximation is sufficiently small, then the map π◦f : M −→M is a diffeomorphism
homotopic to Id (Theorem 6.2(5) Part 2), and the map g = f ◦ (π ◦ f)−1 : M −→
τ(M) is a smooth section transverse to the zero section i(M) (Exercise 1.12 in page
4), and homotopic to i. Therefore

χ(M) = I(i,M) = I(g,M) =
∑

x∈g−1(i(M))

Ind xg.

�

Theorem 4.16. If M admits a nowhere vanishing vector field, then its Euler char-
acteristic χ(M) = 0.

Proof. If g : M −→ τ(M) is a nowhere vanishing vector field, then g is transverse
to the zero-section i(M). Also g is homotopic to the zero section i by the homotopy
given by ht(x) 7→ tf(x). Therefore

χ(M) = I(i,M) = I(g,M) = 0.

�

We may compute χ(M) in another way. Let g : M −→ τ(M) be the vector field
transverse to the zero-section, as constructed in Lemma 4.15. Let x1, . . . , xr ∈ M
be the zeros of g. Let φi : π−1(Ui) −→ Ui × Rn be a chart of τ(M) over open
neighbourhoods Ui of xi in M (see Theorem 6.2, Part 1) so that φi is orientation
preserving. Then the composition hi = (proj) ◦ φi ◦ g

Ui
g−→ π−1(Ui)

φi−→ Ui × Rn −→ Rn
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has a regular value at 0 ∈ Rn and xi ∈ h−1
i (0) (Lemma 1.5). Since φi is orien-

tation preserving, the orientation number n(hi, xi) is the same as the sign of the
isomorphism

τ(Ui)xi

dφi◦dg−→ τ(Ui × Rn)yi

proj−→ τ(Ui × Rn)yi

τ(Ui × {0})yi

, yi = φi(g(xi)),

which is the same as n(g, xi) (see the alternative definition of the orientation number
in Definition 4.1). Therefore the Euler characteristic of M is

χ(M) =
∑

i

n(hi, xi).

The method of computation of χ(M) may be summarized as follows. Take a
smooth vector field f : M −→ τ(M) transverse to the zero section. At each zero xi

of f , take a coordinate chart φi : Ui −→ Rn which preserves orientation. Then the
local representation of f is given by the composition

φi(Ui)
φ−1

i−→ Ui
f−→ π−1(Ui)

dφi−→ τ(φi(Ui)).

This is a section of the trivial bundle on φi(Ui), and so it defines a smooth map
gi : φi(Ui) −→ Rn with a regular value at 0. Then, if di = n(gi, xi) is the index of
the vector field f at xi, the Euler characteristic of M is

χ(M) =
∑

i

di.

Theorem 4.17. χ(Sn) = 1 + (−1)n so that it is 0 if n is odd, and it is 2 if n is
even.

Proof. Let P and Q = −P be the north and the south pole of Sn. Let U =
Sn − P and V = Sn − Q, and φ : U −→ Rn and ψ : V −→ Rn be stereographic
projections from P and Q respectively (see Example 1.2(6), Part 1). Consider the
atlas {(U, φ), (V, ψ′)}, where ψ′ = −ψ, of Sn. The coordinate changes

ψ′ ◦ φ−1 = φ ◦ ψ′−1 : Rn − {0} −→ Rn − {0}

is given by x 7→ −x/‖x‖2.

Define a section λ : U −→ π−1(U) by λ(x) = (x, dφ−1
x (φ(x)), and a section

µ : V −→ π−1(V ) by µ(x) = (x, dψ′−1
x (ψ′(x)). These sections are compatible with

respect to the above change of coordinates, and therefore they fit together smoothly
to give a global section f of the tangent bundle (note that in the construction of f
we have not used orientation of Sn). Moreover, f vanishes only at P and Q. In φ
coordinates f corresponds to x 7→ x on φ(U), and in ψ′ coordinates f corresponds
to x 7→ −x on ψ′(V ). Since the identity map of Rn has degree 1, and the anti-
podal map has degree (−1)n, Ind P f = 1 and Ind Qf = (−1)n. This proves the
theorem. �

Corollary 4.18 (Hairy Ball Theorem). Every vector field on S2n vanishes
somewhere.

A graphic description of this result says that a hairy ball cannot be combed
continuously.
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Example 4.19. Every sphere Sn of odd dimension n admits a non-zero vector
field f , where, for p = (x1, · · · , xn+1) ∈ Sn, f(p) is given by

f(p) = (−x2, x1,−x3, x4, · · · ,−xn+1, xn).

This vector is orthogonal to p, and so f(p) ∈ τ(Sn)p.

Exercise 4.20. If M and N are compact oriented manifolds without boundaries,
then show that χ(M ×N) = χ(M) · χ(N).

Theorem 4.21. If M is an odd dimensional compact oriented manifold without
boundary, then

χ(M) = 0.

The converse is false as may be seen when M = S1 × S1.

Proof. Let us compute χ(M) using a vector field f , and then using the vector field
−f . The computations will give

χ(M) =
∑

x

Ind xf =
∑

x

Ind x(−f),

where the summations are over all zeros x of f or −f . Now, if dimM = n and x is
a zero of f , then

Ind xf = (−1)nInd x(−f).

This gives us the theorem, if n is odd. �

5. Mod 2 Intersection Number

Let M , N , and Z be unoriented manifolds without boundary, where M is com-
pact and Z is a closed submanifold of N such that

dim M + dim Z = dim N.

Then, if f : M → N is a smooth map transverse to Z, f−1(Z) is a finite set of
points. Define the mod 2 intersection number I2(f, Z) of f with Z to be the
number of point in f−1(Z) modulo 2. Note that the set up is the same as before,
except that now we attach the number +1 (or −1) to each of the points of f−1(Z)
and then reduce the sum of these numbers mod 2.

Theorem 5.1. Let Wn+1 be a compact manifold with boundary Mn, and Nm be
a manifold with ∂N = ∅, m ≥ n. Let f : M → N be a smooth map, and Z be a
closed subset and a submanifold of N of dimension m− n. If f can be extended to
a smooth map F : W → N , then I2(f, Z) = 0.

Proof. By Transversality homotopy theorem (Theorem 1.15), the map F is homo-
topic to a smooth map G : W → N such that GtZ and ∂GtZ. If g = ∂G, then f is
homotopic to g, and therefore I2(f, Z) = #g−1(Z) mod 2. But G−1(Z) is a com-
pact manifold of dimension one with boundary. Therefore #∂G−1(Z) = #g−1(Z)
is an even integer. �
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When f : M → N is a smooth map of a compact manifold M into a connected
manifold N , and dim M = dim N , we define the mod 2 degree deg2(f) of f with
any point z ∈ N to be the mod 2 intersection numbder I2(f, {z}). Note that this
number is the same for any z ∈ N , and it is defined only when M is compact and
N connected.

If dim M = n, and f : M → Rn+1 is a smooth map. define u : M → Sn by

u(x) =
f(x)− z

‖f(x)− z‖
,

where z /∈ f(M). Then mod 2 winding number of f around z is defined to be

W2(f, z) = deg2(u).

Theorem 5.2. Let W be a compact manifold of dimension n + 1 with boundary
∂W = M . Let F : W → Rn+1 be a smooth map and f = F |M : M → Rn+1. Let
z ∈ Rn+1 be a regular value of F such that z /∈ f(M). Then F−1(z) is a finite set,
and

W2(f, {z}) = #F−1(z) mod 2.

In other words, the number of times that f winds M around z is the same as the
number of times F hits z, mod 2.

Proof. If F−1(z) = ∅, then f−1(z) = ∅ also, and therefore both F and f do not
hit z. Therefore, if λ : Rn+1 − {z} → Sn is the map a 7→ ((a − z))/‖a − z‖, then
λ ◦ f : M → Sn extends to λ ◦F : W → Sn. Therefore, for any s ∈ Sn, we have by
Theorem 5.1 that

I2(λ ◦ f, {s}) = deg2(λ ◦ f) = W2(f, {z}) = 0.

Next suppose that F−1(z) = {x1, . . . , xk} ⊂ W . Choose coordinate charts
(Ui, φi) in W such that xi ∈ Bi ⊂ Ui, where φi(Bi) is a closed ball in Rn+1,
and such that Bi’s are disjoint from one another and from the boundary ∂W = M .
Let

W ′ = W − ∪k
i=1 IntBi, and ∂W ′ = M ∪k

i=1 ∂Bi.

Let F ′ = F |W ′, and f ′ = F ′|∂W ′. then as in the above arguments,

deg2(λ ◦ f ′) = deg2(λ ◦ f) +
k∑

i=1

deg2(λ ◦ fi) = 0.

This means that

W2(f, {z}) = W2(f1, {z}) + · · ·+W2(fk, {z}) mod 2.

Now, since z is a regular value of F , we can also show that each W2(fi, {z}) = 1.
This completes the proof. �

The following theorem of Karol Borsuk and Stanislaw Ulam is an amazing the-
orem of topology. This implies, in particular, that at any given time there are
two antipodal points on the earth’s surface which have the same temperature and
barometric pressure. In other words, for every smooth map f : S2 → R2, there is a
pair of antipodes {x,−x} such that f(x) = f(−x).
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Theorem 5.3 ( Borsul-Ulam Theorem). Let f : Sn → Rn+1 be a smooth map
such that 0 /∈ f(Sn), and f maps antipodal points to antipodal points, that is,

(5.1) f(−x) = −f(x) for all x ∈ Sn.

Then W2(f, 0) = 1.

The condition (5.1) may be called symmetry condition. The theorem asserts
that any smooth symmetric map f : Sn → Rn+1 − {0} winds around the origin an
odd number of times. The theorem is equivalent to the following theorem.

Theorem 5.4. If a smooth map g : Sn → Sn maps antipodal points to antipodal
points, then deg2(g) = 1.

Proof. If f : Sn → Rn+1 is the map of Theorem 5.1, define g : Sn → Sn by

g(x) =
f(x)− f(−x)
‖f(x)− f(−x)‖

.

�

Proof of Theorem 5.3. The proof is by induction on n.

The case n = 1 follows easily. As described in Example 4.8, a smooth map
f : S1 → S1 can be expressed as

f(eiθ) = eig(θ),

where g : R → R is a smooth map such that g(θ+2π) = g(θ)+2kπ for all θ, where k
is a fixed integer. If f is a symmetric map, then we must have g(θ+π) = g(θ)+mπ,
where m is an odd integer. Indeed, the symmetry condition f(−eiθ) = −f(eiθ)
implies that f(ei(θ+π)) = −f(eiθ), or eig(θ+π) = −eig(θ) = ei(g(θ)+π), or g(θ + π) =
g(θ) + π + 2kπ, where k is an integer. Therefore deg2(f) = 1.

Next suppose that the theorem is true for n− 1, and let

f : Sn → Rn+1 − {0}
be a symmetric smooth map. Identify Sn−1 with the equator of Sn by the embed-
ding (x1, . . . , xn) 7→ (x1, . . . , xn, 0). Let g = f |Sn−1.

By Sard’s theorem (Theorem 1.11), choose a point a ∈ Sn which is a regular
value of both the maps

G =
g

‖g‖
: Sn−1 → Sn, and F =

f

‖f |
: Sn → Sn.

By the symmetry condition, −a ∈ Sn is also a regular value of both the maps.

By the preimage theorem (Theorem 4.8, Part 1), the regularity of G means
that G−1(a) and G−1(−a) are manifolds of dimension one, and therefore a and
−a do not belong to ImageG. or the line ` = R · a joining the points a and −a
does not intersect f(Sn−1). On the other hand, the regularity of F means that
f is transverse to the line `. To see this note that the map F : Sn → Sn is the
composition F = λ ◦ f , where λ : Rn−1 − {0} −→ Sn is the map λ(x) = x/‖x‖,
x ∈ Rn+1−{0}. Then a is a regular value of F means that Ft{a}, or (λ ◦ f)t{a},
which is equivalent to saying that ftλ−1(a), or ft`, ` = λ−1(a), by Exercise 1.12.
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Now, by definition,

W2(f, 0) = deg2(F ) = #F−1(a) mod 2,

where the symbol #F−1(a) denotes the number of points in the set F−1(a). Also
#f−1(`) = #F−1(a) + #F−1(−a) = 2#F−1(a), since #F−1(a) = #F−1(−a), by
symmetry. Therefore

W2(f, 0) =
1
2
#f−1(`) mod 2.

Similar computation applies to the upper hemisphere Sn
+ of Sn

Sn
+ = {x ∈ Sn : xn+1 ≥ 0}.

This is a manifold with boundary ∂Sn
+ = Sn−1. Let f+ = f |Sn

+. Since f(Sn−1)
does intersect the line `, and the symmetry condition holds, #f−1(`) = 2#f−1

+ (`).
Therefore

W2(f, 0) = #f−1
+ (`) mod 2.

To use the inductive hypothesis on the boundary ∂Sn
+ = Sn−1, we need to adjust

the dimension of the range of g. For this purpose, let V be the n dimensional space
which is the orthogonal complement of the line ` in Rn+1, and π : Rn+1 → V be
the orthogonal projection. Since g is symmetric, and π is linear, the composition
π ◦ g : Sn−1 → V ≡ Rn is symmetric. Moreover, π ◦ g is never zero, since g never
intersects π−1(0) = `. Therefore we have by the inductive hypothesis,

W2(π ◦ g, 0) = 1.

Now, since f+t`, π ◦ f+ : Sn
+ → V , is transverse to {0}. Therefore, by Theorem

5.2,
W2(π ◦ g, 0) = # (π ◦ f+)−1(0).

But (π ◦ f+)−1(0) = f−1
+ (`). Therefore

W2(f, 0) = # f−1
+ (`) = W2(π ◦ g, 0) = 1 mod 2.

This completes the proof.

Theorem 5.5 (Jordan-Brouwer Separation Theorem). Let M be a compact
connected manifold of dimension n−1 in Rn. Then the complement Rn−M consists
of two connected open sets, the inside M0 and the outside M1. Moreover, M0 is a
compact manifold with boundary ∂M0 = M .

The proof is similar to the last theorem and is left as an exercise (see Guillemin
and Pollack, Differential Topology, p. 89 in case of difficulty).


