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1. Vector Bundle

Definition 1.1. A vector bundle of dimension n is a triple (E,M, π) consisting
of a pair of manifolds E and M connected by a smooth surjective map π : E −→M
satisfying the following conditions.

VB1. For each x ∈M , the inverse image Ex = π−1(x) is an n-dimensional vector
space over R,

VB2. For each x ∈M , there is an open neighbourhood U of x and a
diffeomorphism φ : π−1(U) → U × Rn such that

(i) p1 ◦ φ = π, where p1 : U × Rn → U is the projection onto the first
factor.

(ii) for each y ∈ U , the map φy : π−1(y) → Rn, defined by
the composition

π−1(y)
φ−→ {y} × Rn p2−→ Rn,

where p2 is the projection onto the second factor, is a linear isomorphism.

Note that locally π is the composition of a diffeomorphism φ followed by a
submersion p1, therefore π is a submersion.

The vector bundle is also denoted by the map π : E −→ M (and sometimes
E itself is called the vector bundle, by an abuse of language). The manifold E is
called the total space of the bundle, the manifold M its base space, and the
map π its projection. The inverse image Ex = π−1(x), x ∈M, is called the fibre
over x. The condition VB2 is called the local triviality; the pair (U, φ) is called
a vector bundle chart with domain U , and U is called a trivializing open
set. A collection Φ = {(Ui, φi)} of charts, whose domains cover M , is called a
vector bundle atlas if whenever (Ui, φi) and (Uj , φj) are in Φ and x ∈ Ui ∩ Uj

the diffeomorphism (φj)−1
x ◦ (φi)x : Rn → Rn is linear.

Notice that the dimension of a vector bundle E is actually the dimension of its
fibre, and is not the dimension of E as a manifold. The function M −→ R given
by x 7→ dimEx is a locally constant function, and therefore it is a constant on each
component of M . If the function is constant on the whole of M , then the common
value dimEx, for all x ∈M , is the dimension of the vector bundle E.

Example 1.2. If V is a finite dimensional vector space over R, then the projection
π : M × V −→M is a vector bundle. This is called a product bundle.

Example 1.3. If π1 : E1 −→M and π2 : E2 −→M are vector bundles over M of
dimension n and m respectively, let

E1 ⊕ E2 = {(v1, v2) ∈ E1 × E2 | π1(v1) = π2(v2)}.
Then π : E1 ⊕ E2 −→ M given by π(v1, v2) = π1(v1) = π2(v2) is a vector bundle
of dimension n+m, whose fibre over x ∈M is the direct sum π−1

1 (x)⊕ π−1
2 (x). If
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(U, φ1) and (U, φ2) are charts for E1 and E2 respectively over a common trivializing
open set U , then a chart (U,ψ) for E1 ⊕ E2 is obtained by setting

ψx = (φ1)x ⊕ (φ2)x : (E1)x ⊕ (E2)x → Rn ⊕ Rm, x ∈ U.
The bundle E1 ⊕ E2 is call the Whitney sum of E1 and E2.

Example 1.4. The tangent bundle τ(M) of a manifold M is a vector bundle with
dimension equal to dimM . The charts constructed in Theorem 6.2, Part 1, to show
that τ(M) is a manifold are actually vector bundle charts.

Definition 1.5. If (E,M, π) and (E′,M ′, π′) are vector bundles, then a morphism
(f, g) : (E,M, π) −→ (E′,M ′, π′) consists of a pair of smooth maps f : E −→ E′

and g : M −→M ′ such that

(i) the following diagram commutes

E
f−−−−→ E′

π

y yπ′

M −−−−→
g

M ′

(ii) the restriction of f to each fibre

fx = f |Ex : Ex −→ E′g(x), x ∈M,

is a linear map.

A pair (IdE , IdM ) is the identity morphism. The composition of two morphisms
(f, g) and (f ′, g′) is defined to be (f ′ ◦ f, g′ ◦ g), and this is again a morphism.

A morphism (f, IdM ) : (E,M, π) −→ (E′,M, π′) over the same base space M is
called a homomorphism, and sometimes it is denoted simply by f : E −→ E′.
It is called a monomorphism, epimorphism, or isomorphism according to
whether each fx is a monomorphism, epimorphism, or isomorphism. It is called a
bundle equivalence if f is an isomorphism and a diffeomorphism. In this case,
each f |Ex is a linear isomorphism, and its inverse is the restriction to E′x of f−1.

Lemma 1.6. A homomorphism f : (E,M, π) −→ (E′,M, π′) is a bundle equiva-
lence if and only if f is an isomorphism.

Proof. It suffices to show that a smooth map f : E −→ E′ over M which maps each
fibre isomorphically onto a fibre, is a diffeomorphism. Define a map g : E′ −→ E by
g(α′) = f−1

x (α′), where α′ ∈ E′, and π′(α′) = x. Then f will be a diffeomorphism,
if we show that g is a smooth map.

Let φ : π−1(U) → U ×Rn and φ′ : (π′)−1(U) → U ×Rn be vector bundle charts
for E and E′ respectively corresponding to a common trivializing open set U in M .
Then φ′ ◦ f ◦ φ−1 is of the form (x, v) 7→ (x, h(x)v), where h : U −→ L(Rn,Rn),
the range of h is the space of linear maps Rn → Rn. Thus the map f : π−1(U) −→
(π′)−1(U) over U is smooth if and only if h is smooth. Also f is an isomorphism on
each fibre if and only if Im h ⊂ GL(n,R). Since the map GL(n,R) −→ GL(n,R)
given by λ 7→ λ−1 is smooth, the map h−1 : U −→ GL(n,R), given by h−1(x) =
h(x)−1, is also smooth, if h is so. Using these facts, we find

f |π−1(U) smooth ⇒ φ′ ◦ f ◦ φ−1 smooth ⇒ h smooth ⇒
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h−1 smooth ⇒ φ ◦ g ◦ (φ′)−1 smooth ⇒ g|(π′)−1(U) smooth .
Since this is true for any common trivializing open set U , g is a smooth map. �

A vector bundle is called trivial if it is equivalent to a product bundle.

Implicit in the above definition of vector bundle is an important role of the
general linear group GL(n,R), which appears in a transition law (the equation
(1.1) below) between vector bundle charts. This may be described in the following
way. The definition of a vector bundle π : E −→ M guarantees the existence of
a trivializing covering {Ui}i∈Λ of M (Λ = index set) and the vector bundle charts
φi : π−1(Ui) −→ Ui × Rn satisfying VB2. Then, for any i, j ∈ Λ with Ui ∩ Uj 6= ∅,
the diffeomorphism

φj ◦ φ−1
i : (Ui ∩ Uj)× Rn −→ (Ui ∩ Uj)× Rn

must be of the form

(1.1) φj ◦ φ−1
i (x, v) = (x, gij(x)v)

for a unique smooth map gij : Ui∩Uj −→ GL(n,R). In fact, if φix : π−1(x) −→ Rn

is the map φix(v) = φi(x, v), then

gij(x) = φjx ◦ φ−1
ix

is a linear isomorphism Rn −→ Rn. The family of maps {gij} is called a cocycle.
They satisfy the following condition

gij(x) · gjk(x) = gik(x), x ∈ Ui ∩ Uj ∩ Uk.

Putting i = j = k, and then k = i in this condition, we get

gii(x) = id, for all x ∈ Ui, and gij(x) = (gji(x))−1 for all x ∈ Ui ∩ Uj .

Definition 1.7. A section of a vector bundle
p : E →M is a smooth map s : M → E such that π ◦ s = IdM .

For example, A section of the tangent bundle τ(M) is a vector field (Definition
6.5, Part 1).

The section i : M → E, which maps x ∈ M to the zero vector 0p ∈ Ex, is
called the zero section. Then i is an embedding. We often identify M with the
i(M) ⊂ E, and call i(M) the zero section.

Definition 1.8. A metric on a vector bundle E −→ M is a smooth map which
assigns to each x ∈M a positive definite symmetric bilinear form or inner product

〈 , 〉x : Ex × Ex −→ R.

It can be shown that the collection of all metrics on E form a vector bundle
S2(E) over M , whose fibre over x ∈M is the vector space of all inner products on
the fibre Ex. Then a metric on E will be a smooth section of the vector bundle
S2(E).

A metric on the tangent bundle τ(M) is a Riemannian metric on M , which we
have discussed already in Part 2, §2.

The standard metric 〈 , 〉 on Rn defines a metric on the product bundle M ×Rn

by
〈(x, v), (x,w)〉x = 〈v, w〉.



4

Theorem 1.9. Any vector bundle E over M admits a metric.

Proof. The proof is similar to that of Theorem 2.3, Part 2. One has to take metrics
on the trivial bundles E|Ui, for some trivializing open covering {Ui} of M , and
then splice them together using a smooth partition of unity. �

Let π : E → N be a vector bundle over N , and f : M → N be a smooth
map. Then the pull-back (or induced bundle) of E by f is the vector bundle
π′ : f∗(E) → M over M , where f∗(E) = {(x, v) ∈ M × E : f(x) = π(v)}, and
π′(x, v) = x.

If φ : π−1(U) → U × Rn is a chart for E, and V = f−1(U) ⊂ M , then ψ :
π′
−1(V ) → V × Rn given by ψ(x, α) = (x, p2 ◦ φ(α)), where x ∈ V, α ∈ π−1(V )

so that f(x) = π(α), is a chart for f∗(E). Note that the inverse of ψ is given by
ψ−1(x, v) = (x, φ−1(f(x), v)).

There is a morphism (f̃ , f) : f∗(E) → E given by f̃(x, v) = v such that each
f̃x : f∗(E)x → Ef(x) is an isomorphism

f∗(E)
ef−−−−→ E

π′

y yπ

M −−−−→
f

N

Pull-backs satisfy the following properties :

(i) Id∗(E) = E,

(ii) (g ◦ f)∗(E) ' f∗(g∗(E)),

(iii) f∗(E1 ⊕ E2) ' f∗(E1)⊕ f∗(E2).

Lemma 1.10. Any vector bundle morphism

(g, f) : (E1,M1, π1) −→ (E2,M2, π2)

can be factored as (g, f) = (k, f) ◦ (h, Id), g = k ◦ h,

E1
h−−−−→ f∗(E2)

k−−−−→ E2yπ1 π

y π2

y
M1

Id−−−−→ M1
f−−−−→ M2

where (h, Id) is a homomorphism and (k, f) is a morphism such that k maps each
fibre isomorphically onto a fibre.

Proof. Define k : f∗(E2) −→ E2 by k(x, α) = α, and h : E1 −→ M1 × E2 by
h(α) = (π1(α), g(α)). Since f ◦ π1 = π2 ◦ g, Im h ⊂ f∗(E2). Then h is linear on
each fibre, and g = k ◦ h. �

Definition 1.11. A vector bundle π′ : E′ →M is a subbundle of a vector bundle
π : E →M if E′ is a submanifold of E and π′ = π|E′.

Note that if E′ is a subbundle of E, then the inclusion f : E′ → E is a monomor-
phism. The converse is also true.
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Lemma 1.12. If E and E′ are vector bundles over M and f : E′ −→ E is a
monomorphism, then f(E′) is a subbundle of E, and f : E′ −→ f(E′) is a bundle
equivalence.

Proof. It is sufficient to prove that each x ∈ M has an open neighbourhood U
on which f(E′) is a subbundle of E. Therefore we may suppose that E and E′

are product bundles. Let E = M × Rn, and, for x ∈ M , let Vx be a subspace
complementary to f(E′x) in Rn. Then F = M × Vx is a subbundle of E. Define
g : E′ ⊕ F −→ E by g(u, v) = f(u) + i(v) where i : F −→ E is the inclusion. Then
gx is an isomorphism. Therefore there is an open neighbourhood U of x in M such
that g|U is an isomorphism, and a hence a diffeomorphism, by Lemma 1.6. Now, E′

is a subbundle of E′⊕F . Therefore g(E′) = f(E′) is a subbundle of g(E′⊕F ) = E
on U . The second part also follows from Lemma 1.6 �

Remarks 1.13. The proof shows that

(1) if f : E′ −→ E is a homomorphism, then the set of points x ∈M for which
fx is a monomorphism is an open set of M ,

(2) locally a subbundle E′ of a bundle E is a direct summand of E.

Definition 1.14. If E′ is a subbundle of E, then the quotient bundle E/E′ (of
E modulo E′) is the union of all vector spaces Ex/E

′
x with the quotient topology.

Note that since E′ is locally a direct summand in E, E/E′ is locally trivial, and
hence it is a vector bundle.

Proposition 1.15. Let (f, g) : (E′,M ′, π′) −→ (E,M, π) be a vector bundle mor-
phism of constant rank, that is, fx has constant rank for all x ∈M ′, Then

(i) ker f = ∪x ker fx is a subbundle of E′,
(ii) Imf = ∪xImfx is a subbundle of E.
(iii) Cokerf = ∪xCokerfx is a quotient bundle of E.

Proof. The assertion (ii) implies (iii). We shall first prove (ii). The problem is local,
and therefore we assume that E′ = M × Rn. Let x ∈M , and Vx be a complement
of ker fx in Rn. Then F = M × Vx is a subbundle of E′, and the homomorphism
g = f ◦ i : F −→ E (i = inclusion) is such that gx is a monomorphism. Therefore
g is a monomorphism in some open neighbourhood U of x. Therefore g(F )|U is
a subbundle of E|U , by Lemma 1.12. Now g(F ) ⊂ f(E′), and, since dim f(E′y) is
constant for all y ∈M , we have, for all y ∈ U ,

dim g(Fy) = dim g(Fx) = dim f(E′x) = dim f(E′y).

Therefore g(F )|U = f(E′)|U , and f(E′) is a subbundle of E.

We next prove (i). Note that a homomorphism f : E′ −→ E is a monomorphism
if and only if its dual f∗ : E∗ −→ E′

∗ is an epimorphism. Also f has constant rank
implies that f∗ has constant rank. Therefore, since E′∗ −→ E′

∗
/f∗(E∗) = Cokerf∗

is an epimorphism, (Cokerf∗)∗ −→ (E′∗)∗ is a monomorphism. Now

Imf∗x = {α : E′x −→ R | ker fx ⊂ ker α}.



6

Therefore Cokerf∗x can be identified with the subspace of elements α ∈ E′
∗
x such

that, for some non-zero v ∈ E′x, fx(v) = 0 but α(v) 6= 0. Then there is an
isomorphism

η : ker fx −→ L(Cokerf∗x ,R) = (Cokerf∗x)∗

given by η(v)(α) = α(v). In fact, we have for each x ∈ M a natural commutative
diagram

ker fx −−−−→ E′x

η

y yη

(Cokerf∗x)∗ −−−−→ (E′∗x)∗

where the vertical arrows η are isomorphisms. Thereore

ker f ' (Cokerf∗)∗,

and, by Lemma 1.12, is a subbundle of E′. �

Definition 1.16. A sequence of vector bundles {Ei} over M connected by homo-
morphisms {fi} over IdM

· · · −→ Ei−1
fi−1−→ Ei

fi−→ Ei+1 −→ · · ·
is called an exact sequence over M if for each x ∈M we have

Im(fi−1)x = ker(fi)x, for all i.

In particular, a five-term exact sequence over M :

0 −→ E′
f−→ E

g−→ E′′ −→ 0,

where 0 denotes the vector bundle of dimension 0, is called a short exact se-
quence. Here exactness means that f is a monomorphism, g is an epimorphism,
and Imf = ker g.

The bundle E′′ of the above short exact sequence is called the quotient bundle
of the monomorphism f .

For the justification of the terminology note that if E′ is a subbundle of E with
inclusion homomorphism i, then we have the short exact sequence

0 −→ E′
i−→ E

p−→ E/E′ −→ 0,

where p is the quotient homomorphism. Moreover, every monomorphism has a
quotient bundle

0 −→ E′
f−→ E

p−→ E/f(E′) −→ 0,
and it is unique up to isomorphism, as the following lemma shows.

Lemma 1.17. If E1 and E2 are two quotient bundles of a monomorphism f :
E′ −→ E, then there is a unique isomorphism h : E1 −→ E2 so that the following
diagram commutes.

0 −−−−→ E′
f−−−−→ E

g1−−−−→ E1 −−−−→ 0

Id

y Id

y h

y
0 −−−−→ E′

f−−−−→ E
g2−−−−→ E2 −−−−→ 0
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Proof. The map h is defined as follows. Let v ∈ E1. Then, by exactness, there is a
u ∈ E such that g1(u) = v. Then set h(v) = g2(u). If u′ is another element of E for
which g1(u′) = v also, then u − u′ ∈ ker g1 = Imf , so there is a w ∈ E′ such that
f(w) = u−u′. This means that g2◦f(w) = g2(u−u′) = 0, or g2(u) = g2(u′), showing
that h is well defined. It is easily checked that h is actually an isomorphism. �

Exercise 1.18. Show that given an epimorphism g : E −→ E′′, there is a unique
bundle E′ that fits into an exact sequence

0 −→ E′ −→ E
g−→ E′′ −→ 0.

Lemma 1.19. Given a short exact sequence over a manifold M

0 −→ E′
f−→ E

g−→ E′′ −→ 0,

there is an equivalence φ : E −→ E′ ⊕ E′′ such that φ ◦ f is the natural inclusion
i : E′ −→ E′ ⊕ E′′, and g ◦ φ−1 is the natural projection p : E′ ⊕ E′′ −→ E′′.

0 −−−−→ E′
f−−−−→ E

g1−−−−→ E′′ −−−−→ 0

Id

y φ

y Id

y
0 −−−−→ E′

i−−−−→ E ⊕ E′′
p−−−−→ E′′ −−−−→ 0

Proof. Equip E with a fibrewise metric 〈 , 〉x, x ∈M . Let f(E′)⊥x be the subspace
of Ex orthogonal to the subspace f(E′)x

f(E′)⊥x = {v ∈ Ex | 〈v, w〉x = 0 for all w ∈ f(E′)x}.

Let f(E′)⊥ be the union of all f(E′)⊥x , x ∈ M . Then f(E′)⊥ is a vector bundle,
since it is the kernel of a homomorphism of constant rank, which is the orthogonal
projection of E onto f(E′). We have then E = f(E′)⊕ f(E′)⊥, and a short exact
sequence

0 −→ f(E′) i−→ E
p−→ f(E′)⊥ −→ 0.

Thus there are two quotient bundles E′′ and f(E′)⊥ of the monomorphism f :
E′ −→ E; therefore they are equivalent by Lemma 1.17.

If h is the equivalence f(E′)⊥ −→ E′′, then the required equivalence φ is given
by

E = f(E′)⊕ f(E′)⊥
f⊕h−→ E′ ⊕ E′′.

‘ �

Remark 1.20. The proof of the lemma contains the definition of orthogonal bun-
dle, which may be singled out as follows. If E′ is a subbundle of a bundle E with
a metric, then the orthogonal complement of E′ in E is the bundle E′⊥ whose
fibre over x ∈M is given by

E′
⊥
x = {v ∈ Ex | 〈v, w〉x = 0, w ∈ E′x}.
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2. Tubular neighbourhood theorem

Let M be a submanifold of N . Then a tubular neighbourhood of M in N
consists of a vector bundle π : E →M over M , and a diffeomorphism θ of an open
neighbourhood Z of the zero section i(M) in E onto an open neighbourhood U of
M in N

θ : Z → N

such that θ ◦ i is the inclusion M ⊂ N .

Then Z is called the tubular neighbourhood of M in E, or U = θ(Z) is called
the tubular neighbourhood of M in N .

Theorem 2.1. Let M be a submanifold of an Euclidean space Rm with ∂M = ∅.
Then M has a tubular neighbourhood in Rm.

Proof. We shall prove the theorem when M is compact. The general case will be
considered at the end.

We give M the Riemannian metric induced for Rm. Then the normal space
ν(M)x of M at x ∈ M is the orthogonal complement of the tangent space τ(M)x

in τ(Rm)x = Rm

ν(M)x = {(x, v) ∈M × Rm : v ⊥ τ(M)x}.
The normal bundle ν(M) of M is the union of all normal spaces ν(M) =
∪x∈M ν(M)x. Let π : ν(M) → M be the projection map π(x, v) = x. Then
π : ν(M) →M is a vector bundle of rank m− n.

Let ε > 0 be a real number. Consider a neighbourhood of M in ν(M) defined by

ν(M, ε) = {(x, v) ∈ ν(M) : ‖v‖ < ε}.
Let θ : ν(M) → Rm be the smooth map θ(x, v) = x+ v. We shall show that there
is an ε > 0 such that the map θ : ν(M, ε) → Rm is a diffeomorphism onto the open
neighbourhood

{y ∈ Rm : dist (M,y) < ε}
of M in Rm.

First note that there is a canonical splitting

τ(ν(M))(x,0) = τ(M)x ⊕ ν(M)x.

Let us compute the differential dθ at (x, 0) ∈ ν(M). Since θ(x, v) = x + v is a
translation for fixed x and variable v, dθx : ν(M)x → τ(Rm)x is the standard
inclusion map. Also dθ : τ(M) → τ(Rm) is just the differential of the inclusion
map M ⊂ Rm. Therefore dθx : τ(M)x → τ(Rm)x is the inclusion of τ(M)x in
τ(Rm)x = Rm. Therefore

dθx : Rm = τ(Rm)x = τ(M)x ⊕ ν(M)x → Rm

is the identity map. Therefore dθ is an isomorphism at (x, 0) for every x ∈M , and
so θ is a diffeomorphism on some neighbourhood of (x, 0). Therefore (df)x,v is an
isomorphism for any x and for ‖v‖ small.

Since M is compact, there is a δ > 0 such that dθ is an isomorphism at all points
of ν(M, δ). Therefore θ(ν(M, δ)) → Rm is a local diffeomorphism. We shall show
that θ is one-one on ν(M, ε) for some 0 < ε ≤ δ.
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Suppose that θ is not injective on ν(M, ε) for any ε > 0. Then there exist
sequences (xi, vi) 6= (yi, wi) in ν(M) such that ‖vi‖ → 0, ‖wi‖ → 0, and θ(xi, vi) =
θ(yi, wi). Since M is compact and metrizable, there exist subsequences such that
xi → x and yi → y (by reindexing). Then

θ(xi, vi) → θ(x, 0) = x and θ(yi, wi) → θ(y, 0) = y,

so that x = y. But then, for large i, both (xi, vi) and (yi, wi) are close to (x, 0).
This is a contradiction, since θ is injective near (x, 0). Thus θ must be injective on
some ν(M, ε).

To complete the proof, we must show that θ(ν(M, ε)) = {y : dist(y,M) < ε}.
The part “⊂” is clear. So suppose that y is such that d(y,M) < ε and let x ∈ M
be such that d(y, x) is minimum (and hence < ε). Then the vector y − x normal
vector at the point x, and so y does lie in θ(ν(M, ε)). This completes the proof of
the theorem when M is compact.

For a general manifoldM the proof may be completed using the following lemma,
whose proof may be found in Godement, Théorie des Faisceaux, page 150.

Lemma. Let f : M → N be a smooth map, and A ⊂M , B ⊂ N be submanifolds
such that dfp : τ(M)p → τ(N)f(p) is an isomorphism for every p ∈ A, and f |A :
A→ B is a diffeomorphism. Then there is an open neighbourhood V of A inM such
that f(V ) is an open neighbourhood of B in N , and f |V is a diffeomorphim. �

In general, the normal bundle of a submanifold M in N is defined to be the
quotient bundle of τ(N)|M modulo τ(M)

ν(M) = (τ(N)|M)/τ(M).

In view of Lemma 1.17, the bundle ν(M) is equivalent to the orthogonal bundle
τ(M)⊥ of τ(M) in τ(N) with respect to a Riemannian metric on N . Then the
fibre ν(M)x is the normal space considered in Theorem 1.1. Note that the present
definition does not depend on the choice of the Riemannian metric

We have a short exact sequence of vector bundles over M

0 → τ(M) → τ(N)|M → ν(M) → 0,

and a splitting
τ(N)|M = τ(M)⊕ ν(M).

Theorem 2.2. If M is a submanifold of N , and ∂M = ∂N = ∅, then M has a
tubular neighbourhood in N .

Proof. We may assume that N is a submanifold of some Rm. Then N has a
tubular neighbourhood Z in Rm, and a smooth retraction r : Z → N . We give M
the Riemannian metric induced from N , and let ν(M) be the normal bundle of M
in N . Then

ν(M) ⊂ τ(N)|M ⊂ τ(Rm)|M = M × Rm,

and each fibre ν(M)x is contained in {x} × Rm.

For each x ∈M , let

Ux = {(x, v) ∈ ν(M)x : x+ v ∈ Z},
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and U = ∪x∈M Ux. Then U = φ−1(Z), where φ : ν(M) → Rm is the map φ(x, v) =
x+ v, v ∈ ν(M)x, and so U is open in ν(M). Clearly,- the map θ = r ◦φ : U → N
gives a tubular neighbouthood for M in N . �

3. Collar neighbourhoods

et M be a manifold with boundary. The boundary ∂M cannot have tubular
neighbourhood. However, it has a collar neighbourhood, which is a knid of ‘half-
tubular’ neighbourhood. The precise definition is as follows.

Definition 3.1. A collar neighbourhood of ∂M in M is an embedding

φ : ∂M × [0,∞) −→M

such that φ(x, 0) = x.

Theorem 3.2 (Existence of collar neighbourhood). There exists a collar
neighbourhood of ∂M in M .

At a boundary point, we have two kinds of tangent vectors to M , inward- and
outward-pointing tangent vectors. precisely, in terms of local coordinates, a tangent
vector to M has the form

∑
i λi∂/∂xi. A tangent vector is inward- (resp. outward-)

pointing if λ1 > 0 (resp. λ1 < 0). If λ1 = 0, then it is a tangent to the boundary
∂M . Note that such vectors form the image of the inclusion di : τ(∂M) → τ(M),
where i : ∂M ⊂M , and so they are tangent to ∂M .

In order to show the existence of collar neighbourhood in the sprit of Theorem
2.2, all we need is to identify ∂M × [0,−∞) with the set of inward-pointing normal
vectors to ∂M . Thye identification is possible, because there is only one such
normal direction at each point of ∂M , and so an inward-pointing normal vector is
determined by its length. Then the previous arguments of Theorem 2.2 (along with
some differential geometry) carry over to this present case.

This proof may seem rather involved. Let us therefore try an alternative ap-
proach to the proof using differential equations in a straightforward way without
having recourse to geodesics and the exponential map.

This proof will follow after the next two lemmas (Lemma 3.3 and Lemma 3.4).

Lemma 3.3. Let M be a manifold without boundary, and X0 be the constant unit
vector field on M ×R whose value (X0)(x, t) at any point (x, t) ∈M ×R is tangent
to the curve t 7→ (x, t) at that point. Then, for any smooth vector field X on
M , there is a positive smooth function ε : M −→ R, and a unique smooth map
f : W (ε) −→M , where W (ε) = {(x, t) ∈M × R | |t| < ε(x)}, such that

(1) f(x, 0) = x,
(2) df(x,t)((X0)(x, t)) = Xf(x, t).

The converse is trivially true: given f with conditions (1) and (2), the vector
field X may be defined by (2).

Proof. Let X be a vector field on M . Consider an atlas {(Uα, φα)} for M . On a
coordinate neighbourhood Uα with local coordinates φα = (x1, . . . , xn), the vector
field Xα = X|Uα has representation Xα = a1 · ∂/∂x1 + · · ·+ an · ∂/∂xn, where ai :
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U −→ R are smooth functions. The vector field X0 on M×R has n+1 components
(0, . . . , 0, 1) (with 1 in the (n+1)-th slot) in any coordinate neighbourhood ofM×R.
Then the condition (2) gives a system of differential equations

∂fi

∂t
(x, t) = ai(f1(x, t), . . . , fn(x, t)),

where fi : Uα × R −→ R are the components of f , with an initial condition corre-
sponding to (1) at t = 0.

Solving the system of equations, we get a unique solution

fα : Vα × (−εα, εα) −→ Uα.

where Vα = φ−1
α (B) for some small open n-ball B in Rn, and εα is some small

positive number.

We may suppose that Vα ⊆ Uα. Then carrying out the construction for every α,
we have fα = fβ on Vα ∩Vβ by the uniqueness. Also we may get a positive smooth
function ε : M −→ R as ε =

∑
α λαεα, by gluing the constant functions εa on Vα

by a partition of unity {λα} subordinate to the covering {Vα}. Therefore we may
define the required map f : W (ε) −→M by f |Vα = fα. �

The proof of the lemma will break down if M has boundary. In this case, if
x ∈ ∂Uα, then the solution fα may not lie in Uα, as its first component may not
be ≥ 0. However, if the vector field Xα = X|Uα is inward pointing at any point
of ∂Uα, that is, if its first component a1 is positive, then the solution f1(x, t) will
be positive for small values of t ≥ 0. To take care of this situation, we need to
construct a vector field X on M such that, for each x ∈ ∂M , the vector Xx is the
inward pointing.

So, suppose that M is a manifold with boundary, and take an atlas {(Uα, φα)}
for M . Let Yα be the vector field on Uα defined by Yα = dφ−1

α (e1), where e1 is
the unit vector along the first coordinate axis. Let {λa} be a partition of unity
subordinate to the covering {Uα}. Then X =

∑
α λαYα is the desired vector field,

and working with this X, we may get the following analogue of the above lemma
for manifolds with boundary.

Lemma 3.4. Let X be the vector field constructed above on a manifold with bound-
ary M . Then there is a positive smooth function ε : M −→ R and a smooth map
f : W+(ε) −→ M , where W+(ε) = {(x, t) ∈ M × R+ | t < ε(x)} satisfying the
conditions (1) and (2) of Lemma 3.3.

Proof of Theorem 3.2. Construct the vector field X and the map f of Lemma
3.4. Clearly, f maps ∂M×{0} diffeomorphically onto ∂M , and df is an isomorphism
at each point of ∂M × {0}, because X is inward pointing along ∂M . Therefore by
Lemma 3.3, f is an embedding of a neighbourhood of ∂M × {0} into M . This
neighbourhood contains a W+(ε) for some positive smooth function ε. There is a
diffeomorphism W+(ε) −→M × (0, 1) given by

(x, t) 7→
(
x,

t

ε(x)

)
,

and a diffeomorphism M × [0, 1) −→M × [0,∞) given by

(x, t) 7→
(
x,

t

1− t

)
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. This completes the proof of the collar neighbourhood theorem.

Remark 3.5. We may take a collar neighbourhood of ∂N as an embedding

∂N × [0, 1) −→ N

(or even ∂N × [0, 1] −→ N) which is Id on ∂N .


