AFS-II Almora, May $1-28,2014$

Lecture on Differential Topology Part I

Speakers: Samik Basu (RKMVU, Calcutta), Goutam Mukherjee (ISI, Calcutta), Amiya Mukherjee (ISI, Calcutta)

1. Smooth manifolds

Intuitively a differentiable manifold is a topological space which is obtained by gluing together open subsets of some Euclidean space in a nice way; think, for example, of the surface of a ball or a torus covered with small paper disks pasted together on overlaps without making any crease or fold. Mathematical definition is based on the standard differentiable structure on a Euclidean space \mathbb{R}^{n}. Let u_{1}, \ldots, u_{n} denote the coordinate functions, where $u_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is the function mapping a point $p=\left(p_{1}, \ldots, p_{n}\right)$ onto its i-th coordinate p_{i}. A function f from an open subset U of \mathbb{R}^{n} into \mathbb{R} is differentiable of class C^{r}, or simply a C^{r} function, if it has continuous partial derivatives of all orders $\leq r$ with respect to u_{1}, \ldots, u_{n}. A C^{0} function is just a continuous function. A C^{∞} function is C^{r} for every $r \geq 0$.

A map $\phi: U \longrightarrow \mathbb{R}^{m}, U$ open in \mathbb{R}^{n}, can be written as $\phi=\left(\phi_{1}, \ldots, \phi_{m}\right)$, where $\phi_{i}=u_{i} \circ \phi: U \longrightarrow \mathbb{R}$ are the components of ϕ. The map ϕ is C^{r} if each ϕ_{i} is C^{r}. A map ϕ between two open subsets of \mathbb{R}^{n} is called a C^{r} diffeomorphism if it is a homeomorphism and both ϕ and ϕ^{-1} are C^{r} maps. We shall call a C^{∞} diffeomorphism simply a diffeomorphism. For example, any linear isomorphism $R^{n} \longrightarrow \mathbb{R}^{n}$ is a diffeomorphism.

We shall use the words "smooth", "differentiable", and the symbol " C^{∞} " interchangeably. Our standard practice in this lecture will be to work with smooth maps.

Definition 1.1. A smooth manifold M of dimension n is a second countable Hausdorff space together with a smooth structure on it. A smooth structure consists of a family \mathcal{D}^{∞} of pairs $\left(U_{i}, \phi_{i}\right), i$ is in some index set Λ, where U_{i} is an open set of M and ϕ_{i} is a homeomorphism of U_{i} onto an open set of \mathbb{R}^{n} such that
(1) the open sets $U_{i}, i \in \Lambda$, cover M,
(2) for every pair of indices $i, j \in \Lambda$ with $U_{i} \cap U_{j} \neq \emptyset$ the homeomorphisms

$$
\begin{aligned}
& \phi_{i} \circ \phi_{j}^{-1}: \phi_{j}\left(U_{i} \cap U_{j}\right) \longrightarrow \phi_{i}\left(U_{i} \cap U_{j}\right), \\
& \phi_{j} \circ \phi_{i}^{-1}: \phi_{i}\left(U_{i} \cap U_{j}\right) \longrightarrow \phi_{j}\left(U_{i} \cap U_{j}\right)
\end{aligned}
$$

are smooth maps between open subsets of \mathbb{R}^{n},
(3) the family \mathcal{D}^{∞} is maximal in the sense that it contains all possible pairs $\left(U_{i}, \phi_{i}\right)$ satisfying the property (2).

The restriction $U_{i} \cap U_{j} \neq \emptyset$ in the condition (2) may be omitted provided we agree to assume that the empty map on the empty set is smooth.

A pair $(U, \phi) \in \mathcal{D}^{\infty}$ with $p \in U$ is called a coordinate chart at p, U is called a coordinate neighbourhood of p, and $\phi=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=u_{i} \circ \phi$: $U \longrightarrow \mathbb{R}$ is the i-th component of ϕ, is called a (local)coordinate system at p.

Two charts $\left(U_{i}, \phi_{i}\right)$ and $\left(U_{j}, \phi_{j}\right)$ satisfying the conditions in (2) are said to be C^{∞} related or compatible, and each of $\phi_{i} \circ \phi_{j}^{-1}$ and $\phi_{j} \circ \phi_{i}^{-1}$ is called a transition map or a change of coordinates. A family of coordinate charts on M satisfying (1) and (2) is called a smooth atlas ${ }^{1}$. A smooth structure is a smooth atlas satisfying (3).

To understand the maximality condition (3) more clearly, consider the family of all smooth atlases on M. Say that two atlases \mathcal{A} and \mathcal{B} are compatible if each chart in \mathcal{A} is compatible with each chart in \mathcal{B}, or equivalently, if $\mathcal{A} \cup \mathcal{B}$ is an atlas on M. It is easy to check that this is an equivalence relation. Then the union of all atlases in an equivalence class is a maximal atlas or a smooth structure on M. Thus any atlas can be enlarged to a unique smooth structure by adjoining all smoothly related charts to it.

The maximality condition allows us to restrict coordinate charts. If (U, ϕ) is a chart, U^{\prime} is an open set in U, and $\phi^{\prime}=\phi \mid U^{\prime}$, then the charts (U, ϕ) and $\left(U^{\prime}, \phi^{\prime}\right)$ are compatible by the transition map $\phi^{\prime} \circ \phi^{-1}=\mathrm{id}$, where id denotes the identity map.

Next observe that the charts (U, ϕ) and $(U, \alpha \circ \phi)$, where $\alpha: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a diffeomorphism, are always compatible. In particular, taking α to be the translation which sends $\phi(p)$ to 0 , we can always suppose that every point $p \in M$ admits a coordinate chart (U, ϕ) such that $\phi(p)=0$. We may also suppose that $\phi(U)$ is a convex set, or the whole of \mathbb{R}^{n}.

Examples 1.2. (1) Euclidean space \mathbb{R}^{n}. A smooth structure is given by an atlas consisting of only one chart $\left(\mathbb{R}^{n}, i d\right)$. The maximal atlas generated by this atlas consists of all charts (U, ϕ), where U is an open set of \mathbb{R}^{n} and ϕ is Id on it. This smooth structure on \mathbb{R}^{n} is called the standard smooth structure.

A similar consideration shows that the complex n-space \mathbb{C}^{n} is a smooth complex manifold of complex dimension n.
(2) Vector space. Any real vector space V of dimension n has a canonical smooth structure generated by the atlas consisting of all linear isomorphisms of V onto \mathbb{R}^{n}. Note that in this atlas any change of coordinates is a linear map and so indefinitely differentiable.
(3) Open subset of a smooth manifold. An open set V of a smooth manifold M is itself a smooth manifold. The smooth structure is obtained by restrictions of coordinate charts. If \mathcal{A} is a smooth atlas for M, then $\mathcal{A}_{V}=\{(U \cap V, \phi \mid U \cap V)$: $(U, \phi) \in \mathcal{A}\}$ is a smooth atlas for V.
(4) Manifold of matrices. Let \mathbb{K} denote the field \mathbb{R} or \mathbb{C}, and $M(m, n, \mathbb{K})$ be the space of all $m \times n$ matrices with entries in \mathbb{K}. Taking the entries of matrices in lexicographic (or dictionary) order we may identify $M(m, n, \mathbb{K})$ with $\mathbb{K}^{m n}$ in the following way:

$$
\left(a_{i j}\right) \leftrightarrow\left(a_{11}, a_{12}, \ldots, a_{1 n}, a_{21}, a_{22}, \ldots, a_{2 n}, \ldots, a_{m 1}, a_{m 2}, \ldots, a_{m n}\right)
$$

Thus $M(m, n, \mathbb{R})$ is a smooth manifold of dimension $m n$, and, similarly $M(m, n, \mathbb{C})$ is a smooth complex manifold of real dimension $2 m n$.

[^0](5) General linear group $G L(n, \mathbb{K})$. If $n=m$, let us write the manifold of matrices $M(n, n, \mathbb{K})$ as $M(n, \mathbb{K})$. Then, the set $G L(n, \mathbb{K})$ of all non-singular matrices of order n forms an open subset of $M(n, \mathbb{K})$, since the determinant function $\operatorname{det}: M(n, \mathbb{K}) \longrightarrow \mathbb{K}$ is continuous, being a polynomial map. Therefore $G L(n, \mathbb{K})$ is a smooth manifold.
(6) Sphere S^{n}. This is the set of all unit vectors in \mathbb{R}^{n+1}
$$
S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in R^{n+1} \mid x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\} .
$$

A smooth atlas is provided by two open sets U_{+}and U_{-}obtained by deleting from S^{n} the north pole $P=(0, \ldots, 0,1)$ and the south pole $Q=(0, \ldots, 0,-1)$ respectively, and the stereographic projections

$$
\phi_{+}: U_{+} \longrightarrow \mathbb{R}^{n}, \text { and } \phi_{-}: U_{-} \longrightarrow \mathbb{R}^{n}
$$

from P and Q onto the equatorial plane $x_{n+1}=0$. These are homeomorphisms given by

$$
\phi_{ \pm}\left(x_{1}, \ldots, x_{n+1}\right)=\left(\frac{x_{1}}{1 \mp x_{n+1}}, \ldots, \frac{x_{n}}{1 \mp x_{n+1}}\right)
$$

and their inverses are

$$
\left(\phi_{ \pm}\right)^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{2 x_{1}}{1+\|x\|^{2}}, \ldots, \frac{2 x_{n}}{1+\|x\|^{2}}, \mp \frac{1-\|x\|^{2}}{1+\|x\|^{2}}\right) .
$$

Therefore the change of coordinates $\phi_{-} \circ \phi_{+}^{-1}=\phi_{+} \circ \phi_{-}^{-1}: \mathbb{R}^{n}-\{0\} \longrightarrow \mathbb{R}^{n}-\{0\}$ is given by the smooth map $x \mapsto x /\|x\|^{2}$.
Exercise 1.3. Show that another smooth atlas of S^{n} is given by the $2 n+2$ coordinate charts $\left(V_{i}^{+}, \psi_{i}^{+}\right),\left(V_{i}^{-}, \psi_{i}^{-}\right), i=1, \ldots, n+1$, where V_{i}^{+}and V_{i}^{-}are the hemispheres

$$
V_{i}^{+}=\left\{x \in S^{n}: x_{i}>0\right\}, \quad V_{i}^{-}=\left\{x \in S^{n}: x_{i}<0\right\}
$$

and $\psi_{i}^{+}: V_{i}^{+} \longrightarrow \mathbb{R}^{n}$ and $\psi_{i}^{-}: V_{i}^{-} \longrightarrow \mathbb{R}^{n}$ are the projections onto the hyperplane $x_{i}=0$

$$
\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right)
$$

Show that these charts are C^{∞} related to the charts $\left(U_{+}, \phi_{+}\right)$and $\left(U_{-}, \phi_{-}\right)$of Example 1.2 (6).
Example 1.4. The real projective space $\mathbb{R} P^{n}$ This space is the quotient space of $\mathbb{R}^{n+1}-\{0\}$ modulo the equivalence relation:

$$
\left(x_{0}, \ldots, x_{n}\right) \sim\left(\lambda x_{0}, \ldots, \lambda x_{n}\right), \quad \lambda \in \mathbb{R}-\{0\}
$$

The equivalence classes are 1-dimensional subspaces or lines through the origin in \mathbb{R}^{n+1}. Let $\pi: \mathbb{R}^{n+1}-\{0\} \longrightarrow \mathbb{R} P^{n}$ be the canonical projection, which maps a point x to the line containing x, and let $\mathbb{R} P^{n}$ be given the quotient topology so that π becomes a continuous open map.

For each $i, 0 \leq i \leq n$, consider open subset U_{i} of $\mathbb{R} P^{n}$ given by

$$
U_{i}=\left\{\left[x_{0}, \ldots, x_{n}\right] \mid x_{i} \neq 0\right\}
$$

where $\left[x_{0}, \ldots, x_{n}\right]=\pi\left(\left(x_{0}, \ldots, x_{n}\right)\right)$. This is the set of all lines through the origin which intersect the hyperplane $x_{i}=1$, and this is open in $\mathbb{R} P^{n}$ because

$$
\pi^{-1}\left(U_{i}\right)=\mathbb{R}^{n+1}-\left\{\text { hyperplane } x_{i}=0\right\}
$$

is open in $\mathbb{R}^{n+1}-\{0\}$. Define $\phi_{i}: U_{i} \longrightarrow \mathbb{R}^{n}$ by

$$
\phi_{i}\left(\left[x_{0}, \ldots, x_{n}\right]\right)=\frac{1}{x_{i}}\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

Then ϕ_{i} is a homeomorphism with inverse given by

$$
\phi_{i}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}, \ldots, x_{i}, 1, x_{i+1}, \ldots, x_{n}\right]
$$

So the change of coordinates between charts $\left(U_{i}, \phi_{i}\right)$ and $\left(U_{j}, \phi_{j}\right)$ is

$$
\phi_{j} \circ \phi_{i}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{x_{j+1}}\left(x_{1}, \ldots, x_{j}, x_{j+2}, \ldots, x_{i}, 1, x_{i+1}, \ldots, x_{n}\right),
$$

assuming for convenience $j<i$. This the family $\left\{\left(U_{i}, \phi_{i}\right)\right\}$ is a smooth atlas for $\mathbb{R} P^{n}$.

Exercise 1.5. Complex projective space $\mathbb{C} P^{n}$. This is the set of all 1dimensional complex linear subspaces of \mathbb{C}^{n+1} with the quotient topology obtained from the natural projection $\pi: \mathbb{C}^{n+1}-\{0\} \longrightarrow \mathbb{C} P^{n}$. Show that this can be given a smooth structure analogous to above construction for $\mathbb{R} P^{n}$

Example 1.6. Product of manifolds. If M and N are smooth manifolds with smooth structures $\left\{\left(U_{i}, \phi_{i}\right)\right\}$ and $\left\{\left(V_{r}, \psi_{r}\right)\right\}$ respectively, then the Cartesian product $M \times N$ is a smooth manifold with atlas $\left\{\left(U_{i} \times V_{r}, \phi_{i} \times \psi_{r}\right)\right\}$. Any two such charts are smoothly compatible, because

$$
\left(\phi_{j} \times \psi_{s}\right) \circ\left(\phi_{i} \times \psi_{r}\right)^{-1}=\left(\phi_{j} \times \psi_{s}\right) \circ\left(\phi_{i}^{-1} \times \psi_{r}^{-1}\right)=\left(\phi_{j} \circ \phi_{i}^{-1}\right) \times\left(\psi_{s} \circ \psi_{r}^{-1}\right),
$$

which is a smooth map.
In particular, the n-torus $T^{n}=S^{1} \times \cdots \times S^{1}\left(S^{1}\right.$ appearing n times $)$ is a smooth manifold.

2. Smooth map between manifolds

Let M and N be smooth manifolds, and $f: M \rightarrow N$ a map. Let $p \in M$, and (U, ϕ) and (V, ψ) be coordinate charts at p and $f(p)$ respectively Then the map $\psi \circ f \circ \phi^{-1}: \phi\left(U \cap f^{-1}(V)\right) \longrightarrow \psi(V)$ is called a local representation of f at p for the pair of coordinate systems (ϕ, ψ).

Definition 2.1. A map $f: M \longrightarrow N$ is smooth, if its local representation at every point $p \in M$ is a smooth map for some, and hence for all pairs of coordinate systems ϕ and ψ at p and at $f(p)$.

Observe that this definition is independent of the choice of coordinate systems. If f is smooth at p for a pair (ϕ, ψ), then it is smooth at p for every other pair $\left(\phi_{1}, \psi_{1}\right)$. Because, the transition maps $\phi \circ \phi_{1}^{-1}$ and $\psi \circ \psi_{1}^{-1}$ are smooth, and so the composition

$$
\psi_{1} \circ f \circ \phi_{1}^{-1}=\left(\psi_{1} \circ \psi^{-1}\right) \circ\left(\psi \circ f \circ \phi^{-1}\right) \circ\left(\phi \circ \phi_{1}^{-1}\right)
$$

is smooth.
Lemma 2.2. The composition of smooth maps between manifolds is smooth.

Proof. For suitable coordinate charts $(U, \phi),(V, \psi)$, and (W, θ) in M, N, and R respectively, the map

$$
\theta \circ(g \circ f) \circ \phi^{-1}=\left(\theta \circ g \circ \psi^{-1}\right) \circ\left(\psi \circ f \circ \phi^{-1}\right)
$$

is smooth, being the composition of smooth maps between open subsets of Euclidean spaces.

Definition 2.3. A map $f: M \longrightarrow N$ is called a diffeomorphism if f is a bijection and both f and f^{-1} are smooth maps.

For example, if (U, ϕ) is a coordinate chart on M, then $\phi: U \longrightarrow \mathbb{R}^{n}$ is a diffeomorphism onto its image, since its local representation for the pair of charts (U, ϕ) and $(\phi(U), \mathrm{id})$ is the identity map.

Smooth maps are defined on open subsets of a manifold. The definition can be extended over arbitrary subsets of a manifold in the following way.

Definition 2.4. A map f from a subset S of a manifold M to a manifold N is smooth if it can be locally extended to a smooth map. Explicitly, f is smooth, if each point $p \in S$ admits an open neighbourhood U in M and a smooth map $F: U \longrightarrow N$ such that $F \mid S \cap U=f$.

The local extendability condition of f is equivalent to saying that all the partial derivatives of f exist and are continuous, by Whitney's extension theorem (Whitney, Trans. Amer. Math. Soc. 36 (1936), 63-89).
Exercise 2.5. Show that if $n<m$, and \mathbb{R}^{n} is considered as the subset

$$
\left\{\left(x_{1}, \ldots, x_{m}\right) \mid x_{n+1}=\cdots=x_{m}=0\right\}
$$

of the first n coordinates of \mathbb{R}^{m}, then the usual smooth maps on \mathbb{R}^{n} and those obtained by using the above definition are the same.

A map f from a subset S of a manifold M to a subset K of a manifold N is a diffeomorphism if it is a bijection and both f and f^{-1} are smooth maps.

It follows that a subset S in an Euclidean space \mathbb{R}^{m} is a smooth manifold of dimension n if it is locally diffeomorphic to \mathbb{R}^{n}, that is, if each point of S has an open neighbourhood in S (in the relative topology) which is diffeomorphic to an open subset of \mathbb{R}^{n}. Here is an example.

Example 2.6. Space of matrices of rank k. Let $M_{k}(m, n, \mathbb{R})$ be the space of all real $m \times n$ matrices of rank k, where $0<k \leq \min (m, n)$, with the induced topology of $M(m, n, \mathbb{R})$. Then $M_{k}(m, n, \mathbb{R})$ is a smooth manifold of dimension $k(m+n-k)$. To see this, take an element $E_{0} \in M_{k}(m, n, \mathbb{R})$. We may assume by permuting the rows and columns, if necessary, that E_{0} is of the form

$$
E_{0}=\left(\begin{array}{ll}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right)
$$

where A_{0} is a non-singular $k \times k$ matrix. Then, we can find an $\epsilon>0$ such that if A is a $k \times k$ matrix and if each entry of $A-A_{0}$ has absolute value less than ϵ, then A is non-singular. Let

$$
U=\left\{\left.E=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \right\rvert\, \text { absolute values of all entries of } A-A_{0}<\epsilon\right\}
$$

A matrix E as above has the same rank as the matrix

$$
\left(\begin{array}{cc}
I_{k} & 0 \\
X & I_{m-k}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
X A+C & X B+D
\end{array}\right),
$$

where I_{k} is the $k \times k$ identity matrix and X is any $(m-k) \times k$ matrix. Taking $X=-C A^{-1}$, we find that the rank of E is exactly k if and only if $D=C A^{-1} B$. Let V be the open set in the Euclidean space of dimension $m n-(m-k)(n-k)=$ $k(m+n-k)$ consisting of matrices of the form

$$
\left(\begin{array}{cc}
A & B \\
C & 0
\end{array}\right)
$$

where each entry of $A-A_{0}$ has absolute value less than ϵ. Then the map

$$
\left(\begin{array}{cc}
A & B \\
C & C A^{-1} B
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
A & B \\
C & 0
\end{array}\right)
$$

is a diffeomorphism of the neighbourhood $U \cap M_{k}(m, n, \mathbb{R})$ of E_{0} onto V. Since E_{0} is an arbitrary element of $M_{k}(m, n, \mathbb{R}), M_{k}(m, n, \mathbb{R})$ is a smooth manifold of dimension $k(m+n-k)$.
Exercise 2.7. Show that if M and N are smooth manifolds, and there is a diffeomorphism of M onto a subset S of N, then S is a smooth manifold.

Exercise 2.8. The graph of a map $f: M \longrightarrow N$ is the set

$$
\Gamma(f)=\{(x, f(x)) \in M \times N \mid x \in M\}
$$

Show that if f is smooth, then the map $F: M \longrightarrow \Gamma(f)$ defined by $F(x)=$ $(x, f(x))$ is a diffeomorphism. Conclude that $\Gamma(f)$ is a smooth manifold. In particular, the diagonal set \triangle in $M \times M$, which is $\Gamma\left(\operatorname{Id}_{M}\right)$, is a smooth manifold.

3. Immersions and Submersions

Convention. From now on, by a manifold we shall always mean a smooth manifold, unless it is stated explicitly otherwise. Sometimes we call a manifold M of dimension n an n-manifold, if it be necessary to specify its dimension.

We recall from calculus the process of derivation which assigns to each differentiable map and each point of its domain a linear map.
Definition 3.1. Let $U \subset \mathbb{R}^{n}$ be an open set, and $a \in U$. Then a map $f: U \longrightarrow \mathbb{R}^{m}$ is differentiable at a if there is a linear map $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ such that

$$
\lim _{u \rightarrow a} \frac{\|f(u)-f(a)-L(u-a)\|}{\|u-a\|}=0 .
$$

The linear map L is unique. For, if $L^{\prime}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is another such linear map, then we have for $v \neq 0$

$$
\begin{gathered}
\frac{\left\|L(v)-L^{\prime}(v)\right\|}{\|v\|}=\lim _{t \rightarrow 0} \frac{\left\|L(t v)-L^{\prime}(t v)\right\|}{\|t v\|} \\
\leq \lim _{t \rightarrow 0} \frac{\|f(a+t v)-f(a)-L(t v)\|}{\|t v\|}+\lim _{t \rightarrow 0} \frac{\left\|f(a+t v)-f(a)-L^{\prime}(t v)\right\|}{\|t v\|}=0
\end{gathered}
$$

and so $L(v)=L^{\prime}(v)$ for all $v \in \mathbb{R}^{n}$.

The linear map L is called the derivative map (or total derivative) of f at a, and is denoted by $d f_{a}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$. Its value at $v \in \mathbb{R}^{n}$ is given by

$$
d f_{a}(v)=\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t}
$$

For future reference, we list some well-known results.
Proposition 3.2. The derivative map enjoys the following properties.
(1) If $d f_{a}$ exists, then f is continuous at a.
(2) If f is a constant map, then $d f_{a}=0$.
(3) If f is a linear map, then $d f_{a}=f$.
(4) If $f, g: U \longrightarrow \mathbb{R}^{m}$ are differentiable at a, then $f+g$ is differentiable at a, and $d(f+g)_{a}=d f_{a}+d g_{a}$.
(5) If $\lambda: U \longrightarrow \mathbb{R}$ and $f: U \longrightarrow \mathbb{R}^{m}$ are differentiable at a, then λf is differentiable at a, and $d(\lambda f)_{a}=\lambda(a) d f_{a}+f(a) d \lambda_{a}$.
(6) (Chain Rule). If $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$ are open sets, and $f: U \longrightarrow V$, $g: V \longrightarrow \mathbb{R}^{p}$ are differentiable maps, then their composition $g \circ f$ is differentiable, and, for each $a \in U$,

$$
d(g \circ f)_{a}=d g_{f(a)} \circ d f_{a} .
$$

If $m=1$, and $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an orthonormal basis of \mathbb{R}^{n} with coordinate functions u_{1}, \ldots, u_{n} so that, for $p \in \mathbb{R}^{n}, u_{i}(p)=\left\langle p, \alpha_{i}\right\rangle$ is the i-th coordinate of p, then $d f_{a}\left(\alpha_{i}\right)$ is the i-th partial derivative $\partial f / \partial u_{i}(a)$ of f at a. Setting $v=v_{1} \alpha_{1}+\cdots+v_{n} \alpha_{n}$, we have

$$
d f_{a}(v)=v_{1} \frac{\partial f}{\partial u_{1}}(a)+\cdots+v_{n} \frac{\partial f}{\partial u_{n}}(a),
$$

by the properties (2), (4), and (5).
In general, if $\left(\beta_{1}, \ldots, \beta_{m}\right)$ is an orthonormal basis of \mathbb{R}^{m} so that

$$
f(u)=\sum_{i=1}^{m} f_{i}(u) \beta_{i},
$$

where the components $f_{i}: U \longrightarrow \mathbb{R}$ are continuous and satisfy $f_{i}(u)=\left\langle f(u), \beta_{i}\right\rangle$, then $d f_{a}$ exists if and only if $d f_{i a}$ exists, and in that case

$$
d f_{a}(v)=\sum_{i=1}^{m} d f_{i a}(v) \beta_{i}=\sum_{i=1}^{m}\left(v_{1} \frac{\partial f_{i}}{\partial u_{1}}(a)+\cdots+v_{n} \frac{\partial f_{i}}{\partial u_{n}}(a)\right) \beta_{i} .
$$

It follows that the matrix of the linear map $d f_{a}$ with respect to the bases α_{i} and β_{j} is the Jacobian matrix

$$
J f(a)=\left(\frac{\partial f_{i}}{\partial u_{j}}(a)\right)
$$

Note that $f: U \longrightarrow \mathbb{R}^{m}$ is a C^{1}-map if and only if the map $d f: U \longrightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ sending a to $d f_{a}$, where $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ denotes the vector space of linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}, is continuous.

Let f be a smooth function from an open set V of an n-manifold M into \mathbb{R}. Then, for every chart (U, ϕ) on M with $U \cap V \neq \emptyset$, the function $f \circ \phi^{-1}: \phi(U \cap V) \longrightarrow \mathbb{R}$
is smooth. If $\phi=\left(x_{1}, \ldots, x_{n}\right), x_{i}=u_{i} \circ \phi$, then the partial derivative of f with respect to x_{i} at $p \in U \cap V$, is defined by

$$
\frac{\partial f}{\partial x_{i}}(p)=\frac{\partial\left(f \circ \phi^{-1}\right)}{\partial u_{i}}(\phi(p)) .
$$

Let M and N be manifolds of dimension n and m respectively. If $f: M \longrightarrow N$ is a smooth map, and $\phi=\left(x_{1}, \ldots, x_{n}\right)$ and $\psi=\left(y_{1}, \ldots, y_{m}\right)$ are coordinate systems in M and N respectively, then the functions $f_{i}=y_{i} \circ f$ of x_{1}, \ldots, x_{n} are called the components of f. The Jacobian matrix of f relative to the pair of coordinate systems (ϕ, ψ) is defined to be the $m \times n$ matrix

$$
J f=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)
$$

Note that this is nothing but the Jacobian matrix $J g$ of the local representation $g=\psi \circ f \circ \phi^{-1}$. The rank of f at p is defined to be the rank of $J f(p)$. The definition is independent of the local representation of f. This may be seen easily. Suppose that $g=\psi \circ f \circ \phi^{-1}$ and $g^{\prime}=\psi^{\prime} \circ f \circ \phi^{-1}$ are two local representations of f at p for the pairs of coordinate charts $(U, \phi),(V, \psi)$ and $\left(U^{\prime}, \phi^{\prime}\right),\left(V^{\prime}, \psi^{\prime}\right)$ respectively. We may suppose that $U=U^{\prime}$ and $V=V^{\prime}$, by replacing U, U^{\prime} by $U \cap U^{\prime}$ and V, V^{\prime} by $V \cap V^{\prime}$. Then $g^{\prime}=\left(\psi^{\prime} \circ \psi^{-1}\right) \circ g \circ\left(\phi \circ \phi^{\prime-1}\right)$. This proves the assertion, since $\phi \circ \phi^{\prime-1}$ and $\psi^{\prime} \circ \psi^{-1}$ are diffeomorphisms.

We will now prove some theorems which will provide the keys to understanding the local behaviour of a smooth map of maximum rank.

Theorem 3.3 (Inverse Function Theorem). Let M and N be manifolds of the same dimension n, and $f: U \longrightarrow V$ be a smooth map, where U and V are open sets of M and N respectively. Then, if $\operatorname{rank} f=n$ at a point $p \in U$, there exists an open neighbourhood W of p in U such that $f \mid W$ is a diffeomorphism onto an open neighbourhood of $f(p)$ in V.

Proof. The theorem is just the Inverse Function Theorem of Calculus when $M=$ $N=\mathbb{R}^{n}$, and its proof follows trivially from this special case. By hypothesis, any local representation $g=\psi \circ f \circ \phi^{-1}$ of f has rank n at the point $\phi(p)$, and therefore there is an open neighbourhood W^{\prime} of $\phi(p)$ on which g is a diffeomorphism. Then the restriction of f to $W=\phi^{-1}\left(W^{\prime}\right)$ is also a diffeomorphism.

The next theorem generalizes this result, when $\operatorname{dim} M \leq \operatorname{dim} N$.
Definition 3.4. Let M and N be manifolds of dimension n and m respectively. A smooth map $f: M \longrightarrow N$ is called an immersion at $p \in M$ if $n \leq m$ and rank $f=n$ at p. It is called a submersion at p if $n \geq m$ and rank $f=m$ at p. The map f is called an immersion, or a submersion, if it is so at each point of M.

Also, f is called an embedding if it an immersion, and a homeomorphism onto its image $f(M)$. If $n=m$, then a surjective embedding is a diffeomorphism.

Examples 3.5. (1) If $n \leq m$, the standard inclusion map $i: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ given by $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)$ is an embedding. It is called the canonical embedding.
(2) If $n \geq m$, the projection map $s: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ onto the first m coordinates given by $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right)$ is a submersion. It is called the canonical submersion.

The following examples show that an injective immersion may not be an embedding.
Example 3.6. The map $f:[0,2 \pi] \longrightarrow \mathbb{R}^{2}$ given by $f(t)=(\sin 2 t,-\sin t)$ is an immersion. As t varies from 0 to 2π, the image point traces the lower half of the figure " 8 " in the clockwise direction, and then traces the upper half in the anticlockwise direction. (The Cartesian equation of the curve is $x^{2}=4 y^{2}\left(1-y^{2}\right)$.) It is not an embedding, because there is a crossing at the origin. The restriction $f \mid(0,2 \pi)$ is an injective immersion, but not an embedding, as it is not a homeomorphism onto its image (the ends are not joined). However, the restriction $f \mid(0, \pi)$ is a embedding, as the image is the lower half of the figure ' 8 ' without the origin.

Example 3.7. Consider the map $f: \mathbb{R} \longrightarrow S^{1} \times S^{1}$ given by

$$
f(t)=\left(e^{2 \pi i \alpha t}, e^{2 \pi i \beta t}\right)
$$

where α / β is irrational, The map is an immersion, since $d f / d t$ is never zero. It is injective, since $f\left(t_{1}\right)=f\left(t_{2}\right)$ implies that both $\alpha\left(t_{1}-t_{2}\right)$ and $\beta\left(t_{1}-t_{2}\right)$ are integers, which is not possible unless $t_{1}=t_{2}$. It is not hard to show that the image $f(\mathbb{R})$ is an everywhere dense curve winding around the torus $S^{1} \times S^{1}$. Therefore f is far from being an embedding, because the image of an embedding cannot be dense (see Proposition 4.5 below).

Note that the fact that \mathbb{R} is not compact plays an essential role in these examples. Indeed, we have the following simple result.

Exercise 3.8. Show that if M is a compact manifold, then any injective immersion $M \longrightarrow N$ is an embedding.

Definition 3.9. Two smooth maps $f: M \longrightarrow N$ and $f^{\prime}: M^{\prime} \longrightarrow N^{\prime}$ are called equivalent up to diffeomorphism if there exist diffeomorphisms $\phi: M \longrightarrow M^{\prime}$ and $\psi: N \longrightarrow N^{\prime}$ such that $\psi \circ f=f^{\prime} \circ \phi$.

We will show in the next two theorems that any immersion is locally equivalent to a canonical embedding, and any submersion is locally equivalent to a canonical submersion.

Theorem 3.10 (Local Immersion Theorem). Let M and N be manifolds of dimension n and m respectively. If $f: M \longrightarrow N$ is an immersion at $p \in M$, then there is a local representation of f at p which is the canonical embedding i.

Proof. Let $g=\psi \circ f \circ \phi^{-1}$ be a local representation of f at p for a pair of coordinate systems (ϕ, ψ). We may suppose without loss of generality that $\phi(p)=0$ and $\psi(f(p))=0$, and that the matrix of g at 0 is of the form

$$
J g(0)=\binom{A}{B}
$$

where A is a non-singular $n \times n$ matrix (the last condition may be realized by permuting the coordinates in ψ, if necessary). By changing the coordinates in \mathbb{R}^{m}
by a linear transformation $\mathbb{R}^{m} \longrightarrow \mathbb{R}^{m}$ whose matrix is

$$
\left(\begin{array}{cc}
A^{-1} & O \\
-B A^{-1} & I_{m-n}
\end{array}\right)
$$

where I_{m-n} is the identity matrix of order $m-n$ and O is a null matrix, the matrix $J g(0)$ may be given the following form

$$
\left(\begin{array}{cc}
A^{-1} & O \\
-B A^{-1} & I_{m-n}
\end{array}\right) \cdot\binom{A}{B}=\binom{I_{n}}{O}
$$

Define a map $h: U \times \mathbb{R}^{m-n} \longrightarrow \mathbb{R}^{m}$, where U is the domain of g in \mathbb{R}^{n}, by

$$
h(x, y)=g(x)+(0, y) .
$$

Then $g=h \circ i$, where $i: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is the canonical embedding $x \mapsto(x, 0)$, and the matrix $J h(0)$ is I_{m}. By the inverse function theorem, h is a local diffeomorphism at $0 \in \mathbb{R}^{m}$, and we have

$$
\psi \circ f \circ \phi^{-1}=g=h \circ i \Rightarrow\left(h^{-1} \circ \psi\right) \circ f \circ \phi^{-1}=i .
$$

Thus the local representation of f at p for the pair of coordinate systems ($\phi, h^{-1} \circ \psi$) is the canonical embedding i.

The following exercise points out that locally there is no distinction between immersion and embedding.
Exercise 3.11. Show that if $f: M \longrightarrow N$ is an immersion, then each point $p \in M$ has an open neighbourhood U such that $f \mid U$ is an embedding.

Theorem 3.12 (Local Submersion Theorem). Let M and N be manifolds of dimension n and m respectively. If $f: M \longrightarrow N$ is a submersion at $p \in M$, then there is a local representation of f at p which is the canonical submersion s.

Proof. As before, suppose that $g=\psi \circ f \circ \phi^{-1}$ be a local representation of f at p for a pair of coordinate systems (ϕ, ψ) such that $\phi(p)=0, \psi(f(p))=0$, and that the Jacobian matrix of g at 0 is

$$
J g(0)=\left(\begin{array}{ll}
I_{m} & O
\end{array}\right)
$$

after a linear change of coordinates in \mathbb{R}^{n}. Then, the map $h: U \longrightarrow \mathbb{R}^{n}$ given by $h(x)=\left(g(x), x_{m+1}, \ldots, x_{n}\right)$ has the Jacobian matrix I_{n} at $x=0$, and we have $g=s \circ h$. Therefore $\psi \circ f \circ(h \circ \phi)^{-1}$ is the canonical submersion s.

Exercises 3.13. (a) Show that any submersion is an open map (i.e. maps an open set onto an open set).
(b) Show that if M is compact and N is connected, then any submersion f : $M \longrightarrow N$ is surjective.
(c) Show that there is no submersion of a compact manifold into an Euclidean space.

Proposition 3.14. Let M, N, and P be manifolds, and $f: M \longrightarrow N$ be a surjective submersion. Then a map $g: N \longrightarrow P$ is smooth if and only if the composition $g \circ f: M \longrightarrow P$ is smooth.

Proof. If g is smooth, then $g \circ f$ is smooth by composition. To prove the converse, note that g is necessarily continuous, and, since the problem is local, we may suppose that f is the projection $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{m}\right)$ from \mathbb{R}^{n} onto \mathbb{R}^{m}, where $n=\operatorname{dim} M, m=\operatorname{dim} N$, and $n \geq m$. Then, by hypothesis, the map $g \circ f$: $\left(x_{1}, \ldots, x_{n}\right) \mapsto g\left(x_{1}, \ldots, x_{m}\right)$ is smooth. Therefore the map $g:\left(x_{1}, \ldots, x_{m}\right) \mapsto$ $g\left(x_{1}, \ldots, x_{m}\right)$ is smooth. This means that g is smooth on $f(M)$, and hence on N, since f is surjective.

Exercise 3.15. Show that if f and g are as in this proposition, then g is a submersion if and only if their composition $g \circ f$ is a submersion.

Exercises 3.16. (a) Show that if $f: M \longrightarrow N$ is a surjective submersion, then for each $x \in M$ there exist an open neighbourhood U of $f(x)$ in N, and a smooth map $g: U \longrightarrow M$ such that $f \circ g$ is the identity map on U.

The map g is called a local section of f.
(b) Suppose that $f: M \longrightarrow N$ is a smooth map such that every point of M is in the image of a smooth local section of f. Show that f is a submersion.
Exercise 3.17. If $f: M \longrightarrow N$ is a map and $y \in N$, then $f^{-1}(y)$ is called the fibre of f over y. Suppose that f is a surjective submersion. Show that if $g: M \longrightarrow P$ is a smooth map that is constant on the fibres of f, then there is a unique smooth map $h: N \longrightarrow P$ such that $h \circ f=g$.

Exercise 3.18. Show that a smooth map $f: M \longrightarrow N$ is a diffeomorphism if and only if it is bijective and a submersion.
Exercise 3.19. Let M, N, and P be manifolds, and $f: M \longrightarrow N$ be an immersion. Then show that a continuous map $g: P \longrightarrow M$ is smooth if and only if their composition $f \circ g: P \longrightarrow N$ is smooth.

Exercise 3.20. Prove the implicit function theorem in the following form. If $f: U \longrightarrow \mathbb{R}, U$ open in \mathbb{R}^{n}, is a smooth map with $f(p)=q$ and $\partial f / \partial u_{i}(p) \neq 0$ for some i, then there is a smooth function

$$
u_{i}=g\left(u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{n}\right)
$$

whose graph in some open neighbourhood of p in U is the set of solutions of the equation $f(u)=q$.

4. Submanifolds

Definition 4.1. Let N be an m-manifold. Then a subset M of N is called a submanifold of dimension n if for each point $p \in M$ there is a coordinate chart (U, ϕ) at p in N such that ϕ maps $M \cap U$ homeomorphically onto an open subset of $\mathbb{R}^{n} \subset \mathbb{R}^{m}$, where \mathbb{R}^{n} is considered as the subspace of the first n coordinates in \mathbb{R}^{m}

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m} \mid x_{n+1}=\cdots=x_{m}=0\right\}
$$

Then the collection

$$
\{(M \cap U, \phi \mid M \cap U) \mid(U, \phi) \text { is a chart in } N, M \cap U \neq \emptyset\}
$$

is a smooth atlas of M.

Exercise 4.2. Show that a submanifold M of a manifold N is a second countable Hausdorff space.
Lemma 4.3. Let M and N be manifolds of dimension n and m respectively. If M is a submanifold of N, then for each point $p \in M$ there is an open neighbourhood U of p in N and a submersion $g: U \longrightarrow \mathbb{R}^{m-n}$ such that $g^{-1}(0)=M \cap U$.

Proof. By the above definition, there is a coordinate chart $\phi: U \longrightarrow \mathbb{R}^{m}$ about p in N such that if $\mathbb{R}^{m}=\mathbb{R}^{n} \times \mathbb{R}^{m-n}$, then $\phi^{-1}\left(\mathbb{R}^{n} \times\{0\}\right)=M \cap U$. Then $g=\pi \circ \phi$, where $\pi: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m-n}$ is the projection onto the second factor, is a submersion with $g^{-1}(0)=M \cap U$.

Proposition 4.4. A subset A of an m-manifold N is a submanifold if and only if A is the image of a smooth embedding $f: M \longrightarrow N$, where M is an n-manifold and $n \leq m$.

Proof. If A is a submanifold of N, then it follows from the natural smooth structure on A derived from that of N that the inclusion of A in N is a smooth embedding. Conversely, suppose $f: M \longrightarrow N$ is a smooth embedding and $A=f(M)$. Then, by the local immersion theorem, for each $p \in M$ there exist a coordinate system y_{1}, \ldots, y_{m} in an open neighbourhood V of $f(p)$ in N such that $A \cap V=\{q \in$ $\left.V \mid y_{n+1}(q)=\cdots=y_{m}(q)=0\right\}$, and the restrictions of the remaining coordinate functions y_{1}, \ldots, y_{n} to $A \cap V$ form a local chart on A at $f(p)$. Therefore A is a submanifold of N.

Proposition 4.5. If M is an n-dimensional submanifold of an m-manifold N where $n<m$, then M is not a dense subset of N.

Proof. There is a coordinate chart (V, ψ) of N such that $U=M \cap V$ is non-empty, and $\psi(U) \subset \mathbb{R}^{n} \times\{0\}$. Then the non-empty open set $\psi^{-1}\left(\mathbb{R}^{n} \times\left(\mathbb{R}^{m-n}-\{0\}\right)\right)$ of N lies in V and does not intersect U. So M cannot be dense in N.
Exercises 4.6. Let M, N, and P, denote manifolds. Then show that
(1) if $f: N \longrightarrow P$ is a smooth map, then the restriction $f \mid M$ is also smooth; moreover, if f is an immersion, then $f \mid M$ is also an immersion.
(2) if M is a subset of N such that the inclusion $M \hookrightarrow N$ is an immersion, and $f: P \longrightarrow N$ is a smooth map with $f(P) \subset M$, then the map $f: P \longrightarrow M$ obtained by restricting the range of f may not be continuous. However, if

$$
f: P \longrightarrow M
$$

is continuous, then it is also smooth.
Definition 4.7. Let $f: M \longrightarrow N$ be a smooth map. Then a point $p \in M$ is called a critical point of f if f is not a submersion at p. Other points of M are called regular points of f. A point $q \in N$ is called a critical value of f if $f^{-1}(q)$ contains at least one critical point. Other points of N (including those for which $f^{-1}(q)$ is empty) are called regular values of f.

Theorem 4.8 (Preimage theorem). . Let M and N be manifolds of dimension n and m respectively, where $n \geq m$. If q is a regular value of a smooth map $f: M \longrightarrow N$, then $f^{-1}(q)$ is a submanifold of M of dimension $n-m$.

Proof. Since f is a submersion at a point $p \in f^{-1}(q)$, we can choose local coordinate systems about p and q such that $f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{m}\right)$, and q corresponds to $(0, \ldots, 0)$. Therefore, if U is the coordinate neighbourhood at p on which the functions x_{1}, \ldots, x_{n} are defined, then $f^{-1}(q) \cap U$ is the set of points $\left(0, \ldots, 0, x_{m+1}, \ldots, x_{n}\right)$. Thus the functions x_{m+1}, \ldots, x_{n} form a coordinate system on the relative open set $f^{-1}(q) \cap U$ of $f^{-1}(q)$.

We may apply the theorem in the following situation. Let $m>n$, and N be an m-manifold. Let $f: N \longrightarrow \mathbb{R}^{m-n}$ be a smooth map. Then $M=f^{-1}(0)$ is the solution set of the system of equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, \ldots, f_{m-n}\left(x_{1}, \ldots, x_{n}\right)=0,
$$

where $f_{i}: N \longrightarrow \mathbb{R}$ are the components of f.
Proposition 4.9. If f, N, and M are as above and rank $f=m-n$ at each point of N, then M is an n-dimensional submanifold of N.

Proof. The proof follows immediately from the previous theorem.
The converse is true locally.
Proposition 4.10. Every n-submanifold M of an m-manifold N is locally definable as the set of common zeros of a set of functions $f_{1}, \ldots, f_{m-n}: U \longrightarrow \mathbb{R}$ such that

$$
\operatorname{rank}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)=m-n,
$$

where U is a coordinate neighbourhood in N of a point in M with coordinates x_{1}, \ldots, x_{m}.

Proof. The proof follows immediately from the local immersion theorem. If $p \in M$, then there exists local coordinate system x_{1}, \ldots, x_{m} defined on a neighbourhood U of p in N such that $M \cap U$ is given by the equations

$$
x_{n+1}=0, \ldots, x_{m}=0 .
$$

5. Tangent spaces and derivative maps

Let U be an open set of a manifold M, and $C^{\infty}(U)$ denote the set of all smooth functions from U to \mathbb{R}. Let $p \in M$, and $\widetilde{C}^{\infty}(p)$ be the union of all $C^{\infty}(U)$ as U runs over all open neighbourhoods of p. This is an algebra over \mathbb{R}, because if $f \in C^{\infty}(U)$, and $g \in C^{\infty}(V)$, then $f+g, f g \in C^{\infty}(U \cap V)$, and $\lambda f \in C^{\infty}(U)$ for all $\lambda \in \mathbb{R}$. Two functions f and g as above are said to be equivalent (or have the same germ at p) if $f=g$ in a neighbourhood of p. The quotient set $C^{\infty}(p)$ of $\widetilde{C}^{\infty}(p)$ under this equivalence relation is also an algebra, called the algebra of germs of smooth functions at p.

In fact, $C^{\infty}(p)$ is the quotient algebra $\widetilde{C}^{\infty}(p) / \widetilde{C}_{0}^{\infty}(p)$, where $\widetilde{C}_{0}^{\infty}(p)$ is the ideal consisting of functions which vanish in a neighbourhood of p (neighbourhood depending on the function).

Definition 5.1. A tangent vector of M at a point $p \in M$ is the geometric name of what is called a derivation of the algebra $C^{\infty}(p)$ on \mathbb{R}. It is a linear functional $X_{p}: C^{\infty}(p) \longrightarrow \mathbb{R}$ satisfying the Leibniz formula

$$
X_{p}(f g)=f(p) \cdot X_{p}(g)+g(p) \cdot X_{p}(f), \quad f, g \in C^{\infty}(p)
$$

The formula implies that if f is a constant function, then $X_{p} f=0$ for all $p \in M$.
The set $\tau(M)_{p}$ of all tangent vectors of M at p is called the tangent space of M at p, or the space of derivations at p. It is a vector space over \mathbb{R}, where the vector space operations are defined by $\left(X_{p}+Y_{p}\right)(f)=X_{p}(f)+Y_{p}(f)$, and $\left(\lambda X_{p}\right)(f)=\lambda X_{p}(f)$ for $X_{p}, Y_{p} \in \tau(M)_{p}, f \in C^{\infty}(p)$, and $\lambda \in \mathbb{R}$.

The geometric picture behind the definition will be clear after we prove that the dimension of the vector space $\tau(M)_{p}$ is n, which is also equal to the dimension of M.

Proposition 5.2. If $\phi=\left(x_{1}, \ldots, x_{n}\right)$ is a coordinate system in M at p, then the operators

$$
\left[\frac{\partial}{\partial x_{i}}\right]_{p}: C^{\infty}(p) \longrightarrow \mathbb{R}, \quad i=1, \ldots, n
$$

defined by $f \mapsto\left(\partial f / \partial x_{i}\right)(p)$ are tangent vectors of M at p, and they form a basis of the vector space $\tau(M)_{p}$.

Here $\left(\partial f / \partial x_{i}\right)(p)$ is the partial derivative as defined in §3, p. 8.
We first prove a lemma.
Lemma 5.3. ${ }^{1}$ Let $a \in \mathbb{R}^{n}$ and $f \in C^{\infty}(a)$. Then there exist functions $g_{1}, \ldots, g_{n} \in$ $C^{\infty}(a)$ and a neighbourhood U of a in \mathbb{R}^{n} contained in the intersection of the domains of f, g_{1}, \ldots, g_{n} such that $g_{i}(a)=\left(\partial f / \partial u_{i}\right)(a), 1 \leq i \leq n$, and

$$
f(u)=f(a)+\sum_{i=1}^{n}\left(u_{i}-u_{i}(a)\right) \cdot g_{i}(u), u \in U
$$

where $u=\left(u_{1}, \ldots, u_{n}\right), u_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, is the coordinate system in \mathbb{R}^{n}.
Proof. Define

$$
g_{i}(u)=\int_{0}^{1} \frac{\partial f}{\partial u_{i}}(t(u-a)+a) d t
$$

This is C^{∞} in a neighbourhood of a, and $g_{i}(a)=\left(\partial f / \partial u_{i}\right)(a)$. Therefore

$$
\begin{aligned}
f(u)-f(a) & =\int_{0}^{1} \frac{d}{d t} f(t(u-a)+a) d t \\
& =\int_{0}^{1}\left\{\sum_{i=1}^{n} \frac{\partial f}{\partial u_{i}}(t(u-a)+a) \cdot\left(u_{i}-u_{i}(a)\right)\right\} d t \\
& =\sum_{i=1}^{n} g_{i}(u) \cdot\left(u_{i}-u_{i}(a)\right)
\end{aligned}
$$

[^1]Exercise 5.4. Show that if $a \in \mathbb{R}^{n}$ and $f \in C^{\infty}(a)$, then there exist functions $\lambda_{i j} \in C^{\infty}(a)$, and a neighbourhood U of a on which f and $\lambda_{i j}$ are defined such that $\lambda_{i j}(a)=\left(\partial^{2} f / \partial u_{i} \partial u_{j}\right)(a)$, and if $u \in U$ then

$$
f(u)=f(a)+\sum_{i=1}^{n}\left(u_{i}-u_{i}(a)\right) \cdot \frac{\partial f}{\partial u_{i}}(a)+\sum_{i, j=1}^{n}\left(u_{i}-u_{i}(a)\right)\left(u_{j}-u_{j}(a)\right) \cdot \lambda_{i j}(u)
$$

Proof of the Proposition. That the operators $\left[\partial / \partial x_{i}\right]_{p}$ are tangent vectors is immediate from the definition. Next, for any $f \in C^{\infty}(p)$, use the lemma to write $f \circ \phi^{-1}$ in a neighbourhood of $a=\phi(p)$ as

$$
f \circ \phi^{-1}(u)=f \circ \phi^{-1}(a)+\sum_{i=1}^{n}\left(u_{i}-u_{i}(a)\right) \cdot g_{i}(u),
$$

where g_{i} is a C^{∞} function in a neighbourhood of a with

$$
g_{i}(a)=\left(\partial\left(f \circ \phi^{-1}\right) / \partial u_{i}\right)(a)
$$

Transferring this relation to a neighbourhood of p in M, write

$$
f(x)=f(p)+\sum_{i=1}^{n}\left(x_{i}-x_{i}(p)\right) \cdot h_{i}(x)
$$

where $h_{i}=g_{i} \circ \phi \in C^{\infty}(p)$ with $h_{i}(p)=g_{i}(a)=\left(\partial f / \partial x_{i}\right)(p)$. Now apply a derivation $X_{p} \in \tau(M)_{p}$ to f using the Leibniz formula :

$$
X_{p}(f)=\sum_{i=1}^{n} X_{p}\left(x_{i}\right) \cdot h_{i}(p)=\sum_{i=1}^{n} X_{p}\left(x_{i}\right) \cdot\left[\frac{\partial f}{\partial x_{i}}\right]_{p}
$$

(recall that $X_{p}(c)=0$ for any constant function c). Thus in terms of the coordinate $\operatorname{system}\left(x_{1}, \ldots, x_{n}\right), X_{p}$ takes the form

$$
X_{p}=\sum_{i=1}^{n} X_{p}\left(x_{i}\right) \cdot\left[\frac{\partial}{\partial x_{i}}\right]_{p}
$$

Now $\left[\partial / \partial x_{i}\right]_{p}\left(x_{j}\right)=\left(\partial\left(u_{j} \circ \phi \circ \phi^{-1}\right) / \partial u_{i}\right)(a)=\delta_{i j}$ (Kronecker delta). Therefore the vectors $\left\{\left[\partial / \partial x_{i}\right]_{p}\right\}$ are linearly independent, as may be seen by evaluating a linear combination of these vectors on x_{j} in turn.

It follows that if U is an open neighbourhood of p, then $\tau(U)_{p}=\tau(M)_{p}$, because the definition of $\tau(M)_{p}$ uses only $C^{\infty}(p)$, and not the entire M. Also, the tangent space $\tau(M)_{p}$ is isomorphic to \mathbb{R}^{n}, where $\left[\partial / \partial x_{i}\right]_{p}$ corresponds to the i-th unit coordinate vector of \mathbb{R}^{n}, and therefore the tangent space $\tau\left(\mathbb{R}^{n}\right)_{p}$ can be identified with the set of all pairs (p, v), where $v \in \mathbb{R}^{n}$.

A smooth curve in M is a smooth map $\sigma: I \longrightarrow M$, where I is an open interval in \mathbb{R}. For each $t_{0} \in I, \sigma$ gives rise to a tangent vector $\dot{\sigma}\left(t_{0}\right): C^{\infty}(p) \longrightarrow \mathbb{R}$ of M at $p=\sigma\left(t_{0}\right)$ defined by

$$
\dot{\sigma}\left(t_{0}\right)(f)=\left[\frac{d}{d t} f(\sigma(t))\right]_{t=t_{0}}
$$

which is the derivative of f along σ at p. The components of $\sigma(t)$ with respect to a local coordinate system $\left(x_{1}, \ldots, x_{n}\right)$ at p are the real-valued functions $\sigma_{i}(t)=$
$x_{i}(\sigma(t))$, and their derivatives $\dot{\sigma}_{i}\left(t_{0}\right)=\left(d\left(\sigma_{i}(t)\right) / d t\right)\left(t_{0}\right)$ are the components of the tangent vector $\dot{\sigma}\left(t_{0}\right)$ with respect to the basis $\left[\partial / \partial x_{i}\right]_{p}$. Because, if (U, ϕ) is the coordinate chart at p for which $\phi=\left(x_{1}, \ldots, x_{n}\right), x_{i}=u_{i} \circ \phi$, then $\sigma_{i}(t)=x_{i}(\sigma(t))=$ $u_{i} \circ \phi(\sigma(t))$, and therefore, by chain rule

$$
\begin{aligned}
\dot{\sigma}\left(t_{0}\right)(f) & =\frac{d}{d t}\left[\left(f \circ \phi^{-1}\right) \circ(\phi \circ \sigma)\right]\left(t_{0}\right) \\
& =\sum_{i} \frac{\partial\left(f \circ \phi^{-1}\right)}{\partial u_{i}}\left(\phi \circ \sigma\left(t_{0}\right)\right) \cdot \frac{\partial\left(u_{i} \circ \phi \circ \sigma\right)}{\partial t}\left(t_{0}\right) \\
& =\sum_{i} \frac{\partial f}{\partial x_{i}}(p) \cdot \frac{d x_{i}}{d t}\left(t_{0}\right) .
\end{aligned}
$$

We also say that $\dot{\sigma}\left(t_{0}\right)$ is the tangent vector or velocity vector of σ at $\sigma\left(t_{0}\right)$. In the case when $M=\mathbb{R}^{n}$, this vector may be viewed as a line segment from $\sigma\left(t_{0}\right)$ to $\sigma\left(t_{0}\right)+\dot{\sigma}\left(t_{0}\right)$. Conversely, any tangent vector to M at p is associated to a smooth curve in this way. For, if $\phi=\left(x_{1}, \ldots, x_{n}\right)$ is a coordinate system at p, then a vector $\sum_{i} v_{i}\left[\partial / \partial x_{i}\right]_{p} \in \tau(M)_{p}$ is clearly tangent at p to the curve

$$
t \mapsto \phi^{-1}\left(x_{1}(p)+t v_{1}, \ldots, x_{n}(p)+t v_{n}\right) .
$$

We may therefore define a tangent vector to M at p alternatively as follows. Consider the set of all smooth curves $\sigma: I \longrightarrow M$, where I is an open interval containing 0 , such that $\sigma(0)=p$. Define an equivalence relation in this set by taking two curves σ and τ to be equivalent if $\dot{\sigma}(0)=\dot{\tau}(0)$. Then a tangent vector to M at p is an equivalence class of curves.

Exercise 5.5. Check that the relation on the set of all smooth curves as defined above is indeed an equivalence relation.

Example 5.6. Let \langle,$\rangle denote the standard inner product in \mathbb{R}^{n+1}$. Then the n-sphere S^{n} in \mathbb{R}^{n+1} is given by

$$
S^{n}=\left\{v \in \mathbb{R}^{n+1} \mid\langle v, v\rangle=1\right\} .
$$

Consider a smooth curve $\sigma: I \longrightarrow \mathbb{R}^{n+1}$ so that $\sigma(s) \in S^{n}$ for all $s \in I$, and $\sigma(0)=p$. Then $\langle\sigma(s), \sigma(s)\rangle=1$. Differentiating this relation with respect to s at $s=0$, we get

$$
\langle\dot{\sigma}(0), \sigma(0)\rangle+\langle\sigma(0), \dot{\sigma}(0)\rangle=0, \text { or }\langle\dot{\sigma}(0), \sigma(0)\rangle=0 .
$$

Since $\dot{\sigma}(0)$ is a vector in $\tau\left(S^{n}\right)_{p}$, the above relation says that $\tau\left(S^{n}\right)_{p}$ is the hyperplane in \mathbb{R}^{n+1} orthogonal to $\sigma(0)=p$.

Definition 5.7. If $f: M \longrightarrow N$ is a smooth map between manifolds, then the derivative map or differential of f at a point $p \in M$ is a linear map $d f_{p}$: $\tau(M)_{p} \longrightarrow \tau(N)_{f(p)}$ defined by

$$
d f_{p}\left(X_{p}\right)(g)=X_{p}(g \circ f), \quad X_{p} \in \tau(M)_{p}, g \in C^{\infty}(f(p))
$$

Taking X_{p} as the velocity vector $\dot{\sigma}(0)$ of a smooth curve σ in M at $\sigma(0)=p$ with parameter t, the definition may be given in the following alternative form:

$$
d f_{p}(\dot{\sigma}(0))(g)=\frac{d}{d t}(g \circ f(\sigma(t)))(0)
$$

We may rephrase the previous definition of the velocity vector $\dot{\sigma}(0)$ as follows

$$
\dot{\sigma}(0)=d \sigma_{0}\left(\frac{d}{d t}\right)
$$

where $d \sigma_{0}: \tau(I)_{0}=\mathbb{R} \longrightarrow \tau(M)_{p}$ is the derivative map of σ at 0 , and $d / d t$ is the basis of \mathbb{R}. Because

$$
d \sigma_{0}\left(\frac{d}{d t}\right)(g)=\frac{d}{d t} g(\sigma(t))(0)=\dot{\sigma}(0)(g) .
$$

Let (U, ϕ) with $\phi=\left(x_{1}, \ldots, x_{n}\right), x_{i}=u_{i} \circ \phi$, be a coordinate chart at p, and (V, ψ) with $\psi=\left(y_{1}, \ldots, y_{m}\right), y_{j}=v_{j} \circ \psi$, be a coordinate chart at $q=f(p)$, where $u_{i}\left(\right.$ resp. $\left.v_{j}\right)$ are the coordinate functions on \mathbb{R}^{n} (resp. $\left.\mathbb{R}^{m}\right)$. Then

$$
\begin{aligned}
d f_{p}\left(\left[\frac{\partial}{\partial x_{i}}\right]_{p}\right)(g) & =\frac{\partial}{\partial x_{i}}(g \circ f)(p)=\frac{\partial}{\partial u_{i}}\left(g \circ f \circ \phi^{-1}\right)(\phi(p)) \\
& =\frac{\partial}{\partial u_{i}}\left(g \circ \psi^{-1} \circ \psi \circ f \circ \phi^{-1}\right)(\phi(p))=\frac{\partial}{\partial u_{i}}(\bar{g} \circ \bar{f})(\phi(p)),
\end{aligned}
$$

where $\bar{f}=\psi \circ f \circ \phi^{-1}: \phi(U) \longrightarrow \psi(V)$, and $\bar{g}=g \circ \psi^{-1}: \psi(V) \longrightarrow \mathbb{R}$ are smooth maps. By the chain rule, the last expression is equal to

$$
\sum_{j=1}^{m} \frac{\partial \bar{f}_{j}}{\partial u_{i}}(\phi(p)) \cdot \frac{\partial \bar{g}}{\partial v_{j}}(\psi(q))=\sum_{j=1}^{m} \frac{\partial f_{j}}{\partial x_{i}}(p) \cdot \frac{\partial g}{\partial y_{j}}(q)
$$

Therefore

$$
d f_{p}\left(\left[\frac{\partial}{\partial x_{i}}\right]_{p}\right)=\frac{\partial f_{1}}{\partial x_{i}}(p)\left[\frac{\partial}{\partial y_{1}}\right]_{f(p)}+\cdots+\frac{\partial f_{m}}{\partial x_{i}}(p)\left[\frac{\partial}{\partial y_{m}}\right]_{f(p)}
$$

Therefore the i-th column vector of the matrix of the linear map $d f_{p}$ with respect to the bases $\left[\partial / \partial x_{i}\right]_{p}$ and $\left[\partial / \partial y_{j}\right]_{f(p)}$ of the tangent spaces $\tau(M)_{p}$ and $\tau(N)_{f(p)}$ is

$$
\left(\frac{\partial f_{1}}{\partial x_{i}}(p), \ldots, \frac{\partial f_{m}}{\partial x_{i}}(p)\right)
$$

Therefore the matrix of $d f_{p}$ is the Jacobian matrix of f at p, as defined in $\S(1.4)$

$$
(J f)(p)=\left(\frac{\partial f_{i}}{\partial x_{j}}(p)\right)
$$

Thus if we represent a tangent vector $X_{p}=\sum_{i} a_{i}\left(\frac{\partial}{\partial x_{i}}\right)_{p}$ by the $n \times 1$ matrix $A=\left(a_{i}\right)$, then the tangent vector $d f_{p}\left(X_{p}\right)$ is represented by the $m \times 1$ matrix $(J f)(p) \cdot A$. In particular, for the coordinate chart (U, ϕ),

$$
d \phi_{p}\left(\sum_{i} a_{i}\left(\frac{\partial}{\partial x_{i}}\right)_{p}\right)=\left(a_{1}, \ldots, a_{n}\right)
$$

If $f: M \longrightarrow N$ and $g: N \longrightarrow L$ are smooth maps of manifolds, then

$$
d(g \circ f)_{p}=d g_{f(p)} \circ d f_{p}, \quad p \in M
$$

For. if $X_{p} \in \tau(M)_{p}$ and $h \in C^{\infty}(g(f(p)))$, then

$$
d(g \circ f)_{p}\left(X_{p}\right)(h)=X_{p}(h \circ g \circ f)=d f_{p}\left(X_{p}\right)(h \circ g)=d g_{f(p)}\left(d f_{p}\left(X_{p}\right)\right)(h)
$$

In terms of local coordinates this computation exhibits the chain rule and the multiplicative behaviour of Jacobian matrices.

6. Tangent Bundles and Vector Fields

Definition 6.1. The tangent bundle $\tau(M)$ of M is the disjoint union of all tangent spaces $\tau(M)_{p}$ as p runs over M.

This is the set of all ordered pairs (p, v) such that $v \in \tau(M)_{p}$. The map π : $\tau(M) \longrightarrow M$, given by $(p, v) \mapsto p$, is called the projection map of the tangent bundle. The following theorem shows we can pull back the differential structure on M by π to obtain a unique differential structure on $\tau(M)$.
Theorem 6.2. If M is a manifold of dimension n, then its tangent bundle $\tau(M)$ is a manifold of dimension $2 n$.

Proof. Each chart (U, ϕ) of M determines a map $\tau_{\phi}: \pi^{-1}(U) \longrightarrow \phi(U) \times \mathbb{R}^{n} \subset$ $\mathbb{R}^{n} \times \mathbb{R}^{n}$ given by $\tau_{\phi}(p, v)=\left(\phi(p), d \phi_{p}(v)\right)$. Clearly, τ_{ϕ} is a bijection with inverse τ_{ϕ}^{-1} given by $\tau_{\phi}^{-1}(a, w)=\left(p, d \phi_{p}^{-1}(w)\right)$ where $p=\phi^{-1}(a)$. For two compatible charts (U, ϕ) and (V, ψ) of M, the $\operatorname{map} \tau_{\psi} \circ \tau_{\phi}^{-1}: \phi(U \cap V) \times \mathbb{R}^{n} \longrightarrow \psi(U \cap V) \times \mathbb{R}^{n}$ is given by

$$
\begin{aligned}
\tau_{\psi} \circ \tau_{\phi}^{-1}(a, w) & =\tau_{\psi}\left(p, d \phi_{p}^{-1}(w)\right) \\
& =\left(\psi(p), d \psi_{p} \circ d \phi_{p}^{-1}(w)\right) \\
& =\left(\psi \circ \phi^{-1}(a), d \psi_{p} \circ d \phi_{p}^{-1}(w)\right),
\end{aligned}
$$

where $p=\phi^{-1}(a)$. Therefore $\tau_{\psi} \circ \tau_{\phi}^{-1}$ is a homeomorphism. It follows that $\tau(M)$ has a unique topology which makes each τ_{ϕ} a homeomorphism. Moreover, since $\tau_{\psi} \circ \tau_{\phi}^{-1}$ is a diffeomorphism, the family of charts $\left\{\left(\pi^{-1}(U), \tau_{\phi}\right)\right\}$ constitute a smooth atlas on $\tau(M)$. Thus $\tau(M)$ is a smooth manifold.

Exercise 6.3. Complete the proof of the above theorem by showing that $\tau(M)$ is second countable and Hausdorff. Also show that the projection $\pi: \tau(M) \longrightarrow M$ is a smooth map.
Exercise 6.4. Show that a smooth map $f: M \longrightarrow N$ between manifolds induces a smooth map $d f: \tau(M) \longrightarrow \tau(N)$ which is defined by $d f(p, v)=\left(f(p), d f_{p}(v)\right)$.
Definition 6.5. A vector field X on M is a map $X: M \longrightarrow \tau(M)$ such that the value of X at $p \in M$ is a tangent vector $X_{p} \in \tau(M)_{p}$.

For any $f \in C^{\infty}(U)$, a vector field X defines a function $X f: U \longrightarrow \mathbb{R}$ by $(X f)(p)=X_{p}(f)$. A vector field X is called a smooth vector field if, for every $p \in M, f \in C^{\infty}(p)$ implies $X f \in C^{\infty}(p)$ also.

Thus a smooth vector field X may be considered as a map

$$
X: C^{\infty}(M) \longrightarrow C^{\infty}(M)
$$

given by $f \mapsto X f$. We have
(i) $X(\lambda f+\mu g)=\lambda X f+\mu Y f$,
(ii) $X(f g)=f(X g)+(X f) g$,
for $f, g \in C^{\infty}(M)$, and $\lambda, \mu \in \mathbb{R}$.
Exercise 6.6. Show that a smooth vector field X on M is completely determined by its action on smooth functions on M satisfying the above properties (i) and (ii).

Exercise 6.7. Show that if f is a constant function, then $X f=0$.
The set of all smooth vector fields on M is denoted by $\nsupseteq(M)$. This is a module over the $\operatorname{ring} C^{\infty}(M)$, where the module operations are given by

$$
(X+Y) f=X f+Y f, \text { and }(f X) g=f(X g)
$$

for $X, Y \in \ni(M)$ and $f, g \in C^{\infty}(M)$.
If (U, ϕ) is a coordinate chart in M with $\phi=\left(x_{1}, \ldots, x_{n}\right)$, then for each $i=$ $1, \ldots, n$, the assignment $p \mapsto\left[\partial / \partial x_{i}\right]_{p}$ is a smooth vector field $\partial / \partial x_{i}$ on U. The tangent vectors $\left(\left[\partial / \partial x_{i}\right]_{p}\right)$ are linearly independent at each point $p \in U$. Therefore, if X is a vector field on U, then X may be written as

$$
X=\sum_{i=1}^{n} X x_{i} \cdot \frac{\partial}{\partial x_{i}}
$$

The functions $X x_{i}$ are called the components of X.
Exercise 6.8. Show that a vector field X is smooth if and only if its components $X x_{i}$ are smooth for every coordinate system ϕ.

Lemma 6.9. If X is a smooth vector field on an open neighbourhood U in M, and $p \in U$, then there is an open neighbourhood V of p in U, and a smooth vector field \widehat{X} on M which agrees with X on V.

Proof. Let K be a closed neighbourhood of p in U, and let V be the interior of K. Then, by the Smooth Urysohn's Lemma (see Lemma 1.7 (Part 2)), there is a smooth function $\phi: M \longrightarrow \mathbb{R}$ with support in U such that $\phi=1$ on K. Then define a vector field \widehat{X} on M by

$$
\begin{aligned}
\widehat{X}(q) & =\phi(q) X(q) \text { if } q \in U \\
& =0 \text { if } q \notin U
\end{aligned}
$$

Clearly this is the required vector field.

7. Manifolds with boundary

We extend the notion of manifolds so as to include manifolds with boundary. For example, the disk $D^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ is a manifold with boundary which is the $(n-1)$-sphere

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\} .
$$

Let \mathbb{R}_{+}^{n} and $\partial \mathbb{R}_{+}^{n}$ denote the subsets of \mathbb{R}^{n} given by

$$
\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1} \geq 0\right\}, \quad \partial \mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}=0\right\}
$$

We call \mathbb{R}_{+}^{n} the half space of \mathbb{R}^{n}, and $\partial \mathbb{R}_{+}^{n}$ the boundary of \mathbb{R}_{+}^{n} (a more general definition says that a half space in \mathbb{R}^{n} is an affine hyperplane, but we will not consider this). Note that we may identify $\partial \mathbb{R}_{+}^{n}$ with $\mathbb{R}^{n-1} \subset \mathbb{R}^{n}$.

Lemma 7.1. Any linear isomorphism $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$, which maps $\partial \mathbb{R}_{+}^{n}$ onto itself, maps \mathbb{R}_{+}^{n} onto itself.

Proof. The proof is obvious. Because, we may identify $\partial \mathbb{R}_{+}^{n} \times \mathbb{R}$ with \mathbb{R}^{n} by the linear isomorphism $\alpha\left(v_{0}, r\right)=v_{0}+r e_{1}\left(e_{1}=\right.$ unit vector along the first coordinate axis), so that $\mathbb{R}_{+}^{n}=\alpha\left(\partial \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}\right)$.

If U is an open subset in \mathbb{R}_{+}^{n}, then its boundary ∂U is the subset $\partial U=U \cap \partial \mathbb{R}_{+}^{n}$, and its interior $\operatorname{Int}(U)$ is the subset $\operatorname{Int}(U)=U-\partial U$. Thus $\operatorname{Int}(U)$ is open in \mathbb{R}^{n}, and ∂U is open in \mathbb{R}^{n-1}.

We may define smooth maps on open subsets of \mathbb{R}_{+}^{n} by means of Definition 2.4. Thus a map $f: U \longrightarrow V$, where U is open in R_{+}^{n} and V open in \mathbb{R}_{+}^{m}, is smooth if for each $x \in U$ there exist an open neighbourhood U_{1} of x in \mathbb{R}^{n}, an open neighbourhood V_{1} of $f(x)$ in \mathbb{R}^{m}, and a smooth map $f_{1}: U_{1} \longrightarrow V_{1}$ such that $f_{1}\left|U \cap U_{1}=f\right| U \cap U_{1}$.

The notion of derivative of map also extends naturally. Consider a smooth map $f: U \longrightarrow \mathbb{R}^{m}$, where U is open in \mathbb{R}_{+}^{n}. Then, if $x \in \operatorname{Int}(U)$, we already know what is $d f_{x}$. If $x \in \partial U$, then, since f is smooth at x, f extends to a smooth map F in an open neighbourhood of x in \mathbb{R}^{n}. In this case, we define $d f_{x}$ to be the derivative map $d F_{x}$, which is a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}. The definition is independent of the choice of the extension F, that is, if F^{\prime} is another local extension of f, then $d F_{x}^{\prime}=d F_{x}$. To see this, note that if V and V^{\prime} are the domains of F and F^{\prime} respectively, and if $\left\{x_{j}\right\}$ is a sequence of points in $V \cap V^{\prime} \cap \operatorname{Int}(U)$ converging to x, then, since F and F^{\prime} agree on $V \cap V^{\prime} \cap \operatorname{Int}(U)$, we have $d F_{x_{j}}=d F_{x_{j}}^{\prime}$, as sequences in the vector space $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ of linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}. This implies, as $j \rightarrow \infty$, that $d F_{x}=d F_{x}^{\prime}$, because the derivative maps $d F, d F^{\prime}: V \cap V^{\prime} \longrightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ are continuous.

It follows that the definition of differentiability of $f: U \longrightarrow \mathbb{R}^{m}$ at a point $p \in U$ may be obtained from Definition 3.1, just by supposing U is an open subset of the half space \mathbb{R}_{+}^{n} and keeping the other things the same. The derivative map $d f_{a}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ in the new situation will have the same properties (1)-(6) of Proposition 3.2.

Exercises 7.2. Show that
(1) if $f: U \longrightarrow \mathbb{R}^{m}$ is differentiable at $a \in U$, where U is open in \mathbb{R}_{+}^{n}, then

$$
\begin{aligned}
d f_{a}(v) & =\lim _{t \rightarrow 0+} \frac{f(a+t v)-f(a)}{t} \text { if } v \in \mathbb{R}_{+}^{n} \\
& =\lim _{t \rightarrow 0-} \frac{f(a+t v)-f(a)}{t} \text { if }-v \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

(2) if $f, g: U \longrightarrow \mathbb{R}^{m}$ are differentiable maps, where U is open in \mathbb{R}^{n}, such that f and g agree on $U \cap \mathbb{R}_{+}^{n}$, then $d f_{a}=d g_{a}$ for $a \in U \cap \mathbb{R}_{+}^{n}$.
Lemma 7.3. If $f: U \longrightarrow \mathbb{R}_{+}^{m}$ is differentiable, where U is open in \mathbb{R}^{n}, such that f maps $a \in U$ into $f(a) \in \partial \mathbb{R}_{+}^{m}$, then dfa maps \mathbb{R}^{n} into $\partial \mathbb{R}_{+}^{m}$.

Proof. Let $v \in \mathbb{R}^{n}$. Then

$$
d f_{a}(v)=\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t}
$$

Therefore given an $\epsilon>0$, there is a $\delta>0$ such that if $a+t v \in U$, then

$$
\left\|d f_{a}(v)-\frac{f(a+t v)-f(a)}{t}\right\|<\epsilon
$$

for all $t \in(-\delta, \delta), t \neq 0$. Write

$$
u_{t}=d f_{a}(v)-\frac{f(a+t v)-f(a)}{t}
$$

where t is as above. Then

$$
t\left(d f_{a}(v)-u_{t}\right)=f(a+t v)-f(a)
$$

Let $F_{1}[v]$ denote the first coordinate of the vector v. Then, since $-f(a) \in \partial \mathbb{R}_{+}^{m} \subset \mathbb{R}_{+}^{m}$, and $f(a+t v) \in \mathbb{R}_{+}^{m}$, we have

$$
t \cdot F_{1}\left[d f_{a}(v)-u_{t}\right]=F_{1}[f(a+t v)-f(a)] \geq 0 .
$$

Therefore, if $0<t<\delta$, then

$$
F_{1}\left[d f_{a}(v)\right] \geq F_{1}\left[u_{t}\right]>-\epsilon,
$$

and if $-\delta<t<0$, then

$$
F_{1}\left[d f_{a}(v)\right] \leq F_{1}\left[u_{t}\right]<\epsilon .
$$

Therefore $-\epsilon<F_{1}\left[d f_{a}(v)\right]<\epsilon$, and as $\epsilon \rightarrow 0$, we have $F_{1}\left[d f_{a}(v)\right]=0$. Therefore $d f_{a}(v) \in \partial \mathbb{R}_{+}^{m}$.
Theorem 7.4. (Invariance of Interior and Boundary). Let $f: U \longrightarrow V$ be a diffeomorphism, where U and V are open subsets of \mathbb{R}_{+}^{n}, then
(a) $x \notin \partial U \Leftrightarrow f(x) \notin \partial V$,
(b) $f \mid \operatorname{Int}(U)$, and $f \mid \partial U$ are diffeomorphisms.

Proof. The derivative map $d f_{a}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is an isomorphism for each $a \in U$, by the functorial properties of derivative (Proposition 3.2). Therefore, by the preceding lemma, no interior point of U can be mapped onto a boundary point of V, and conversely. Thus f induces bijections $\operatorname{Int} U \longrightarrow \operatorname{Int} V$ and $\partial U \longrightarrow \partial V$. These are actually diffeomorphisms, because the restriction of f to any subset of U is always a smooth map.

Definition 7.5. A second countable Hausdorff space M is called a smooth n manifold with boundary if is satisfies all the conditions of a smooth manifold, with the exception that now we allow coordinate neighbourhoods to map onto open subsets in \mathbb{R}_{+}^{n}.

If $\phi: U \longrightarrow V \subset \mathbb{R}_{+}^{n}$ is such a coordinate chart, where U is open in M and V is open in \mathbb{R}_{+}^{n}, then a point of $\phi^{-1}(\partial V)$ is called a boundary point for the chart (U, ϕ). The definition does not depend on the chart. For, if (U, ϕ) and (V, ψ) are two coordinate charts around $x \in M$ with $\phi(x) \in \partial \mathbb{R}_{+}^{n}$ and $\psi(x) \in \operatorname{Int}\left(\mathbb{R}_{+}^{n}\right)$, then the diffeomorphism $\psi \circ \phi^{-1}$ will map a boundary point of \mathbb{R}_{+}^{n} onto an interior point of \mathbb{R}_{+}^{n}. This is not possible by the invariance of boundary as described in Theorem 7.4. The collection of all boundary points is the boundary of M, which is denoted by ∂M.

Theorem 7.6. The boundary ∂M of an n-manifold M is a manifold of dimension $n-1$, and ∂M has no boundary.

Proof. We have already seen that if x is a boundary point with respect to one coordinate system, then it remains a boundary point relative to any other coordinate system. If $\phi: U \longrightarrow V \subset \mathbb{R}_{+}^{n}$ is a coordinate chart in M, then $\phi^{-1}(\partial V)=U \cap \partial M$ is an open set in ∂M, and $(U \cap \partial M, \lambda \circ \phi)$ is a coordinate chart for ∂M, where $\lambda: \partial R_{+}^{n} \longrightarrow \mathbb{R}^{n-1}$ is a linear isomorphism. The collection of all such charts is a smooth atlas on ∂M. Thus the boundary ∂M is a manifold of dimension $n-1$.

The interior of M is the set $\operatorname{Int} M=M-\partial M$. It is a manifold of the same dimension as M, and it has no boundary.

Exercise 7.7. Show that if $f: M \longrightarrow N$ is a diffeomorphism, then $f(\partial M)=\partial N$ and $f(\operatorname{Int} M)=\operatorname{Int} N$.

The notion of submanifold can also be extended.
Definition 7.8. An m-submanifold N of an n-manifold M with boundary satisfies the same conditions as when M is without boundary, except that, for every coordinate chart $(U, \phi), \phi: U \longrightarrow \mathbb{R}_{+}^{n}, \phi^{-1}\left(\mathbb{R}_{+}^{m}\right)=U \cap N$, where \mathbb{R}_{+}^{m} is the subspace of the first m coordinates in \mathbb{R}_{+}^{n}.

A map on a manifold with boundary is smooth, if it is locally extendable to a smooth map. The concepts of rank, immersion, submersion, embedding, and diffeomorphism remain exactly the same as before. However, there are two kinds of submanifolds N of M arising from two kinds of embeddings, namely, embeddings of a manifold into a manifold without boundary, or embeddings of a manifold into a manifold with boundary. Consider, for example, a closed interval I embedded in $\mathbb{R}_{+}^{n} ; I$ may lie entirely in $\operatorname{Int}\left(\mathbb{R}_{+}^{n}\right)$, or I may have a boundary point in $\partial \mathbb{R}_{+}^{n}$. The two cases are essentially distinct, although Proposition 4.4 holds for each of them. For example, given two submanifolds of \mathbb{R}_{+}^{n} of the first kind, there exists a diffeomorphism of \mathbb{R}_{+}^{n} carrying one to the other, but there cannot exist a diffeomorphism of \mathbb{R}_{+}^{n} carrying a submanifold of the first kind into one of the second kind (why?).

In general, there is no relation between ∂N and ∂M, when N is a submanifold of M. We define a special kind of submanifold N whose boundary is nicely placed in the ambient manifold M.

Definition 7.9. An m-submanifold N of an n-manifold M is a neat submanifold of M if N is a closed subset of M, and
(a) each point $p \in N$ has a chart (U, ϕ) at p in M, where $\phi: U \longrightarrow \mathbb{R}_{+}^{n}$, such that $\phi^{-1}\left(\mathbb{R}_{+}^{m}\right)=U \cap N$,
(b) each point $p \in \partial N$ has a chart (U, ϕ) at p in M, where $\phi: U \longrightarrow \mathbb{R}_{+}^{n}$, such that $\phi^{-1}\left(\partial \mathbb{R}_{+}^{m}\right)=U \cap \partial N$,

The definition implies that N meets ∂M in the same way as \mathbb{R}_{+}^{m} meets $\partial \mathbb{R}_{+}^{n}$. Indeed, $\partial \mathbb{R}_{+}^{m}=\mathbb{R}_{+}^{m} \cap \partial \mathbb{R}_{+}^{n}$ implies $\partial N=N \cap \partial M$. In particular, if $\partial N=\emptyset$, then N is disjoint from ∂M, and so N is a submanifold of $\operatorname{Int} M$. Note that a curve with end points in a manifold with boundary is not a neat submanifold of M unless its end points lie in ∂M.

Exercise 7.10. Show that a closed subset A of an n-manifold M is a neat submanifold of dimension m if and only if at each point $p \in A$ there is a chart (U, ϕ) in
M and a submersion $f: U \longrightarrow \mathbb{R}^{n-m}$ such that f is also a submersion on $U \cap \partial M$, and $f^{-1}(0)=U \cap A$.
Exercise 7.11. Extend Definition 4.7 of regular value of a smooth map

$$
f: M \longrightarrow N
$$

as follows. A point $q \in N$ is a regular value of f if (1) f is a submersion at every point $p \in f^{-1}(q)$, and (2) $f \mid \partial M$ is a submersion at every point $p \in f^{-1}(q) \cap \partial M$. If $p \in \operatorname{Int} M$, then the condition (2) does not arise, and if $p \in \partial M$, then condition (1) is redundant, as it follows from the condition (2).

Show that if q is a regular value of f, then $f^{-1}(q)$ is a neat submanifold of M.
It may be noted that the definitions of tangent vector and tangent bundle remain the same in the context of manifold with boundary.

[^0]: ${ }^{1}$ The terminology is probably due to Carl Friedrich Gauss (1777-1855) who formulated in mathematical terms the method of drawing maps of earth's surface.

[^1]: ${ }^{1}$ The lemma is not true for C^{r} manifolds where $r<\infty$, because the functions g_{i} may not be always C^{r}. In this case the space of derivations at p is infinite dimensional, and the tangent space is defined to be the space spanned by $\left[\partial / \partial x_{i}\right]_{p}$, see W.F. Newns and A.G. Walker, Tangent planes to a differentiable manifold, J. London Math. Soc. 31 (1956), 400-407.

