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1. Smooth partition of unity

Recall that a covering U of a topological space X is called locally finite if each
point of X has an open neighbourhood which intersects only finitely many members
of U . Another covering V of X is called a refinement of U if each member of V
is contained in some member of U . A Hausdorff space X is paracompact if every
open covering of X admits an open locally finite refinement.

Theorem 1.1. Every manifold M is paracompact.

Proof. Since M is locally homeomorphic to either Rn or Rn
+, it is locally compact

(each of its points has a compact neighbourhood). Then each point x ∈ M has
an open neighbourhood whose closure is compact. For, if U is an arbitrary open
neighbourhood of x, andK a compact neighbourhood of x, then V = U∩IntK ⊂ K,
and so V is compact, being a closed subset of a compact set. It follows then, since
M is second countable, that M admits a countable basis {Vj} such that each V j is
compact.

Then, there is an increasing sequence K1 ⊂ K2 ⊂ · · · ⊂ Kj ⊂ · · · of compact
subsets whose union is M such that Kj ⊂ IntKj+1, for each j. Indeed, we may take
K1 = V 1, and, assuming inductively that Kj has been defined, if m is the smallest
integer > j such that Kj ⊂ V1 ∪ · · · ∪ Vm, then we may take

Kj+1 = V 1 ∪ · · · ∪ V m = V1 ∪ · · · ∪ Vm.

Let U = {Uα} be an open covering of M . Choose a locally finite refinement V
as follows. Let K−1 = K0 = ∅, and, for each j ≥ 0, consider open sets

(IntKj+2 −Kj−1) ∩ Uα, Uα ∈ U .
These open sets cover the compact set Kj+1−IntKj . Therefore, we can find a finite
subcover Vj = {V j

1 , . . . , V
j
α(j)} (α(j) an integer). The collection V = V1 ∪ V2 ∪ · · ·

covers M , since the sets Kj+1 − IntKj cover M . The covering V is a refinement
of U . It is locally finite, because if x ∈ Kj , then IntKj+1 is a neighbourhood of x
which intersects no member of Vk for k > j + 1. �

Remark 1.2. Actually we have constructed a locally finite refinement V which is
countable.

Lemma 1.3. Any open covering {Uα} of a manifold M has a countable locally
finite refinement by coordinate neighbourhoods, each of which has compact closure.

Proof. The proof follows the same line of arguments as that of the above theorem.
One has only to choose the covering of each compact set Kj+1 − IntKj suitably.
Each point x of the open set (IntKj+2−Kj−1)∩Uα has a coordinate neighbourhood
Vx and a homeomorphism φx such that Vx ⊂ (IntKj+2 −Kj−1) ∩ Uα, and φx(Vx)
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contains a closed n-ball with centre at φx(x), n = dimM . Let Bn
x be a smaller

concentric closed n-ball, and Wx = φ−1
x (IntBn

x ). With this choice, W x will be
compact. We may find a finite number of Wx which cover Kj+1 − IntKj , and then
proceed as before. �

A covering {Vi} is called a shrinking of a covering {Ui} if each V i ⊂ Ui.

Lemma 1.4 (Shrinking lemma). Let U = {Ui}i≥1 be a countable locally finite
open covering of M . Then there is another open covering {Vi} of M such that
V i ⊂ Ui for every i ≥ 1.

Proof. We may assume that M is connected. Now write Uk = ∪i≥kUi. and con-
struct the open sets Vi inductively in the following way.

The closed set A1 = U1 − U2 is contained in U1, and so M = A1 ∪ U 2. Since
M is normal, we may choose an open set V1 such that A1 ⊂ V1 ⊂ V 1 ⊂ U1. Then
M = V1 ∪ U 2. Next, suppose that the open sets V1, . . . , Vk−1 have been chosen so
that V i ⊂ Ui for i = 1, . . . , k − 1, and M = V1 ∪ · · · ∪ Vk−1 ∪ Uk. Then the closed
set Ak = Uk − (V1 ∪ · · · ∪ Vk−1 ∪ Uk+1) is contained in Uk, and we have

M = V1 ∪ · · · ∪ Vk−1 ∪Ak ∪ Uk+1.

Choose an open set Vk such that Ak ⊂ Vk ⊂ V k ⊂ Uk. Then we have

M = V1 ∪ · · · ∪ Vk ∪ Uk+1.

To see that the collection {Vi} is a covering of M , take any point x ∈M . Then,
since the covering U is locally finite, there is a largest m such that x /∈ Uk for k > m,
that is, x /∈ Um. Since M = V1∪· · ·∪Vm−1∪Um, it follows that x ∈ V1∪· · ·∪Vm−1.
This completes the proof. �

Theorem 1.5. Every manifold is metrizable.

Proof. Since every paracompact space is normal and a manifold is second countable,
the proof follows trivially from Urysohn’s metrization theorem, if the manifold is
connected. This theorem states that every second countable regular space can be
embedded topologically in infinite dimensional Hilbert coordinate space.

If a manifold M is not connected and has several components {Mα} with metric
ρα on Mα making it a metric space, then a metric ρ in M is obtained by

ρ(x, y) = min(ρα(x, y), 1) if x, y ∈Mα

= 1 if x ∈Mα, y ∈Mβ and α 6= β.

Clearly the metric ρ is compatible with the topology of M . �

Locally the topology of M is the same as the topology of Rn, and therefore it is
given by the standard metric in Rn. If (U, φ) is a coordinate chart about a point
p ∈M with coordinates (x1, . . . , xn) such that φ(U) is a convex set in Rn, then we
may write for x ∈ U

ρ(x, p) = [(x1 − x1(p))2 + · · ·+ (xn − xn(p))2]
1
2 ,

or equivalently,
ρ(x, p) = max{|xi − xi(p)|}.

We shall have occasions to use a bump function whose definition is as follows.
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Definition 1.6. A bump function is a smooth function B : R −→ R such that

B(x) = 0 if x ≤ 0, 0 < B(x) < 1 if 0 < x < 1, B(x) = 1 if x ≥ 1.

To construct a bump function B, first define

ψ(x) = exp
(

1
x(x− 1)

)
if 0 < x < 1

= 0 otherwise.

Then ψ is smooth, non-negative, and non-vanishing when 0 < x < 1. Now define
B by

B(x) =

∫ x

0
ψ(t)dt∫ 1

0
ψ(t)dt

.

Definition 1.7. The support of a function f : M −→ R, denoted by suppf , is
the closure of the set of points of M where f is non-zero.

Lemma 1.8. If K ⊂ U ⊂ M , where K is compact and U is open, then there is a
smooth function µ : M −→ [0,∞) such that µ(x) > 0 if x ∈ K, and supp µ ⊂ U .

Proof. Define a smooth function α : R −→ R by α(x) = B(1− |x|). Then α(x) > 0
if |x| < 1, and α(x) = 0 if |x| ≥ 1. Now construct for each p ∈ K ⊂ U a smooth
function µp : M −→ [0,∞) such that µp(p) > 0 and supp µp ⊂ U in the following
way. Choose local coordinates (x1, . . . , xn) about p with p corresponding to the
origin such that Br = {(x1, . . . , xn) | |xi| < r} ⊂ U , for a suitable r > 0. Define µp

by

µp(x) = α
(x1

r

)
· · ·α

(xn

r

)
if x ∈ Br

= 0 otherwise.

As p runs over K the open sets {x ∈ M | µp(x) > 0} cover K. By compactness,
a finite number of them still cover K. Then the sum of the corresponding finite
number of functions µp is the required function µ. �

Definition 1.9. Let M be a manifold with an open covering U = {Ui}i∈A. Then
a smooth partition of unity subordinate to U is a family of smooth functions
{λi : M −→ R} satisfying the following conditions.

(i) suppλi ⊂ Ui for all i ∈ A,
(ii) 0 ≤ λi(x) ≤ 1 for all x ∈M and i ∈ A,
(iii) each x ∈M has a neighbourhood on which all but finitely many functions

λi are identically zero,
(iv)

∑
i∈A λi(x) = 1 for all x ∈M (note that the sum is always finite by (iii)).

Lemma 1.10. Let U = {Ui}i∈A and V = {Vj}j∈B be two open coverings of M
such that U refines V. Then, if U has a subordinate smooth partition of unity, so
has V.

Proof. Let {λi}i∈A be a partition of unity subordinate to U . Let f : A −→ B be a
map of the index sets so that Ui ⊂ Vf(i). Define µj : M −→ R by

µj(x) =
∑

i∈f−1(j)

λi(x).
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It ia easily checked that the conditions (i) - (iv) hold for the family {µj}, when Ui

are replaced by Vj . �

Remark 1.11. Some people call {λi} a partition of unity subordinate to V, In this
case the condition (i) has to be replaced by the following condition:

“for every i ∈ A there is a j ∈ B such that supp λi ⊂ Vj”.

Theorem 1.12. Any manifold M with an open covering {Ui} admits a smooth
partition of unity subordinate to {Ui}.

Proof. We may assume that the given covering {Ui} is countable and locally finite
such that each of its members Ui is a coordinate neighbourhood with compact
closure (Lemma 1.3). We may find another open covering {Vi} of M such that
V i ⊂ Ui (Lemma 1.4). Now construct smooth functions µi : M −→ R as described
in Lemma 1.8 such that µi > 0 on V i and supp µi ⊂ Ui. Then the function

∑
i µi is

a well-defined positive smooth function, and the family of functions λi = µi/
∑

i µi

is the required smooth partition of unity. �

Lemma 1.13. If {λi : Ui −→ R} is a smooth partition of unity on M , and {fi :
Ui −→ R} is a family of smooth functions, then the function f : M −→ R defined
by f(x) =

∑
i λi(x)fi(x) is smooth.

Proof. Since the function λifi is smooth on Ui and vanishes on a neighbourhood of
M − Ui, it can be extended over M using the zero function on M − Ui. Therefore
the sum f =

∑
i λifi is smooth. �

Lemma 1.14. For a map f : U −→ Rm, where U is open in Rn
+, the following

conditions are equivalent.

(a) f is smooth, as defined in Definition 2.4 (Part 1) using local extendability
condition,

(b) there is an open set V in Rn and a smooth map F : V −→ Rm such that
V ∩ Rn

+ = U and F |U = f .

Proof. The part (b) ⇒ (a) is trivial. Next, assume (a). Then, for each x ∈ U , there
is an open neighbourhood Vx of x in Rn and a smooth map Fx : Vx −→ Rm such
that f = Fx on U ∩ Vx. Let W = ∪x∈UVx. Then W is open in Rn, and U ⊂W .

The manifold W admits a partition of unity {λx} subordinate to the covering
{Vx}. Then G =

∑
x∈U λxFx is a smooth map from W to Rm. On the other hand,

there exists an open set V ′ of Rn such that U = V ′∩Rn
+. Then taking V = W ∩V ′

and F = G|V , we get the condition (b). �

Lemma 1.15. If f : M −→ R is a positive continuous function, then there is a
smooth function g : M −→ R such that

0 < g(x) < f(x) for all x ∈M.

When M is compact, g may be taken to be a constant function.
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Proof. As in the proof of Theorem 1.12, consider a locally finite covering {Ui}
of M , and another open covering {Vi} such that V i is compact and V i ⊂ Ui.
Take a smooth partition of unity {λi} such that λi > 0 on V i and supp λi ⊂ Ui.
Choose δi > 0 smaller than the infimum of f on the compact set V i, and define
g : M −→ R by g(x) =

∑
i δiλi(x). Then g is smooth. Since the sum

∑
i λi(x) is

finite and equal to 1, and the maximum of the corresponding δi is less than f(x),
we have g(x) < f(x). Also g(x) > 0, since all δi are so. �

Lemma 1.16. If K is a closed subset of a manifold M , and f : K −→ R is a
smooth function, then f extends to a smooth function F : M −→ R.

Proof. In view of Definition 2.4 (Part 1), cover K by open sets Ui such that there
exist smooth functions gi : Ui −→ R with gi = f on K∩Ui. The sets Ui and M−K
form an open covering of M . Let {λi} be a smooth partition of unity subordinate
to this covering. Then the smooth extension F of f is given by

F (x) =
{ ∑

i λi(x)gi(x), if x /∈M −K
0, otherwise

�

Lemma 1.17 (Smooth Urysohn’s lemma). If K ⊂ U ⊂M , K closed, U open,
then there is a smooth function f : M −→ R such that 0 ≤ f ≤ 1, f |K = 1 and
supp f ⊂ U .

Proof. The open sets U1 = U and U2 = M − K form a covering of M . Let
λ1 : U1 −→ R and λ2 : U2 −→ R be a smooth partition of unity subordinate to this
covering. Then λ1 extended over M by the zero function outside U1 is a solution f
of the problem. �

Theorem 1.18 (Whitney’s Weak Embedding Theorem). . If M is a compact
n-manifold, then there is an embedding f : M −→ Rm, where m = r(n + 1) for
some integer r > 0.

Proof. Find a finite covering of M by coordinate charts (Ui, φi), i = 1, . . . , r, and
open sets Vi also covering M such that Vi ⊂ Ui for all i. By Lemma 1.17, there
are C∞ functions λi : M −→ R such that λi|Vi = 1 and supp λi ⊂ Ui. Let
ψi : M −→ Rn be C∞ maps given by

ψi(p) = λi(p)φi(p) if p ∈ Ui

= 0 otherwise.

Define f : M −→ Rr(n+1) by

f(p) = (ψ1(p), . . . , ψr(p), λ1(p), . . . , λr(p)), p ∈M.

Then the Jacobian matrix J(f) has rank n at every point p ∈ M . Because, J(φi)
has rank n, and if p ∈M , then

(p ∈ Vi for some i) ⇒ (λi(p) = 1) ⇒ (φi = ψi) ⇒ (J(φi) = J(ψi) at p),

so J(ψi), and hence J(f), has rank n at p.

Also f is injective. Because, if f(p) = f(q) then ψi(p) = ψi(q) and λi(p) = λi(q)
for all i, and if p ∈ Vj then λj(p) = λj(q) = 1, and so φj(p) = φj(q), which implies
p = q, φj being injective.
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Thus f is an injective immersion. Since M is compact and f(M) is Hausdorff,
f is a homeomorphism onto its image, and hence it is an embedding. �

We remark that the theorem is unsatisfactory in that the value of m, which
is the dimension of the Euclidean space, depends on the number r of coordinate
neighbourhoods required to cover M , and therefore m may be much larger than we
would like it. A stronger version of this theorem says that any n-manifold can be
embedded in R2n+1 as a subspace.

Proposition 1.19. Any metric on a manifold M compatible with the topology of
M can be turned into a complete metric giving the same topology of M .

Proof. The proof will be clear from the next two lemmas. �

Recall that a continuous map between topological spaces is proper if the inverse
image of any compact set is compact.

Lemma 1.20. If X is a metric space with metric ρ and f : X −→ R is a continuous
proper map, then the map ρ′ : X ×X −→ R given by

ρ′(x, y) = ρ(x, y) + |f(x)− f(y)|, x, y ∈ X

is a complete metric on X which is compatible with the original topology of X.

Proof. Clearly ρ′ is a metric. Let T and T ′ be the topologies on X induced by the
metrics ρ and ρ′ respectively. Then, since ρ′ is continuous with respect to T , we
have T ′ ⊂ T . Conversely, take an open set U in T and a point x in U . Then we
can find an ε > 0 so that

B′(x, ε) = {y ∈ X | ρ′(x, y) < ε} ⊂ B(x, ε) = {y ∈ X | ρ(x, y) < ε} ⊂ U.

This means U is in T ′, and T = T ′. Next, to see that ρ′ is complete, take a Cauchy
sequence {xn} in X with respect to the metric ρ′. Then there is a number m > 0
such that ρ′(x1, xn) < m for all n ≥ 1. Therefore |f(x1)−f(xn)| < m for all n ≥ 1,
and so

xn ∈ f−1([f(x1)−m, f(x1) +m]).

Since f is proper, the above set is compact, and the sequence {xn} converges to a
limit in X. �

Lemma 1.21. On a manifold M there always exists a proper smooth function
f : M −→ R.

Proof. Find an open covering ofM by open sets with compact closure, and a smooth
partition of unity {λi} subordinate to a locally finite refinement of this covering.
Since the refinement is countable, we may assume that the functions λi are indexed
by integers i > 0. Then the function f : M −→ [1,∞) given by f(x) =

∑
i iλi(x)

is a well-defined, because all but a finite number of λi(x) vanish. Now f(x) ≤ k
implies at least one of the k functions λ1, . . . , λk must not vanish at x (if all of them
were zero, then f(x) would be ≥ k+ 1). Therefore f−1([−k, k]) is contained in the
set ∪k

i=1{x ∈ M : λi(x) 6= 0} which has compact closure. This implies that f is
proper, because every compact subset of R is contained in some interval [−k, k]. �



7

We now describe some more facts about proper maps.

Recall that if X is a locally compact Hausdorff space, then its one-point com-
pactification is a space X+ = X ∪ {∞} (∞ represents a point not in X) such that
the topology of X+ comprises all open sets in X ⊂ X+ and all sets of the form
X+ −K, where K is a compact subset of X. This is the unique topology in X+

which makes it a compact Hausdorff space with X as a subspace. If X is already
compact, then ∞ is an isolated point in X+.

Lemma 1.22. Let f : X −→ Y be a continuous map between locally compact Haus-
dorff spaces, and f+ : X+ −→ Y + be its extension obtained by setting f+(∞) = ∞.
Then f is proper if and only if f+ is continuous.

Proof. Suppose that a continuous map f is proper, and U is an open set in Y +.
Then, if U ⊂ Y , (f+)−1(U) = f−1(U) is open, and if U = Y + −K with K ⊂ Y
compact, then (f+)−1(U) = X+ − f−1(K) is also open, since f−1(K) is compact,
and hence closed. Therefore f+ is continuous.

Conversely, suppose f+ is continuous, and K ⊂ Y is a compact set. Then K
is compact, and hence closed in Y +. Then (f+)−1(K) is closed in X+, and hence
compact and contained in X. Thus f is proper. �

Corollary 1.23. Let X be locally compact Hausdorff, and Y Hausdorff. Then a
continuous injective proper map f : X −→ Y is a homeomorphism onto its image.

Proof. Since f is a continuous proper map from X onto Z = f(X), it extends to a
continuous map of the one-point compactifications f+ : X+ −→ Z+. Since f+ is
a bijection from a compact space onto a Hausdorff space, it is a homeomorphism.
Therefore f is a homeomorphism onto its image. �

Corollary 1.24. A proper injective immersion from a manifold M into a manifold
N is an embedding.

Proof. An injective immersion which is a homeomorphism onto its image is an
embedding. �

Corollary 1.25. Any continuous proper map f : X −→ Y between locally compact
Hausdorff spaces is a closed map.

Proof. Let C be any closed set in X, and D = f(C). Then C+ = C∪{∞} is closed,
and hence compact, in X+. Since f+ is continuous, f+(C+) is compact, and hence
closed, in Y +. Therefore f(C) = f+(C+) ∩ Y is closed in Y . �

2. Riemannian Metric

Definition 2.1. A Riemannian metric g on a manifold M is a smooth positive
definite symmetric 2-tensor field on M . This assigns to each point p ∈M a positive
definite symmetric bilinear form or inner product on the tangent space τ(M)p

gp : τ(M)p × τ(M)p −→ R.
Recall that positive definiteness means gp(v, v) > 0 for all non-zero v ∈ τ(M)p, and
gp(u, u) = 0. A Riemannian manifold is a manifold with a Riemannian metric
on it.
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The length of a tangent vector v ∈ τ(M)p is then defined in the usual way as

‖v‖ = gp(v, v)1/2.

In terms of local coordinate system (x1, . . . , xn) in M with basic vector fields δi =
∂/∂xi, the local representation of g is given by

g =
n∑

i,j=1

gijdxidxj ,

where gij = g(δi, δj) are real-valued functions on the coordinate neighbourhood U
of the system. If v, w ∈ τ(M)p, and v =

∑
i viδi, w =

∑
j wjδj , then gp(v, w) =∑

i,j gij(p)viwj . As in the case of 2-forms, g is smooth if and only if for every pair of
vector fields X,Y on U , the function g(X,Y ) is smooth on U . Also g is R-bilinear,
as well as C∞(M)-bilinear:

g(fX, Y ) = fg(X,Y ) = g(X, fY ), for f ∈ C∞(M).

Definition 2.1 is equivalent to the following. A Riemannian metric g on M is a
positive definite symmetric C∞(M)-bilinear map

g : 3∈(M)× 3∈(M) −→ C∞(M),

where 3∈(M) denotes the algebra (over the ring C∞(M)) of all smooth vector fields
on M .

Example 2.2. The Euclidean space Rn with coordinates

(u1, . . . , un)

has a natural Riemannian metric

g =
n∑

i,j=1

δijduiduj =
n∑

i=1

(dui)2.

Theorem 2.3. Any manifold M admits a Riemannian metric.

Proof. Choose an open covering of M by coordinate neighbourhoods {Ui}. Let
xi1, . . . , xin be local coordinates in Ui. Using these coordinates define a metric gi

on Ui by
gi = (dxi1)2 + · · ·+ (dxin)2.

Let {λi} be a smooth partition of unity subordinate to the covering {Ui}. Then

g =
∑

i

λigi

is a well defined Riemannian metric on M . �

The necessity of the condition of paracompactness on M in the above theorem
may be seen from the following negative result. The Alexandroff line or the long
line is a smooth connected manifold of dimension one, but not a manifold in our
sense ( it is not paracompact). It is known that this manifold cannot be given
a Riemannian structure (see H. Kneser, Analytische Struktur und Abzählbarkeit,
Ann. Acad. Sci. Fenn, Ser. A. I. 251/5 (1958)).

The importance of Riemannian metric is that it turns the tangent space at each
point into an inner product space, which enables us to define angle between curves
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(that is, angle between tangent vectors of the curves at the point of intersection),
and length of curves.

We shall use the terms ‘path’, ‘curve’, and ‘parametrized curve’ synonymously.
Note that a curve σ : [a, b] −→ M on a closed interval [a, b] is smooth if it can be
extended to a smooth map on an open interval containing [a, b]. If σ : [a, b] −→M
is a smooth curve in a Riemannian manifold M , then its length `(σ) is defined by

`(σ) =
∫ b

a

‖σ̇(t)‖dt =
∫ b

a

√
g(σ̇(t), σ̇(t))dt, σ̇ =

dσ

dt
.

A reparametrization of σ is a curve σ◦φ : [c, d] −→M , where φ : [c, d] −→ [a, b] is
a diffeomorphism with positive derivative everywhere (i.e. an orientation preserving
diffeomorphism1). Then σ(t), t ∈ [a, b], and σ(φ(u)), u ∈ [c, d] trace the same curve
in M in the same direction. Also `(σ) = `(σ ◦φ), by the change of variable formula
for integrals: if t = φ(u), u ∈ [c, d] new parameter, then dσ/du = (dσ/dt) · (dt/du),
and ∫ d

c

[
g
(dσ
du
,
dσ

du

)] 1
2

du =
∫ b

a

[
g
(dσ
dt
,
dσ

dt

)
·
( dt
du

)2
] 1

2 du

dt
dt

=
∫ b

a

[
g
(dσ
dt
,
dσ

dt

)] 1
2

dt.

Thus the length of a curve is an invariant under reparametrization. Any curve σ
can be reparamtrized with its arc length s as parameter, where

s = φ(t) =
∫ t

a

‖σ̇(t)‖dt

is a strictly increasing function [a, b] −→ [0, `(σ)]. The reparametrization σ ◦ φ−1 :
[0, `(σ)] −→M has tangent vectors of unit length at all points, as may be seen by
the chain rule, and therefore `(σ ◦ φ−1 | [0, s]) = s for all s ∈ [0, `(σ)].

A continuous map σ : [a, b] −→M is called a piecewise smooth curve if there
is a partition a = t0 < t1 < · · · < tk = b of [a, b] such that σ | [ti−1, ti] is smooth
for i = 1, . . . , k (the left- and right-hand derivatives of σ at t1, . . . , tn−1 may be
different). Then the length `(σ) is given by `(σ) =

∑
i `(σ | [ti−1, ti]), that is, by∫ b

a
‖σ̇(t)‖dt as in the smooth case.

Exercise 2.4. For a piecewise smooth curve σ : [a, b] −→ M , define a continuous
non-decreasing function φ : [a, b] −→ R by

φ(u) =
∫ u

a

‖σ̇(t)‖dt.

(a) Show that φ is smooth at every point u where σ̇(u) exists and is non-zero.

(b) Show that if ` denotes the length of σ, then the map σ ◦φ−1 : [0, `] −→M is
well-defined and continuous, even if φ−1 may not be a function. Moreover, σ ◦ φ−1

is smooth at a point φ(u) such that σ̇(u) 6= 0.

The next lemma concerns connectedness of manifolds. First note that for a
manifold pathwise connectedness and connectedness are the same. A pathwise
connected space is necessarily connected, because any two points lie in a connected

1The concept of orientation is discussed in §2, Part 3.
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subset of the space (continuous image of an interval being connected). Conversely,
in a locally Euclidean space, connectedness implies pathwise connectedness, by an
argument that we shall describe in the next lemma.

Two points p and q in M are called piecewise smoothly connected if there is a
piecewise smooth curve in M whose image contains p and q.

Lemma 2.5. For a manifold M ‘joining by continuous curve’ is equivalent to
‘joining by piecewise smooth curve’.

Proof. Clearly joining by piecewise smooth curve is an equivalence relation. An
equivalence class is an open set in M , because if (U, φ) is a coordinate chart about
a point p ∈ M with φ(U) = V a convex set in an Euclidean space, then any point
of U can be joined to p by a curve corresponding to a straight line in V . Again, an
equivalence class is a closed set in M , because it is the complement of the union of
other equivalence classes. It follows that a subset of M is open and closed if and
only if it is a union of equivalence classes. This completes the proof. �

Remark 2.6. The lemma also holds if ‘joining by piecewise smooth curve’ is re-
placed by ‘joining by smooth curve’. Because ‘joining by smooth curve’ is also an
equivalence relation. This may be seen in the following way.

The relation is obviously reflexive and symmetric. To see transitivity, suppose
that σ and τ are two smooth curves with images containing the pairs of points
(x, y) and (y, z) respectively. Suppose without loss of generality that

σ(−1) = x, σ(0) = y = τ(0), τ(1) = z.

Let (U, φ) be a coordinate chart about y such that φ(U) = V is convex. Since σ
and τ are continuous, there exists an ε with 0 < ε < 1 such that |t| < ε implies
σ(t), τ(t) ∈ U . Let λ : R −→ R be a smooth function which is 0 near t = −ε and
1 near t = ε. For example, we may take

λ(t) = B
(
t

ε
+

1
2

)
,

where B is a bump function (Definition 1.6). Define a curve ω by

ω(t) = σ(t) if t < −ε
= (1− λ(t))σ(t) + λ(t)τ(t) if − ε < t < ε

= τ(t) if t > ε

where the second line is a convex combination in V . Then ω is smooth and its
image contains x and y.

The equivalence classes are components of M , and M is connected if it has only
one component.

If M is connected, a Riemannian metric g on M induces a metric

d : M ×M −→ R
so that (M,d) becomes a metric space. The metric d is defined in the following way.
Since M is connected, every pair of points p1, p2 ∈M can be joined by a piecewise
smooth curve σ. Then d(p1, p2) is defined by

d(p1, p2) = inf `(σ),
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where the infimum is taken over all piecewise smooth curves σ from p1 to p2. Clearly
d is a pseudo-metric, that is, it is symmetric, and satisfies the triangle inequality
and the condition that d(p1, p2) = 0 whenever p1 = p2. The triangle inequality
follows, because if σ1 and σ2 are any two piecewise smooth curves from p1 to p2

and p2 to p3 respectively, then d(p1, p3) ≤ `(σ1) + `(σ2).

Theorem 2.7. Let g be a Riemannian metric on a connected manifold M , and d
be the induced pseudo-metric on M . Then d is a metric.

We first prove an easy lemma.

Lemma 2.8. Let σ be a piecewise smooth curve in an Euclidean space Rn from
the origin to a point on the sphere of radius r centred at the origin. Then `(σ) ≥ r,
where `(σ) is the length of σ with respect to the standard metric on Rn. The equality
holds if σ is a straight line segment.

Proof. We have `(σ) =
∫ 1

0
‖σ̇(t)‖dt ≥ ‖

∫ 1

0
σ̇(t)dt‖ = ‖σ(1)− σ(0)‖ = r. �

Proof of the theorem. We have only to show that d(p1, p2) = 0 implies that p1 = p2.
Suppose that p1 6= p2. Let (x1, . . . , xn) be a coordinate system in a coordinate
neighbourhood U about p1. Let B be an open ball with respect to these coordinates
with centre at p1 such that B ⊂ U (B is obtained in the following way: if the
coordinate chart is (U, φ) with φ(p1) = 0, the origin in Rn, and B0 is an open ball
in Rn with centre at 0 such that B0 ⊂ φ(U), then take B = φ−1(B0)). Suppose
that B is such that p2 /∈ B. Define a function f : τ(U) = U × Rn −→ R by

f(p, v1, . . . , vn) =
[∑

i,j

gij(p)vivj

] 1
2

=
∥∥∥∑

i

vi
∂

∂xi
(p)
∥∥∥,

where ‖ ‖ is the norm defined by the Riemanian metric g on U . Then f |U × Sn−1

is positive and continuous, and therefore we can find a k > 0 such that
1
k
≤ f |B × Sn−1 ≤ k.

Let ‖ ‖′ be the Euclidean norm in U × Rn. Then since∥∥∥∑
i

vi
∂

∂xi
(p)
∥∥∥′ = [∑

i

v2
i

] 1
2

is 1 on B × Sn−1, we have

(2.1)
1
k

∥∥∥∑
i

vi
∂

∂xi
(p)
∥∥∥′ ≤ ∥∥∥∑

i

vi
∂

∂xi
(p)
∥∥∥ ≤ k

∥∥∥∑
i

vi
∂

∂xi
(p)
∥∥∥′

on B×Sn−1, and hence on B×Rn since we may replace vi by λvi, λ ∈ R, in these
inequalities (the expressions in (1) being homogeneous in the vi’s).

Now, let σ be a piecewise smooth curve from p1 to p2, and σ1 be the portion of
σ within B from p1 to the first point of intersection of σ and the boundary of B.
Let r be the radius of B.

We have then

d(p1, p2) = inf ‖σ‖ ≥ inf ‖σ1‖ ≥
1
k

inf ‖σ1‖′ ≥
1
k
r > 0,
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by the first inequality of (1) and the above lemma. Thus p1 6= p2 ⇒ d(p1, p2) 6= 0.
This shows that d is a metric on M . �

Theorem 2.9. The topology on a connected Riemannian manifold M defined by
the metric d is equivalent to the topology of M as a manifold. Therefore d is a
continuous function on M ×M .

Proof. The manifold topology has a basis consisting of coordinate neighbourhoods.
Let p be an arbitrary point of M , and (U, φ) a coordinate chart at p. Then any open
neighbourhood of p in U has two topologies, namely, the metric topology induced
by the metric d, and the manifold topology induced by the Euclidean metric d′ via
the homeomorphism φ. It is enough to show that these topologies are the same, or
explicitly, to show that there is an open neighbourhood B of p with B ⊂ U and a
number k > 0 such that

(2.2)
1
k
d′ ≤ d ≤ k d′, on B ×B.

This will complete the proof of the theorem.

Let B be an open ball with respect to the coordinates in U with centre at p such
that B ⊂ U . Then, as shown in (1) of thr previous theorem, there is a number
k > 0 such that

1
k
‖v‖′ ≤ ‖v‖ ≤ k‖v‖′

for any vector v ∈ τ(M)q with q ∈ B, where ‖v‖′ and ‖v‖ are the norms with
respect to the metrics d′ and d respectively. This means that for any piecewise
smooth curve σ lying entirely in B, we have

1
k
‖σ‖′ ≤ ‖σ‖ ≤ k‖σ‖′.

Therefore we need only to be concerned about curves that do not lie entirely in
B. We shall show by reducing the size of B that for any piecewise smooth curve τ
having end points in B but goes outside of B, there is a piecewise smooth curve σ
with the same end points lying entirely in B such that ‖τ‖ ≥ ‖σ‖. This will enable
us to compute d on B × B by restricting ourselves only to curves lying entirely in
B. This will establish (2), and complete the proof of the theorem.

For this purpose, suppose that r is the radius of the ball B, and r1 is a number
such thst r1 ≤ r/(2k2 + 1). Let B1 be a concentric open ball of radius r1 such
that B1 ⊂ B. Let p1 and p2 be points in B1, and τ be a piecewise smooth curve
in U from p1 to p2. Let τ1 be the portion of τ in B from p1 to the first point of
intersection of τ with the boundary of B, and σ be the straight line segment from
p1 to p2 in B1.

We have then

‖τ‖ ≥ ‖τ1‖ ≥
1
k
‖τ1‖′ ≥

1
k

(r − r1) ≥ 2kr1 ≥ k‖σ‖′ ≥ ‖σ‖,

and we get what we wanted to show. �
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3. Smooth approximations to continuous maps

Definition 3.1. Let M be a manifold, and N be a manifold with a metric ρ. Let
δ : M −→ R be a positive continuous function, and f , g be smooth maps from M
to N . Then g is called a δ-approximation to f if

ρ(f(x), g(x)) < δ(x),

for all x ∈M .

The (fine) C0-topology on the set C∞(M,N) of smooth maps from M to N is
a topology where the neighbourhood basis of f ∈ C∞(M,N) comprises all sets of
the form

B0(f, δ) = {g ∈ C∞(M,N) | ρ(f(x), g(x)) < δ(x)}.
Thus g is a δ-approximation to f , if g ∈ B0(f, δ).

The C0 topology can be extended to the superset C0(M,N) of all continuous
maps from M to N . It can be shown that this topology on C0(M,N) is larger than
the compact open topology on C0(M,N), and that the C0 topology on C∞(M,N)
does not depend on the choice of the metric on N (see AM,Topics in Differential
Topology, §8.2, p. 262).

Lemma 3.2. Let U be an open subset in Rn (or Rn
+), and f : U −→ R be a

continuous function such that f is smooth on an open set V ⊂ U . Let U ′ and
V ′ be two other open sets in U such that U

′ ⊂ V ′, V
′ ⊂ U , and V

′
is compact.

Let δ : U −→ R be a positive continuous function. Then there is a continuous
function g : U −→ R such that g is smooth on V ∪ U ′, g = f on U − V ′, and
|g(x)− f(x)| < δ(x) for all x ∈ U .

The last condition means that g is a δ-approximation to f .

Proof. Let δ0 be the positive minimum of the function δ on the compact set V
′
.

Then, by Weierstrass approximation theorem (see Dieudonné, Foundations of Mod-
ern Analysis, Academic Press, p. 139), there is a polynomial p(x) such that

|p(x)− f(x)| < δ0 for x ∈ V ′.

Let h : U −→ R be a smooth function such that 0 ≤ h ≤ 1, h = 1 on U
′
, and h = 0

on U − V ′, as given by Lemma 1.17. Define g : U −→ R by

g(x) = h(x)p(x) + (1− h(x))f(x), x ∈ U.

Then g = f on U −V ′, and g = p on U
′
. The last condition shows that g is smooth

on U ′. Also g is smooth on V , since f is smooth on it. Finally, on V
′
we have

|g(x)− f(x)| = |h(x)| |p(x)− f(x)| < δ0.

This completes the proof. �

Theorem 3.3 (Smoothing Theorem). Let M and N be manifolds. Let K be a
smooth submanifold and a closed subset of M , and f : M −→ N be a continuous
map which is smooth on K. Then, there exist a positive continuous function δ :
M −→ R, and a smooth map g : M −→ N which agrees with f on K such that g
is a δ-approximation to f .

Remark 3.4. The possibility that K = ∅ is not ruled out.
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Proof. For each x ∈ M , let Ax be a coordinate neighbourhood of x in M , and Bx

be a coordinate neighbourhood of f(x) in N such that f(Ax) ⊂ Bx. Let Cx ⊂ Ax

be the compact closure of a neighbourhood of x. We shall show that it is possible
to choose a countable collection of such C such that their interiors cover M , and
such that any C intersects only a finite number of the other C’s of the collection.

For this purpose, we construct, as in the proof of Theorem 1.1, a sequence of
compact sets {Kj} covering M such that Kj ⊂ IntKj+1. Then the compact sets
Lj = Kj − IntKj−1 also cover M , and Lj ∩ Lm = ∅ if m 6= j − 1, j, or j + 1.
For each x ∈ Lj , we choose coordinate neighbourhoods Ax, Bx, and a compact
neighbourhood Cx ⊂ Ax as above. By shrinking Cx, if necessary, we may suppose
that it does not intersect Lm for m 6= j − 1, j, or j + 1. Choose a finite number of
such C’s whose interiors cover Lj , and doing this for each j construct a sequence of
sets {Cn} such that the IntCn cover M and any member of the sequence intersects
only a finite number of other members. Let {An} and {Bn} be the corresponding
sequences of Ax’s and Bx’s respectively.

Define a sequence of closed sets Sk inductively as follows. Take S0 as the given
closed set K, and then take Sk = Sk−1 ∪ Ck, for k ≥ 1. Then M is the union
of the interiors of the sets Sk. We shall construct inductively a sequence of maps
fk : M −→ N , k ≥ 0, such that

(1) fk(x) = fr(x) for x ∈ Sr, if r < k,

(2) fk is smooth on Sk,

(3) ρ(fk(x), f(x)) < δ(x), x ∈M ,

(4) fk maps Cr into Br for all k and r.

(Here ρ is a metric on N , and δ is a given positive continuous function on M which
we shall adjust for completing the inductive step.)

Define f0 = f , and suppose fr has been defined for r ≤ k satisfying these
conditions. Let us write F = fk. Then, since F is smooth on Sk, it is smooth on
an open neighbourhood V of Sk. Let D = Ck+1 − V ∩ Ck+1. Then by (4), fk = F
maps D into Bk+1. Choose an open set W in Ck+1 such that D ⊂ W , and F (W )
is contained in Bk+1. Since Sk ⊂ V , D ∩ Sk = ∅. Therefore we can find open sets
U ′, V ′, and U with V

′
compact such that

D ⊂ U ′, U
′ ⊂ V ′, V

′ ⊂ U, U ⊂W, U ∩ Sk = ∅,

and U intersects only a finite number of the sets Cr. Since Bk+1 is a coordinate
neighbourhood in N , the map F |U : U −→ Bk+1 is given by its components
F (i) : U −→ R, i = 1, 2, . . . ,dimN . Then applying Lemma 3.2 to each component
F (i), we get a map F ′ : U −→ Bk+1 such that |F ′(i)(x) − F (i)(x)| < δ(x), x ∈ U ,
for each i, F ′ is smooth on V ∪U ′, and F ′ = F on U − V ′. Define fk+1 : M −→ N
by

fk+1(x) = F (x) = fk(x) if x /∈ U
= F ′(x) if x ∈ U.

Then fk+1 satisfies (1), because if x ∈ Sr ⊂ Sk, r ≤ k, then x /∈ U (as U ∩Sk = ∅),
and so fk+1(x) = fk(x) = fr(x). Condition (2) holds, because fk+1 = fk is smooth
on Sk, and f ′ is smooth on V ∪U ′, which contains (Ck+1∩V )∪D = Ck+1. Condition
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(3) holds for fk, and it will hold for fk+1 also, because

ρ(F ′(x), F (x)) = max{|F ′(i)(x)− F (i)(x)|} < δ(x), x ∈ U

Condition (4) may be obtained by adjusting the size of δ; note that we need only
to impose a finite number of restrictions on δ, since fk+1 differs from fk only on
V ′, and V ′ intersects only a finite number of the sets Cr.

Having constructed the sequence {fk}, define g : M −→ N by g(x) = fk(x) for
x ∈ Sk. This gives g uniquely by (1), and g is smooth, since fk is smooth on IntSk

and these sets cover M . Finally, g(x) = f0(x) = f(x) for x ∈ K ⊂ S0. �

4. Sard’s Theorem

Recall that the Lebesgue measure in Rn is given by a set function

µ : M −→ [0,∞]

satisfying certain axioms, where M is a family of certain subsets of Rn that are
called Lebesgue measurable sets. All open, closed, and compact subsets of Rn are
Lebesgue measurable, so are all Gδ and Fσ subsets. We shall use the following
properties of the Lebesgue measure: if S and T are Lebesgue measurable sets, then
µ(S ∪ T ) ≤ µ(S) + µ(T ), and if S ⊂ T, then µ(S) ≤ µ(T ).

An n-dimensional rectangle R in Rn is the Cartesian product of n intervals
I1×· · ·× In; it is an n dimensional cube if all the intervals are of equal length. The
Lebesgue measure of R is its volume vol(R) which is the product of the lengths of
the n intervals. For an open set U in Rn, vol(U) = inf(

∑
i vol(Qi)), where {Qi} is

any sequence of n- dimensional cubes covering U .

A subset K of Rn has measure zero in Rn if for any ε > 0, K can be covered by
a countable collection of n-dimensional cubes such that the sum of their volumes
is less than ε. This definition may also be given in terms of rectangles, or even n-
dimensional balls. A countable union of sets of measure zero has measure zero. For,
if K = K1 ∪K2 ∪ · · · , and Ki ⊂ Ci where Ci is a countable union of cubes covering
Ki and vol(Ci) < ε/2i , then K ⊂ C = ∪Ci and vol(C) ≤

∑
i vol(Ci) <

∑
ε/2i = ε.

The following lemma shows that the condition of being a set of measure zero is
invariant under smooth map.

Lemma 4.1. If a subset A of Rn has measure zero in Rn, and f : A −→ Rm is a
smooth map, then f(A) has measure zero in Rm.

Proof. For each p ∈ A, f has a smooth extension on a neighbourhood of p in Rn,
which we still denote by f . By shrinking this neighbourhood, if necessary, we may
suppose that f is smooth on a closed n-ball B centered at p. If u1, . . . , un are the
coordinate functions in Rn, then the partial derivatives ∂fi/∂uj are bounded on
the compact set B. Then by a theorem of calculus applied to each component fi

of f , we can find a constant c such that

‖f(x)− f(y)‖ ≤ c‖x− y‖

for all x, y ∈ B (see Lemma 5.3 in Part 1). This is called the Lipschitz estimate
for the smooth map f .
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Now given an ε > 0, take a countable covering {Uj} of A ∩ B by open n-balls
such that ∑

j

vol(Uj) < ε.

Then, by the Lipschitz estimate, f(B∩Uj) is contained in an n-ball Vj whose radius
is not greater than c times the radius of Uj . It follows that f(B ∩ Uj) is contained
in some of the balls of the collection {Vj} whose total volume is not greater than∑

j vol(Vj), which is less than cnε. Since this can be made as small as we like,
f(A ∩B) has measure zero. Since f(A) is a union of countably many such sets, it
has also measure zero. �

Remark 4.2. The lemma may be false if f is only assumed to be continuous. For
example, the subset A = [0, 1] has measure zero in R2, but there exists a continuous
map f : A −→ R2 whose image fills up the entire square [0, 1]× [0, 1], which is not
a set of measure zero in R2.

This is the Hahn-Mazurkiewicz theorem which says that a topological space is
a Peano space (i.e. a space which is compact, connected, locally connected,and
metric) if and only if it is the image of the unit interval under a continuous map
into a Hausdorff space (see Hocking and Young, Topology, p. 129).

Theorem 4.3 (Fubini’s Theorem for Measure zero). If K is a compact set in
Rn such that each subset K ∩ (t×Rn−1) has measure zero in the hyperplane Rn−1,
then K has measure zero in Rn.

Proof. We may assume that K is contained in the cube In, where I is the unit
interval [0, 1]. Define a function f : I −→ R by

f(t) = µ(K ∩ ([0, t]× In−1)), t ∈ I,
where µ is the Lebesgue measure on Rn. It is required to show that f(1) = 0. By
hypothesis, given ε > 0, there is an open set U in In−1 such that

K ∩ (t× In−1) ⊂ t× U with vol(U) < ε.

By compactness of K, there is a h0 > 0 such that

K ∩ ([t− h0, t+ h0]× In−1) ⊂ [t− h0, t+ h0]× U.

Then, for any h, 0 ≤ h < h0,

K ∩ ([0, t+ h]× In−1) ⊂ (K ∩ ([0, t]× In−1)) ∪ ([t, t+ h]× U)

can be covered by an open set of volume < f(t) + εh. Therefore

f(t+ h) ≤ f(t) + εh for 0 ≤ h < h0.

Similarly, we have

K ∩ ([0, t]× In−1) ⊂ (K ∩ ([0, t− h]× In−1)) ∪ ([t− h, t]× U)

so that
f(t) ≤ f(t− h) + εh for 0 ≤ h < h0.

Therefore ∣∣∣f(t+ h)− f(t)
h

∣∣∣ ≤ ε, for all |h| < h0.

Therefore f is differentiable at t and its derivative is zero. Since f(0) = 0, we have
f(1) = 0 also. �
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Definition 4.4. A subset K of an n-manifold M is said to have if for each coor-
dinate chart φ : U −→ Rn (or Rn

+) of M , the set φ(U ∩ K) has measure zero in
Rn.

It is clear that if K ′ ⊂ K ⊂M and K has measure zero in M , then K ′ has also
measure zero in M . It is also clear that if {Kn} is a countable family of subsets of
M such that each Kn has measure zero in M , then ∪nKn has measure zero in M .

Let M and N be manifolds of dimension n and m respectively. Then, in view
of Definition 4.7 (Part 1), a point x ∈ M is a critical point of a smooth map
f : M −→ N , and f(x) is a critical value of f , provided the Jacobian matrix Jf(x)
has rank < m. A point y ∈ N is a regular value of f , if it is not a critical value of
f .

By convention, any point of N which is not in f(M) is a regular value of f .

Thus, if n < m, then every point of M is a critical point of f , and if n ≥ m
and y ∈ f(M) is a regular value of f , then Jf(x) has rank m at every point x of
f−1(y).

Theorem 4.5 (Sard). If f : M −→ N is a smooth map of manifolds and C is
the set of critical points of f in M , then f(C) has measure zero. In other words,
almost every point of N is a regular value of f .

Remark 4.6. A more general version of the theorem, called Morse-Sard theorem,
says that if

f : M −→ N

is a Cr map, where dimM = n, dimN = m, and r > max(0, n−m), then the set of
critical values of f has measure zero (see Hirsch, Differential Topology, p. 69). The
condition on r is necessary, and a counter example (due to Whitney, Duke Math.
J. 1 (1935), 514-517) is available, if the inequality be refuted. Whitney constructed
a C1 function f : R2 −→ R whose set of critical points C is homeomorphic to
the open interval (0, 1) ⊂ R, and f(C) is not a set of measure zero in R. Here
r = max(0, n−m). We will skip the proof of the general version, because Theorem
4.5 is adequate for our purpose.

Lemma 4.7. If Sard’s theorem is true for every smooth map f : U −→ Rm, where
U is an open subset of Rn, then it is also true for every smooth map g : V −→ Rm,
where V is an open subset of Rn

+.

Proof. Let g : V −→ Rm, where V is an open subset of Rn
+ be a smooth map,

and C be the set of critical points of g. By Lemma 1.14(b), there is an open
subset V ′ of Rn and a smooth map g′ : V ′ −→ Rm such that V = V ′ ∩ Rn

+ and
g′|V = g. If C ′ is the set of critical points of g′, then g′(C ′) is a set of measure zero
in Rm, by hypothesis. This implies g(C) is a set of measure zero in Rm, because
g(C) = g′(C) ⊂ g′(C ′). �

Proof of Theorem 4.5. The proof is by induction on n which is the dimension
of M . The starting point is n = 0 which is trivial. Therefore suppose that the
theorem has been proved for all manifolds of dimensions ≤ n− 1. Next note using
the Second Axiom of Countability that it suffices to consider only the special case
when f : U −→ Rm, U being an open set of Rn

+, and C is the critical set of f in
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U . In view of Lemma 4.7, we may suppose that U is an open set in the interior of
Rn

+, or in Rn.

Let D be the set of points in C where the Jacobian matrix J(f) vanishes. We
shall show in the next two Lemmas 4.8 and 4.9 that both f(D) and f(C −D) have
measure zero in Rm. This will complete the proof of the theorem. �

Lemma 4.8. The set f(D) has measure zero in Rm.

Proof. Let f1 : U −→ R be the first component of f . Then, if Jf vanishes at a
point x, Jf1 also vanishes at x, and if K is the set of points where Jf1 vanishes
(K is also the set of critical points of f1), then f(D) ⊂ f1(K) × Rm−1. Therefore
if f1(K) has measure zero in R, then f1(K)×Rm−1, and hence f(D), has measure
zero in Rm, because Rm−1 has measure zero in Rm. Hence it is sufficient to prove
the lemma for the case m = 1.

Let Di be the set of points of U at which all the partial derivatives of f of order
≤ i vanish. We have then a descending sequence of closed subsets of U :

D = D1 ⊃ D2 ⊃ · · · ⊃ Dn ⊃ · · · .

We shall show in the next two sublemmas 1 and 2 that each of the sets f(Di−Di+1),
1 ≤ i < n, and f(Dn) has measure zero. This will complete the proof of the
lemma. �

Sublemma 1. The set f(Di −Di+1), 1 ≤ i < n, has measure zero.

Proof. It suffices to show that each point p of Di−Di+1, has a neighbourhood V in
U such that f(V ∩(Di−Di+1) has measure zero. This will prove that f(Di−Di+1)
has measure zero, because Di − Di+1 can be covered by countably many of such
neighbourhoods, by the Second Axiom of Countability.

If p /∈ Di+1, there is an i-th order derivative of f , say g, which vanishes on
Di, but some partial derivative of g say ∂g/∂x1, is non-zero at p. Define a map
h : U −→ Rn by h(x) = (g(x), x2, . . . , xn). The Jacobian of h is non-singular at p,
and so h maps a neighbourhood V of p diffeomorphically onto an open set W of Rn,
by the inverse function theorem. The critical set of f : V −→ R is V ∩ (Di−Di+1),
since J(f) vanishes on Di. Therefore, since h−1 is a diffeomorphism, the critical
set of the composition

k = f ◦ h−1 : W −→ R
is h(V ∩ (Di −Di+1)). But h(V ∩ (Di −Di+1)) = (0× Rn−1), and this set is also
the critical set of the restriction k′ = k|(0 × Rn−1) ∩W . Therefore, by induction
(Sard’s theorem is true for n− 1),

k′((0× Rn−1) ∩W ) = f ◦ h−1((0× Rn−1) ∩W ) = f(V ∩ (Di −Di+1))

has measure zero. �

Sublemma 2. The set f(Dn) has measure zero.

Proof. Again, it will be enough to show that f(Dn∩Q) has measure for any n-cube
Q in U . Let r be the edgelength of Q, and k be a positive integer. Subdivide Q
into kn subcubes of edgelength r/k, and hence of diameter r

√
n/k. Let p ∈ Dn∩Q,
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and Q1 be one of the subcubes containing p. By Taylor’s theorem of order n (see
the Remark below), if p+ h ∈ Q1, then

|f(p+ h)− f(p)| ≤ A · ||h||n+1 ≤ A · (r
√
n/k)n+1,

where A is a constant independent of k obtained as a uniform estimate of partial
derivatives of f of order n+1. Therefore f(Q1) is contained in an interval of length
B/kn+1, where B is a constant independent of k. Hence f(Dn)∩Q is contained in
a union of intervals of total length ≤ B · kn/kn+1 = B/k. Since limk→∞B/k = 0,
f(Dn ∩Q) has measure zero. �

Remark. Recall Taylor’s theorem of order k in several variables.

Notation. Multi-index α = (α1, . . . , αn), αi are integers ≥ 0.
Degree of α = |α| = α1 + · · · + αn, α! = α1! · · ·αn!.

Monomial xα = x
α1
1 · · · xαn

n , where x = (x1, . . . , xn) ∈ Rn.

Partial derivative of a function f : Rn → R

∂
α

f =
∂|α|f

∂x
α1
1 ∂x

α2
2 · · · ∂x

αn
n

.

Theorem. Suppose that f : Rn → R is of class Ck+1 on an open convex set U ⊂ Rn. Then if a, a + h ∈ U ,

f(a + h) =
X

|α|≤k

∂αf(a)

α!
h

α
+ Ra,k(h),

where the remainder Ra,k(h) is given in Lagrange’s form as

Ra,k(h) =
X

|α|=k+1

∂
α

f(a + ch)
hα

α!
,

for some c in the unit interval (0, 1).

Corollary. If |∂αf(x)| ≤ M for x ∈ U , and |α| = k + 1, then

|Ra,k(h)| ≤ M
X

|α|=k+1

|hα|
α!

≤ A · ‖h‖k+1
.

Note that |hα| = |hα1
1 · · ·hαn

n | ≤ ‖h‖α1+···+αn = ‖h‖k+1, and ‖h‖ =
q

h2
1 + · · · + h2

n.

Lemma 4.9. The set f(C −D) has measure zero in Rm.

Proof. Let p /∈ D. Then some first order partial derivative of some component of
f , say ∂f1/∂x1, fails to vanish at p. As in the proof of Sublemma 1, an application
of the inverse function theorem asserts that the map h : U −→ Rn, where h(x) =
(f1(x), x2, . . . , xn), sends a neighbourhood V of p diffeomorphically onto an open
set W of Rn. Then the set C1 of critical points of g = f ◦ h−1 : W −→ Rm is
precisely h(V ∩ C), and g(C1) = f(V ∩ C).

Now g carries each (t, x2, . . . , xn) ∈W into the hyperplane t×Rm−1 ⊂ Rm. Let
gt : W ∩ (t× Rm−1) −→ t× Rm−1 be the restriction of g. Since the Jacobian J(g)
of g is of the form (

1 0
∗ J(gt)

)
,

a point in t×Rm−1 is a critical point of gt if and only if it is a critical point of g. By
inductive hypothesis, the set of critical values of gt has measure zero in t× Rm−1.
Now Fubini’s theorem implies that the set of critical values of g, that is, the set
f(V ∩ C), is of measure zero. �

Corollary 4.10. If dimM < dimN , then a smooth map f : M −→ N cannot be
surjective.
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Proof. The critical set of f is M . Therefore, if f is onto, then N = f(M) will have
measure zero, which is not possible. �

Corollary 4.11. If f : M −→ N is a smooth map with set of critical points C,
then the set N − f(C) is dense in N .

Proof. A set of measure zero cannot contain a non-empty open set. �

Corollary 4.12. If fi : M −→ N is a countable family of smooth maps, then the
set of common regular values of all fi is dense in N .

Proof. Any countable union of sets of measure zero has measure zero. �

5. Compact one-manifolds and Brouwer’s theorem

We shall show that the only compact connected 1-manifolds are either the closed
interval [0, 1] or else the circle S1, up to diffeomorphism.

Let M be a compact connected 1-manifold. We may suppose that M is a sub-
manifold of R3. This follows from Whitney Embedding Theorem.

Recall once again that a subset C of M is a parametrized curve if it is the
image of a diffeomorphism φ : I −→ C, where I is an interval in R which may be
open, or closed, or half-open (finite or infinite). We shall call φ a parametrizatioin
in M . Its parametric equation is

φ(t) = (φ1(t), φ2(t), φ3(t)), t ∈ I.

As t runs over I, φ(t) traces the curve C. The velocity vector or tangent vector of
C at a point φ(t) is the derivative of φ(t) at t

φ′(t) = (φ′1(t), φ
′
2(t), φ

′
3(t)).

As φ is a diffeomorphism, φ′(t) is never zero on I (if φ′(t) = 0, then φ cannot be
smoothly invertible, by the Inverse Function Theorem).

A reparametrization is obtained by a change of parameter t = t(θ), which is
a diffeomorphism t : J −→ I, where J is another interval, as ψ(θ) = φ(t(θ)), θ ∈ J .
Since dt/dθ 6= 0, either dt/dθ > 0 or dt/dθ < 0 on J , that is, t is strictly increasing
or strictly decreasing, by Mean Value Theorem. Therefore, if dt/dθ > 0 (resp. < 0)
then t increases (resp. decreases) as θ increases, and φ(t) and ψ(θ) trace the same
curve C in the same (resp. opposite) direction.

The arc length function s = s(t) =
∫ t

t0
‖φ′(t)‖dt is a change of parameter, since

it has continuous non-zero derivative which is the speed function ‖φ′(t)‖. The
reparametrization ψ(s) = φ(t(s)) is called a parametrization by arc length. Its
speed is

‖dψ/ds‖ = ‖dφ/dt‖ · |dt/ds| = 1.

Lemma 5.1. If φ : I −→ C and ψ : J −→ D are two parametrizations in M such
that C ∩D is connected, then C ∪D is a parametrized curve.
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Proof. We may suppose that φ and ψ are parametrizations by arc length. Then
ψ−1 ◦ φ is a diffeomorphism of a relatively open subset I ′ of I onto a relatively
open subset J ′ of J with constant derivative +1 or −1. This means, since C ∩D
is connected, that the graph of ψ−1 ◦ φ is a straight line segment of slope ±1
extending from an edge to another edge of the rectangle I ′ × J ′ (note that since
the graph is closed and ψ−1 ◦ φ is a local diffeomorphism, the graph cannot begin
or end in the interior of the rectangle). If y = ±x + c is the equation of the line
segment, then ψ−1 ◦ φ may be extended to a diffeomorphism λ : R −→ R given by
λ(s) = ±s + c. Now define σ : I ∪ λ−1(J) −→ C ∪D by σ(s) = φ(s) if s ∈ I, and
σ(s) = ψ(λ(s)) if s ∈ λ−1(J). It can be checked easily that σ is well-defined, and
it is a diffeomorphism ( use chain rule). �

Theorem 5.2. If M is a compact connected manifold of dimension one, then M
is diffeomorphic either to S1, or to [0, 1].

Proof. Let S be the family of all pairs (I, φ), where φ : I −→ φ(I) ⊆ M is a
parametrization. Partially order S by the binary relation

(I, φ) ≤ (J, ψ) if and only if I ⊆ J and φ = ψ | I.

Then any linearly ordered subset (I1, φ1) ≤ (I2, φ2) ≤ · · · of S is bounded by an
element (I, φ) ∈ S, where I is the interval ∪iIi. and φ is the parametrization given
by φ | Ii = φi. Therefore by Zorn Lemma, S contains a maximal parametrized
curve C in M and with parametrization ψ : I −→ C. We may suppose by applying
a change of variable, if necessary, that I is one of the intervals (0, 1), [0, 1), (0, 1],
or [0, 1]. Then, for any sequence {tn} in I converging to 0 (resp. 1), the sequence
{ψ(tn)} in C converges to a unique point x0 (resp. x1). It follows that the closure
of C is C = C ∪ {x0, x1}, and ψ extends to a smooth map ψ̃ : [0, 1] −→ C by
ψ̃(0) = x0 and ψ̃1(1) = x1, of course, ψ̃ = ψ if x0 and x1 are already in C. We
consider two cases x0 = x1, and x0 6= x1.

If x0 = x1, set θ = 2πs, where 0 ≤ s ≤ 1, define a diffeomorphism f : S1 −→M
by

f(cos θ, sin θ) = ψ̃(s).
Then f is onto, since f(S1) is compact and open in the connected space M . This
proves the first part of the theorem.

If x0 6= x1, then the parametrization ψ must map I onto M , that is, C must
be equal to M . If this is not true, then any point x ∈ M − C would admit
a parametrized curve neighbourhood Dx not intersecting C, otherwise C would
extend to a larger parametrized curve by the above lemma violating the maximality
of C. Then C and ∪x∈M−CDx would give a separation of M , which is not possible
since M is connected. �

Corollary 5.3. The boundary of a compact one- manifold with boundary consists
of an even number of points.

Exercise 5.4. Show that a non-compact connected manifold of dimension one is
diffeomorphic to an interval.

Theorem 5.5. If M is a compact manifold with boundary, then there is no retrac-
tion of M onto ∂M .
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Proof. If f : M −→ ∂M is a retraction, then, by Sard’s theorem, there is a point
x ∈ ∂M which is a regular value of f . Then f−1(x) is a submanifold V of M with
boundary

∂V = V ∩ ∂M.

The codimension of V is the codimension of {x}, which is n − 1 if n = dimM .
Therefore V is one-dimensional, and it is closed, and so compact. Then ∂V has an
even number of points. But, since f |∂M = Id, ∂V consists of only one point x.
This contradiction shows the non-existence of a smooth retraction f . �

Lemma 5.6. There is no continuous retraction of Dn onto Sn−1.

Proof. Let f : Dn −→ Sn−1 be a continuous retraction. Consider the continuous
map g : Dn −→ Dn given by

g(x) = 2x, if 0 ≤ ‖x‖ ≤ 1
2

= x/‖x‖, if 1
2 ≤ ‖x‖ ≤ 1.

Then h = f ◦ g is also a retraction, and it is smooth on a closed neighbourhood
K of Sn−1. The map h can be approximated by a smooth map k : Dn −→ Sn−1

which agrees with h on K. This means that k is a smooth retraction, which is in
contradiction with the above theorem. �

Theorem 5.7 (Brouwer fixed-point theorem). Any continuous map f of Dn

to itself has a fixed point.

Proof. Such a continuous map f without fixed point gives rise to a retraction g :
Dn −→ Sn−1 which sends x ∈ Dn to a point where the directed line segment from
f(x) to x hits the boundary Sn−1. We shall show that this map g is continuous.
This will be in contradiction with the above lemma, and our proof will be complete.

Since x lies in between f(x) and g(x) on a line segment, we may write

g(x) = rx+ (1− r)f(x),

where r ≥ 1. Then g will be continuous, if r is a continuous function of x. Now,
since ‖g(x)‖ = 1, the above relation gives a quadratic equation in r

r2‖x− f(x)‖2 + 2r(x · f(x)− ‖f(x)‖2) + ‖f(x)‖2 − 1 = 0.

Solving the quadratic equation, the unique positive root r can be expressed in
terms of continuous functions of x. Therefore g is a continuous map, and the proof
is complete. �

6. Homotopy of smooth maps

We will now extend the notion of homotopy to the smooth category. Two smooth
maps are called smoothly homotopic if one can be deformed to the other through
smooth maps. Here is the precise definition.

Definition 6.1. Two smooth maps f, g : M −→ N are smoothly homotopic if
there is a smooth map H : M × R −→ N such that H(x, 0) = f(x) and H(x, 1) =
g(x).
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Thus we have a family of smooth maps Ht : M −→ N given by Ht(x) =
H(x, t), t ∈ R. The smooth map H is called a smooth homotopy between f and
g. If H is just a continuous map, then f and g are continuously homotopic, or
simply homotopic.

The smooth homotopy is defined for all t ∈ R, rather than on the interval
I = [0, 1], because we want to avoid a technical difficulty, namely, M × I is not a
smooth manifold when M has boundary. It may be shown that M × I can be given
a unique smooth structure, using a method called ”Smoothing or straightening the
corners“. Then we will have no problem in replacing R by I in the above definition.

The portion of R outside I does not play any important role. Given H as above,
we can always find a smooth map H : M × R −→ N such that H(x, t) = f(x) if
t ≤ 0 and H(x, t) = g(x) if t ≥ 1. Just define H(x, t) = H(x,B(t)), where B(t) is
a bump function (Definition 1.6). The smooth map H is called the normalized
homotopy corresponding to the homotopy H.

Lemma 6.2. Smooth homotopy is an equivalence relation.

Proof. That the relation is reflexive and symmetric are obvious. To see that it
is transitive, take smooth maps f , g, and h from M to N , and let H and F be
normalized smooth homotopies between f and g and between g and h respectively.
Define K : M × R −→ N by

K(x, t) = H(x, 3t) if t ≤ 1/2
= F (x, 3t− 2) if t ≥ 1/2

This is a smooth map, since H and F are smooth maps and K(x, t) = g(x) for
1/3 ≤ t ≤ 2/3 so that two parts of the definition match together smoothly. Clearly
K is a normalized homotopy between f and h. �

Lemma 6.3. If two smooth maps f, g : M −→ N are continuously homotopic, then
they are smoothly homotopic.

Proof. Let H : M ×R −→ N be a normalized continuous homotopy between f and
g. Then H is smooth on the closed set M × J , where J = (−∞, 0] ∪ [1,∞), since
H | M × (−∞, 0] = f and H | M × [1,∞) = g. By Theorem 2.3, there is a positive
continuoud function δ on M such that H can be δ-approximated by a smooth map
F : M × R −→ N which agrees with H on M × J . �

Exercise 6.4. Show that if m is sufficiently large, then any smooth map

f : M −→ Rm

is δ-approximable by an embedding g : M −→ Rm which is homotopic to f by a
smooth homotopy Ht : M −→ Rm so that each Ht is a δ-approximation to f .

Hint. Ht(x) = (1− t)f(x) + tg(x).

Definition 6.5. Two embeddings f, g : M −→ N are isotopic if there exists a
smooth homotopy H : M × R −→ N such that for each t ∈ R, the map

Ht : M −→ N

is an embedding.
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Remark 6.6. If Ht : M −→ N is an isotopy, and

α : M1 −→M, β : N −→ N1

are embeddings, then β ◦Ht ◦ α : M1 −→ N1 is an embedding.

Proposition 6.7. Any two embeddings f, g : M −→ Rm are isotopic, provided m
is sufficiently large (in fact, m ≥ 2n+ 2, where n = dimM).

Proof. Since Rm is contractible to a point, the embeddings f and g are continuously
homotopic, and hence homotopic by a smooth homotopy H : M ×R −→ Rm. If m
is sufficienly large, H may be deformed to an embedding F : M ×R −→ Rm which
agrees with H on (−∞, 0] ∪ [1,∞). This F serves as the required isotopy between
f and g. �

7. Stability of smooth maps

We now consider a different set of problems. Suppose, for example, an embedding
f is deformed slightly to a map g; then we would like to pose the question whether
g also an embedding.

Definition 7.1. Let C be a class of smooth maps from M to N defined by a
property. Then C is called a stable class with respect to the property if for any
f ∈ C and any smooth homotopy ft : M −→ N of f , there is an ε > 0 such that
ft ∈ C for all t < ε.

Theorem 7.2. Each of the following classes of smooth maps from M to N , where
M is compact and ∂M = ∂N = ∅, is a stable class:

(1) local diffeomorphisms,
(2) immersions,
(3) submersions,
(4) embeddings,
(5) diffeomorphisms.

To this list of classes of maps, we may add one more class, namely, the class of
maps transvesal to a given submanifold A of N . We will read about this class of
maps in Part 3, and show that locally the transversality condition is the same as
the submersion condition (3). Therefore this class will be stable.

Proof. We shall prove only (2) and (4). Because, (1) is a special case of (2) when
dimM = dimN , and the proof of (3) is essentially identical with the proof of (2).
The proof of (5) will follow from (4) and the fact that a local diffeomorphism maps
open sets into open sets.

Proof of (2). Let ft be a smooth homotopy of an immersion f0. Then the
problem is to find an ε > 0 so that d(ft)x is injective for all points

(x, t) ∈M × [0, ε) ⊂M × I.

Since M is compact, any open neighbourhood of M × {0} in M × I contains
M × [0, ε) if ε is small enough. Therefore, it is sufficient only to show that each
point (x0, 0) ∈ M × {0} has an open neighbourhood U in M × I such that d(ft)x
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is injective for (x, t) ∈ U . Since this assertion is local, it is enough to consider only
the case when M is an open subset of Rn, and N is an open subset of Rm.

Since d(f0)x0 is injective, the Jacobian matrix Jf0(x0) of f0 at x0 has a minor
R(x0, 0) of order n whose determinant is non-zero. The function M × I −→ R,
which sends (x, t) to the determinant of the minor R(x, t) of the Jacobian matrix
Jft(x) (formed by the same rows and columns as R(x0, 0)) is continuous, since each
entry of R(x, t) is continuous on M×I, and the determinant function is continuous.
Therefore there is an open neighbourhood U of (x0, 0) in M × I such that R(x, t)
is non-singular for all (x, t) ∈ U . This completes the proof of (2).

Proof of (4). As shown in the above proof, f0 is an immersion implies that ft is
an immersion for small values of t. We shall show that if f0 is injective, then so is
ft for sufficiently small t. This will complete the proof of (4), because any injective
immersion on a compact manifold is an embedding.

Suppose our assertion is false. Take a sequence of real numbers {tk} which
converges to zero. For each k, we can find a pair of distinct points (xk, yk) of
M such that ftk

(xk) = ftk
(yk). Since M is compact, each of the sequences {xk}

and {yk} has convergent subsequences. Denoting them by the same notations, let
limxk = x0 and lim yk = y0. Then

f0(x0) = lim ftk
(xk) = lim ftk

(yk) = f0(y0).

This implies that x0 = y0, since f0 is injective.

Define a smooth map G : M × I −→ N × I by G(x, t) = (ft(x), t) A simple
computation shows that the Jacobian matrix JG(x0, 0) is(

Jf0(x0) ∗
0, · · · , 0 1

)
,

which is non-singular, since Jf0(x0) is so. Then, by the inverse function theorem, G
is injective in a neighbourhood of (x0, 0). But for large k, both (xk, tk) and (yk, tk)
belong to this neighbourhood, and so xk = yk, which is a contradiction. Therefore
we may conclude that ft is injective when t is sufficiently small. �

Exercise 7.3. Show that the theorem is false if M is not compact, by constructing
counterexamples to all the classes in the following way:

Define ft : R −→ R by ft(s) = sλ(ts), where λ : R −→ R is a smooth function
with λ(s) = 1 if |s| < 1, and λ(s) = 0 if |s| > 2.


