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1. Smooth manifolds

Intuitively a differentiable manifold is a topological space which is obtained by
gluing together open subsets of some Euclidean space in a nice way; think, for
example, of the surface of a ball or a torus covered with small paper disks pasted
together on overlaps without making any crease or fold. Mathematical definition
is based on the standard differentiable structure on a Euclidean space Rn. Let
u1, . . . , un denote the coordinate functions, where ui : Rn −→ R is the function
mapping a point p = (p1, . . . , pn) onto its i-th coordinate pi. A function f from
an open subset U of Rn into R is differentiable of class Cr, or simply a Cr

function, if it has continuous partial derivatives of all orders ≤ r with respect to
u1, . . . , un. A C0 function is just a continuous function. A C∞ function is Cr

for every r ≥ 0.

A map φ : U −→ Rm, U open in Rn, can be written as φ = (φ1, . . . , φm), where
φi = ui ◦ φ : U −→ R are the components of φ. The map φ is Cr if each φi is
Cr. A map φ between two open subsets of Rn is called a Cr diffeomorphism
if it is a homeomorphism and both φ and φ−1 are Cr maps. We shall call a C∞

diffeomorphism simply a diffeomorphism. For example, any linear isomorphism
Rn −→ Rn is a diffeomorphism.

We shall use the words “smooth”, “differentiable”, and the symbol “C∞” in-
terchangeably. Our standard practice in this lecture will be to work with smooth
maps.

Definition 1.1. A smooth manifold M of dimension n is a second countable
Hausdorff space together with a smooth structure on it. A smooth structure
consists of a family D∞ of pairs (Ui, φi), i is in some index set Λ, where Ui is an
open set of M and φi is a homeomorphism of Ui onto an open set of Rn such that

(1) the open sets Ui, i ∈ Λ, cover M ,
(2) for every pair of indices i, j ∈ Λ with Ui ∩ Uj 6= ∅ the homeomorphisms

φi ◦ φ−1
j : φj(Ui ∩ Uj) −→ φi(Ui ∩ Uj),

φj ◦ φ−1
i : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj)

are smooth maps between open subsets of Rn,
(3) the family D∞ is maximal in the sense that it contains all possible pairs

(Ui, φi) satisfying the property (2).

The restriction Ui ∩ Uj 6= ∅ in the condition (2) may be omitted provided we
agree to assume that the empty map on the empty set is smooth.

A pair (U, φ) ∈ D∞ with p ∈ U is called a coordinate chart at p, U is called
a coordinate neighbourhood of p, and φ = (x1, . . . , xn), where xi = ui ◦ φ :
U −→ R is the i-th component of φ, is called a (local)coordinate system at p.
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Two charts (Ui, φi) and (Uj , φj) satisfying the conditions in (2) are said to be C∞

related or compatible, and each of φi ◦ φ−1
j and φj ◦ φ−1

i is called a transition
map or a change of coordinates. A family of coordinate charts on M satisfying
(1) and (2) is called a smooth atlas 1. A smooth structure is a smooth atlas
satisfying (3).

To understand the maximality condition (3) more clearly, consider the family
of all smooth atlases on M . Say that two atlases A and B are compatible if each
chart in A is compatible with each chart in B, or equivalently, if A ∪ B is an atlas
on M . It is easy to check that this is an equivalence relation. Then the union
of all atlases in an equivalence class is a maximal atlas or a smooth structure on
M . Thus any atlas can be enlarged to a unique smooth structure by adjoining all
smoothly related charts to it.

The maximality condition allows us to restrict coordinate charts. If (U, φ) is a
chart, U ′ is an open set in U , and φ′ = φ|U ′, then the charts (U, φ) and (U ′, φ′) are
compatible by the transition map φ′ ◦φ−1 = id, where id denotes the identity map.

Next observe that the charts (U, φ) and (U,α ◦ φ), where α : Rn −→ Rn is a
diffeomorphism, are always compatible. In particular, taking α to be the translation
which sends φ(p) to 0, we can always suppose that every point p ∈ M admits a
coordinate chart (U, φ) such that φ(p) = 0. We may also suppose that φ(U) is a
convex set, or the whole of Rn.

Examples 1.2. (1) Euclidean space Rn. A smooth structure is given by an atlas
consisting of only one chart (Rn, id). The maximal atlas generated by this atlas
consists of all charts (U, φ), where U is an open set of Rn and φ is Id on it. This
smooth structure on Rn is called the standard smooth structure.

A similar consideration shows that the complex n-space Cn is a smooth complex
manifold of complex dimension n.

(2) Vector space. Any real vector space V of dimension n has a canonical
smooth structure generated by the atlas consisting of all linear isomorphisms of V
onto Rn. Note that in this atlas any change of coordinates is a linear map and so
indefinitely differentiable.

(3) Open subset of a smooth manifold. An open set V of a smooth manifold
M is itself a smooth manifold. The smooth structure is obtained by restrictions of
coordinate charts. If A is a smooth atlas for M , then AV = {(U ∩ V, φ|U ∩ V ) :
(U, φ) ∈ A} is a smooth atlas for V .

(4) Manifold of matrices. Let K denote the field R or C, and M(m,n,K) be
the space of all m × n matrices with entries in K. Taking the entries of matrices
in lexicographic (or dictionary) order we may identify M(m,n,K) with Kmn in the
following way:

(aij) ↔ (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , am1, am2, . . . , amn).

Thus M(m,n,R) is a smooth manifold of dimension mn, and, similarly M(m,n,C)
is a smooth complex manifold of real dimension 2mn.

1The terminology is probably due to Carl Friedrich Gauss (1777-1855) who formulated in
mathematical terms the method of drawing maps of earth’s surface.
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(5) General linear group GL(n,K). If n = m, let us write the manifold
of matrices M(n, n,K) as M(n,K). Then, the set GL(n,K) of all non-singular
matrices of order n forms an open subset ofM(n,K), since the determinant function
det : M(n,K) −→ K is continuous, being a polynomial map. Therefore GL(n,K)
is a smooth manifold.

(6) Sphere Sn. This is the set of all unit vectors in Rn+1

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1}.
A smooth atlas is provided by two open sets U+ and U− obtained by deleting
from Sn the north pole P = (0, . . . , 0, 1) and the south pole Q = (0, . . . , 0,−1)
respectively, and the stereographic projections

φ+ : U+ −→ Rn, and φ− : U− −→ Rn

from P and Q onto the equatorial plane xn+1 = 0. These are homeomorphisms
given by

φ±(x1, . . . , xn+1) =
(

x1

1∓ xn+1
, . . . ,

xn
1∓ xn+1

)
,

and their inverses are

(φ±)−1(x1, . . . , xn) =
(

2x1

1 + ‖x‖2
, . . . ,

2xn
1 + ‖x‖2

,∓ 1− ‖x‖2

1 + ‖x‖2

)
.

Therefore the change of coordinates φ− ◦ φ−1
+ = φ+ ◦ φ−1

− : Rn − {0} −→ Rn − {0}
is given by the smooth map x 7→ x/ ‖ x ‖2.

Exercise 1.3. Show that another smooth atlas of Sn is given by the 2n + 2 co-
ordinate charts (V +

i , ψ
+
i ), (V −i , ψ

−
i ), i = 1, . . . , n + 1, where V +

i and V −i are the
hemispheres

V +
i = {x ∈ Sn : xi > 0}, V −i = {x ∈ Sn : xi < 0}

and ψ+
i : V +

i −→ Rn and ψ−i : V −i −→ Rn are the projections onto the hyperplane
xi = 0

(x1, . . . , xn+1) 7→ (x1, . . . , xi−1, xi+1, . . . , xn+1).

Show that these charts are C∞ related to the charts (U+, φ+) and (U−, φ−) of
Example 1.2 (6).

Example 1.4. The real projective space RPn This space is the quotient space
of Rn+1 − {0} modulo the equivalence relation:

(x0, . . . , xn) ∼ (λx0, . . . , λxn), λ ∈ R− {0}.
The equivalence classes are 1-dimensional subspaces or lines through the origin in
Rn+1. Let π : Rn+1 − {0} −→ RPn be the canonical projection, which maps a
point x to the line containing x, and let RPn be given the quotient topology so
that π becomes a continuous open map.

For each i, 0 ≤ i ≤ n, consider open subset Ui of RPn given by

Ui = {[x0, . . . , xn] | xi 6= 0},
where [x0, . . . , xn] = π((x0, . . . , xn)). This is the set of all lines through the origin
which intersect the hyperplane xi = 1, and this is open in RPn because

π−1(Ui) = Rn+1 − {hyperplane xi = 0}
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is open in Rn+1 − {0}. Define φi : Ui −→ Rn by

φi([x0, . . . , xn]) =
1
xi

(x0, . . . , xi−1, xi+1, . . . , xn).

Then φi is a homeomorphism with inverse given by

φ−1
i (x1, . . . , xn) = [x1, . . . , xi, 1, xi+1, . . . , xn].

So the change of coordinates between charts (Ui, φi) and (Uj , φj) is

φj ◦ φ−1
i (x1, . . . , xn) =

1
xj+1

(x1, . . . , xj , xj+2, . . . , xi, 1, xi+1, . . . , xn),

assuming for convenience j < i. This the family {(Ui, φi)} is a smooth atlas for
RPn.

Exercise 1.5. Complex projective space CPn. This is the set of all 1-
dimensional complex linear subspaces of Cn+1 with the quotient topology obtained
from the natural projection π : Cn+1 − {0} −→ CPn. Show that this can be given
a smooth structure analogous to above construction for RPn

Example 1.6. Product of manifolds. If M and N are smooth manifolds with
smooth structures {(Ui, φi)} and {(Vr, ψr)} respectively, then the Cartesian product
M ×N is a smooth manifold with atlas {(Ui × Vr, φi × ψr)}. Any two such charts
are smoothly compatible, because

(φj × ψs) ◦ (φi × ψr)−1 = (φj × ψs) ◦ (φ−1
i × ψ−1

r ) = (φj ◦ φ−1
i )× (ψs ◦ ψ−1

r ),

which is a smooth map.

In particular, the n-torus Tn = S1×· · ·×S1 (S1 appearing n times) is a smooth
manifold.

2. Smooth map between manifolds

Let M and N be smooth manifolds, and f : M → N a map. Let p ∈ M , and
(U, φ) and (V, ψ) be coordinate charts at p and f(p) respectively Then the map
ψ ◦ f ◦ φ−1 : φ(U ∩ f−1(V )) −→ ψ(V ) is called a local representation of f at p
for the pair of coordinate systems (φ, ψ).

Definition 2.1. A map f : M −→ N is smooth, if its local representation at
every point p ∈M is a smooth map for some, and hence for all pairs of coordinate
systems φ and ψ at p and at f(p).

Observe that this definition is independent of the choice of coordinate systems.
If f is smooth at p for a pair (φ, ψ), then it is smooth at p for every other pair
(φ1, ψ1). Because, the transition maps φ ◦ φ−1

1 and ψ ◦ψ−1
1 are smooth, and so the

composition

ψ1 ◦ f ◦ φ−1
1 = (ψ1 ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1) ◦ (φ ◦ φ−1

1 )

is smooth.

Lemma 2.2. The composition of smooth maps between manifolds is smooth.
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Proof. For suitable coordinate charts (U, φ), (V, ψ), and (W, θ) in M , N , and R
respectively, the map

θ ◦ (g ◦ f) ◦ φ−1 = (θ ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1)

is smooth, being the composition of smooth maps between open subsets of Euclidean
spaces. �

Definition 2.3. A map f : M −→ N is called a diffeomorphism if f is a bijection
and both f and f−1 are smooth maps.

For example, if (U, φ) is a coordinate chart on M , then φ : U −→ Rn is a
diffeomorphism onto its image, since its local representation for the pair of charts
(U, φ) and (φ(U), id) is the identity map.

Smooth maps are defined on open subsets of a manifold. The definition can be
extended over arbitrary subsets of a manifold in the following way.

Definition 2.4. A map f from a subset S of a manifold M to a manifold N is
smooth if it can be locally extended to a smooth map. Explicitly, f is smooth,
if each point p ∈ S admits an open neighbourhood U in M and a smooth map
F : U −→ N such that F |S ∩ U = f .

The local extendability condition of f is equivalent to saying that all the partial
derivatives of f exist and are continuous, by Whitney’s extension theorem (Whitney,
Trans. Amer. Math. Soc. 36 (1936), 63-89).

Exercise 2.5. Show that if n < m, and Rn is considered as the subset

{(x1, . . . , xm) | xn+1 = · · · = xm = 0}
of the first n coordinates of Rm, then the usual smooth maps on Rn and those
obtained by using the above definition are the same.

A map f from a subset S of a manifold M to a subset K of a manifold N is a
diffeomorphism if it is a bijection and both f and f−1 are smooth maps.

It follows that a subset S in an Euclidean space Rm is a smooth manifold of
dimension n if it is locally diffeomorphic to Rn, that is, if each point of S has an
open neighbourhood in S (in the relative topology) which is diffeomorphic to an
open subset of Rn. Here is an example.

Example 2.6. Space of matrices of rank k. Let Mk(m,n,R) be the space of all
real m×n matrices of rank k, where 0 < k ≤ min(m,n), with the induced topology
of M(m,n,R). Then Mk(m,n,R) is a smooth manifold of dimension k(m+n− k).
To see this, take an element E0 ∈Mk(m,n,R). We may assume by permuting the
rows and columns, if necessary, that E0 is of the form

E0 =
(
A0 B0

C0 D0

)
,

where A0 is a non-singular k × k matrix. Then, we can find an ε > 0 such that if
A is a k× k matrix and if each entry of A−A0 has absolute value less than ε, then
A is non-singular. Let

U =
{
E =

(
A B
C D

)
| absolute values of all entries of A−A0 < ε

}
.
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A matrix E as above has the same rank as the matrix(
Ik 0
X Im−k

)(
A B
C D

)
=
(

A B
XA+ C XB +D

)
,

where Ik is the k × k identity matrix and X is any (m − k) × k matrix. Taking
X = −CA−1, we find that the rank of E is exactly k if and only if D = CA−1B.
Let V be the open set in the Euclidean space of dimension mn− (m− k)(n− k) =
k(m+ n− k) consisting of matrices of the form(

A B
C 0

)
,

where each entry of A−A0 has absolute value less than ε. Then the map(
A B
C CA−1B

)
−→

(
A B
C 0

)
is a diffeomorphism of the neighbourhood U ∩Mk(m,n,R) of E0 onto V . Since
E0 is an arbitrary element of Mk(m,n,R), Mk(m,n,R) is a smooth manifold of
dimension k(m+ n− k).

Exercise 2.7. Show that if M and N are smooth manifolds, and there is a diffeo-
morphism of M onto a subset S of N , then S is a smooth manifold.

Exercise 2.8. The graph of a map f : M −→ N is the set

Γ(f) = {(x, f(x)) ∈M ×N | x ∈M}.

Show that if f is smooth, then the map F : M −→ Γ(f) defined by F (x) =
(x, f(x)) is a diffeomorphism. Conclude that Γ(f) is a smooth manifold. In partic-
ular, the diagonal set 4 in M ×M , which is Γ(IdM ), is a smooth manifold.

3. Immersions and Submersions

Convention. From now on, by a manifold we shall always mean a smooth
manifold, unless it is stated explicitly otherwise. Sometimes we call a manifold M
of dimension n an n-manifold, if it be necessary to specify its dimension.

We recall from calculus the process of derivation which assigns to each differen-
tiable map and each point of its domain a linear map.

Definition 3.1. Let U ⊂ Rn be an open set, and a ∈ U . Then a map f : U −→ Rm
is differentiable at a if there is a linear map L : Rn −→ Rm such that

lim
u→a

‖f(u)− f(a)− L(u− a)‖
‖u− a‖

= 0.

The linear map L is unique. For, if L′ : Rn −→ Rm is another such linear map,
then we have for v 6= 0

‖L(v)− L′(v)‖
‖v‖

= lim
t→0

‖L(tv)− L′(tv)‖
‖tv‖

≤ lim
t→0

‖f(a+ tv)− f(a)− L(tv)‖
‖tv‖

+ lim
t→0

‖f(a+ tv)− f(a)− L′(tv)‖
‖tv‖

= 0,

and so L(v) = L′(v) for all v ∈ Rn.
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The linear map L is called the derivative map (or total derivative) of f at
a, and is denoted by dfa : Rn −→ Rm. Its value at v ∈ Rn is given by

dfa(v) = lim
t→0

f(a+ tv)− f(a)
t

.

For future reference, we list some well-known results.

Proposition 3.2. The derivative map enjoys the following properties.

(1) If dfa exists, then f is continuous at a.
(2) If f is a constant map, then dfa = 0.
(3) If f is a linear map, then dfa = f .
(4) If f, g : U −→ Rm are differentiable at a, then f + g is differentiable at a,

and d(f + g)a = dfa + dga.
(5) If λ : U −→ R and f : U −→ Rm are differentiable at a, then λf is

differentiable at a, and d(λf)a = λ(a)dfa + f(a)dλa.
(6) (Chain Rule). If U ⊂ Rn, V ⊂ Rm are open sets, and f : U −→ V ,

g : V −→ Rp are differentiable maps, then their composition g ◦ f is differ-
entiable, and, for each a ∈ U ,

d(g ◦ f)a = dgf(a) ◦ dfa.

If m = 1, and (α1, . . . , αn) is an orthonormal basis of Rn with coordinate
functions u1, . . . , un so that, for p ∈ Rn, ui(p) = 〈p, αi〉 is the i-th coordinate
of p, then dfa(αi) is the i-th partial derivative ∂f/∂ui(a) of f at a. Setting
v = v1α1 + · · ·+ vnαn, we have

dfa(v) = v1
∂f

∂u1
(a) + · · ·+ vn

∂f

∂un
(a),

by the properties (2), (4), and (5).

In general, if (β1, . . . , βm) is an orthonormal basis of Rm so that

f(u) =
m∑
i=1

fi(u)βi,

where the components fi : U −→ R are continuous and satisfy fi(u) = 〈f(u), βi〉,
then dfa exists if and only if dfia exists, and in that case

dfa(v) =
m∑
i=1

dfia(v)βi =
m∑
i=1

(
v1
∂fi
∂u1

(a) + · · ·+ vn
∂fi
∂un

(a)
)
βi.

It follows that the matrix of the linear map dfa with respect to the bases αi and βj
is the Jacobian matrix

Jf(a) =
(
∂fi
∂uj

(a)
)
.

Note that f : U −→ Rm is a C1-map if and only if the map df : U −→ L(Rn,Rm)
sending a to dfa, where L(Rn,Rm) denotes the vector space of linear maps from
Rn to Rm, is continuous.

Let f be a smooth function from an open set V of an n-manifoldM into R. Then,
for every chart (U, φ) on M with U ∩ V 6= ∅, the function f ◦φ−1 : φ(U ∩ V ) −→ R
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is smooth. If φ = (x1, . . . , xn), xi = ui ◦ φ, then the partial derivative of f with
respect to xi at p ∈ U ∩ V , is defined by

∂f

∂xi
(p) =

∂(f ◦ φ−1)
∂ui

(φ(p)).

Let M and N be manifolds of dimension n and m respectively. If f : M −→ N is
a smooth map, and φ = (x1, . . . , xn) and ψ = (y1, . . . , ym) are coordinate systems
in M and N respectively, then the functions fi = yi ◦ f of x1, . . . , xn are called the
components of f . The Jacobian matrix of f relative to the pair of coordinate
systems (φ, ψ) is defined to be the m× n matrix

Jf =
(
∂fi
∂xj

)
.

Note that this is nothing but the Jacobian matrix Jg of the local representation
g = ψ◦f ◦φ−1. The rank of f at p is defined to be the rank of Jf(p). The definition
is independent of the local representation of f . This may be seen easily. Suppose
that g = ψ ◦ f ◦ φ−1 and g′ = ψ′ ◦ f ◦ φ′−1 are two local representations of f at p
for the pairs of coordinate charts (U, φ), (V, ψ) and (U ′, φ′), (V ′, ψ′) respectively.
We may suppose that U = U ′ and V = V ′, by replacing U , U ′ by U ∩ U ′ and V ,
V ′ by V ∩V ′. Then g′ = (ψ′ ◦ψ−1) ◦ g ◦ (φ ◦φ′−1). This proves the assertion, since
φ ◦ φ′−1 and ψ′ ◦ ψ−1 are diffeomorphisms.

We will now prove some theorems which will provide the keys to understanding
the local behaviour of a smooth map of maximum rank.

Theorem 3.3 (Inverse Function Theorem). Let M and N be manifolds of the
same dimension n, and f : U −→ V be a smooth map, where U and V are open
sets of M and N respectively. Then, if rank f = n at a point p ∈ U , there exists an
open neighbourhood W of p in U such that f |W is a diffeomorphism onto an open
neighbourhood of f(p) in V .

Proof. The theorem is just the Inverse Function Theorem of Calculus when M =
N = Rn, and its proof follows trivially from this special case. By hypothesis, any
local representation g = ψ ◦f ◦φ−1 of f has rank n at the point φ(p), and therefore
there is an open neighbourhood W ′ of φ(p) on which g is a diffeomorphism. Then
the restriction of f to W = φ−1(W ′) is also a diffeomorphism. �

The next theorem generalizes this result, when dimM ≤ dimN .

Definition 3.4. Let M and N be manifolds of dimension n and m respectively.
A smooth map f : M −→ N is called an immersion at p ∈ M if n ≤ m and rank
f = n at p. It is called a submersion at p if n ≥ m and rank f = m at p. The map
f is called an immersion, or a submersion, if it is so at each point of M .

Also, f is called an embedding if it an immersion, and a homeomorphism onto
its image f(M). If n = m, then a surjective embedding is a diffeomorphism.

.

Examples 3.5. (1) If n ≤ m, the standard inclusion map i : Rn −→ Rm given by
(x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0) is an embedding. It is called the canonical
embedding.
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(2) If n ≥ m, the projection map s : Rn −→ Rm onto the first m coordinates
given by (x1, . . . , xn) 7→ (x1, . . . , xm) is a submersion. It is called the canonical
submersion.

The following examples show that an injective immersion may not be an embed-
ding.

Example 3.6. The map f : [0, 2π] −→ R2 given by f(t) = (sin 2t,− sin t) is an
immersion. As t varies from 0 to 2π, the image point traces the lower half of the
figure “8′′ in the clockwise direction, and then traces the upper half in the anti-
clockwise direction. (The Cartesian equation of the curve is x2 = 4y2(1−y2).) It is
not an embedding, because there is a crossing at the origin. The restriction f |(0, 2π)
is an injective immersion, but not an embedding, as it is not a homeomorphism onto
its image (the ends are not joined). However, the restriction f |(0, π) is a embedding,
as the image is the lower half of the figure ‘8’ without the origin.

Example 3.7. Consider the map f : R −→ S1 × S1 given by

f(t) = (e2πiαt, e2πiβt),

where α/β is irrational, The map is an immersion, since df/dt is never zero. It is
injective, since f(t1) = f(t2) implies that both α(t1−t2) and β(t1−t2) are integers,
which is not possible unless t1 = t2. It is not hard to show that the image f(R)
is an everywhere dense curve winding around the torus S1 × S1. Therefore f is
far from being an embedding, because the image of an embedding cannot be dense
(see Proposition 4.5 below).

Note that the fact that R is not compact plays an essential role in these examples.
Indeed, we have the following simple result.

Exercise 3.8. Show that if M is a compact manifold, then any injective immersion
M −→ N is an embedding.

Definition 3.9. Two smooth maps f : M −→ N and f ′ : M ′ −→ N ′ are called
equivalent up to diffeomorphism if there exist diffeomorphisms φ : M −→ M ′ and
ψ : N −→ N ′ such that ψ ◦ f = f ′ ◦ φ.

We will show in the next two theorems that any immersion is locally equivalent
to a canonical embedding, and any submersion is locally equivalent to a canonical
submersion.

Theorem 3.10 (Local Immersion Theorem). Let M and N be manifolds of
dimension n and m respectively. If f : M −→ N is an immersion at p ∈ M , then
there is a local representation of f at p which is the canonical embedding i.

Proof. Let g = ψ◦f ◦φ−1 be a local representation of f at p for a pair of coordinate
systems (φ, ψ). We may suppose without loss of generality that φ(p) = 0 and
ψ(f(p)) = 0, and that the matrix of g at 0 is of the form

Jg(0) =
(
A
B

)
,

where A is a non-singular n × n matrix (the last condition may be realized by
permuting the coordinates in ψ, if necessary). By changing the coordinates in Rm
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by a linear transformation Rm −→ Rm whose matrix is(
A−1 O

−BA−1 Im−n

)
,

where Im−n is the identity matrix of order m−n and O is a null matrix, the matrix
Jg(0) may be given the following form(

A−1 O
−BA−1 Im−n

)
·
(
A
B

)
=
(
In
O

)
.

Define a map h : U × Rm−n −→ Rm, where U is the domain of g in Rn, by

h(x, y) = g(x) + (0, y).

Then g = h◦ i, where i : Rn −→ Rm is the canonical embedding x 7→ (x, 0), and the
matrix Jh(0) is Im. By the inverse function theorem, h is a local diffeomorphism
at 0 ∈ Rm, and we have

ψ ◦ f ◦ φ−1 = g = h ◦ i⇒ (h−1 ◦ ψ) ◦ f ◦ φ−1 = i.

Thus the local representation of f at p for the pair of coordinate systems (φ, h−1◦ψ)
is the canonical embedding i. �

The following exercise points out that locally there is no distinction between
immersion and embedding.

Exercise 3.11. Show that if f : M −→ N is an immersion, then each point p ∈M
has an open neighbourhood U such that f |U is an embedding.

Theorem 3.12 (Local Submersion Theorem). Let M and N be manifolds of
dimension n and m respectively. If f : M −→ N is a submersion at p ∈ M , then
there is a local representation of f at p which is the canonical submersion s.

Proof. As before, suppose that g = ψ ◦ f ◦ φ−1 be a local representation of f at p
for a pair of coordinate systems (φ, ψ) such that φ(p) = 0, ψ(f(p)) = 0, and that
the Jacobian matrix of g at 0 is

Jg(0) =
(
Im O

)
,

after a linear change of coordinates in Rn. Then, the map h : U −→ Rn given
by h(x) = (g(x), xm+1, . . . , xn) has the Jacobian matrix In at x = 0, and we have
g = s ◦ h. Therefore ψ ◦ f ◦ (h ◦ φ)−1 is the canonical submersion s. �

Exercises 3.13. (a) Show that any submersion is an open map (i.e. maps an open
set onto an open set).

(b) Show that if M is compact and N is connected, then any submersion f :
M −→ N is surjective.

(c) Show that there is no submersion of a compact manifold into an Euclidean
space.

Proposition 3.14. Let M,N , and P be manifolds, and f : M −→ N be a surjective
submersion. Then a map g : N −→ P is smooth if and only if the composition
g ◦ f : M −→ P is smooth.
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Proof. If g is smooth, then g ◦ f is smooth by composition. To prove the converse,
note that g is necessarily continuous, and, since the problem is local, we may
suppose that f is the projection (x1, . . . , xn) 7→ (x1, . . . , xm) from Rn onto Rm,
where n = dimM,m = dimN , and n ≥ m. Then, by hypothesis, the map g ◦ f :
(x1, . . . , xn) 7→ g(x1, . . . , xm) is smooth. Therefore the map g : (x1, . . . , xm) 7→
g(x1, . . . , xm) is smooth. This means that g is smooth on f(M), and hence on N ,
since f is surjective. �

Exercise 3.15. Show that if f and g are as in this proposition, then g is a sub-
mersion if and only if their composition g ◦ f is a submersion.

Exercises 3.16. (a) Show that if f : M −→ N is a surjective submersion, then
for each x ∈ M there exist an open neighbourhood U of f(x) in N , and a smooth
map g : U −→M such that f ◦ g is the identity map on U .

The map g is called a local section of f .

(b) Suppose that f : M −→ N is a smooth map such that every point of M is
in the image of a smooth local section of f . Show that f is a submersion.

Exercise 3.17. If f : M −→ N is a map and y ∈ N , then f−1(y) is called the fibre
of f over y. Suppose that f is a surjective submersion. Show that if g : M −→ P
is a smooth map that is constant on the fibres of f , then there is a unique smooth
map h : N −→ P such that h ◦ f = g.

Exercise 3.18. Show that a smooth map f : M −→ N is a diffeomorphism if and
only if it is bijective and a submersion.

Exercise 3.19. Let M,N , and P be manifolds, and f : M −→ N be an immersion.
Then show that a continuous map g : P −→ M is smooth if and only if their
composition f ◦ g : P −→ N is smooth.

Exercise 3.20. Prove the implicit function theorem in the following form. If
f : U −→ R, U open in Rn, is a smooth map with f(p) = q and ∂f/∂ui(p) 6= 0 for
some i, then there is a smooth function

ui = g(u1, . . . , ui−1, ui+1, . . . , un)

whose graph in some open neighbourhood of p in U is the set of solutions of the
equation f(u) = q.

4. Submanifolds

Definition 4.1. Let N be an m-manifold. Then a subset M of N is called a
submanifold of dimension n if for each point p ∈ M there is a coordinate chart
(U, φ) at p in N such that φ maps M ∩ U homeomorphically onto an open subset
of Rn ⊂ Rm, where Rn is considered as the subspace of the first n coordinates in
Rm

Rn = {(x1, . . . , xm) ∈ Rm | xn+1 = · · · = xm = 0}.

Then the collection

{(M ∩ U, φ|M ∩ U) | (U, φ) is a chart in N,M ∩ U 6= ∅}

is a smooth atlas of M .
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Exercise 4.2. Show that a submanifold M of a manifold N is a second countable
Hausdorff space.

Lemma 4.3. Let M and N be manifolds of dimension n and m respectively. If M
is a submanifold of N , then for each point p ∈ M there is an open neighbourhood
U of p in N and a submersion g : U −→ Rm−n such that g−1(0) = M ∩ U .

Proof. By the above definition, there is a coordinate chart φ : U −→ Rm about p
in N such that if Rm = Rn×Rm−n, then φ−1(Rn×{0}) = M ∩U . Then g = π ◦φ,
where π : Rm −→ Rm−n is the projection onto the second factor, is a submersion
with g−1(0) = M ∩ U . �

Proposition 4.4. A subset A of an m-manifold N is a submanifold if and only if
A is the image of a smooth embedding f : M −→ N , where M is an n-manifold
and n ≤ m.

Proof. If A is a submanifold of N , then it follows from the natural smooth structure
on A derived from that of N that the inclusion of A in N is a smooth embedding.
Conversely, suppose f : M −→ N is a smooth embedding and A = f(M). Then,
by the local immersion theorem, for each p ∈ M there exist a coordinate system
y1, . . . , ym in an open neighbourhood V of f(p) in N such that A ∩ V = {q ∈
V |yn+1(q) = · · · = ym(q) = 0}, and the restrictions of the remaining coordinate
functions y1, . . . , yn to A ∩ V form a local chart on A at f(p). Therefore A is a
submanifold of N . �

Proposition 4.5. If M is an n-dimensional submanifold of an m-manifold N
where n < m, then M is not a dense subset of N .

Proof. There is a coordinate chart (V, ψ) of N such that U = M ∩V is non-empty,
and ψ(U) ⊂ Rn × {0}. Then the non-empty open set ψ−1(Rn × (Rm−n − {0})) of
N lies in V and does not intersect U . So M cannot be dense in N . �

Exercises 4.6. Let M , N , and P , denote manifolds. Then show that

(1) if f : N −→ P is a smooth map, then the restriction f |M is also smooth;
moreover, if f is an immersion, then f |M is also an immersion.

(2) if M is a subset of N such that the inclusion M ↪→ N is an immersion, and
f : P −→ N is a smooth map with f(P ) ⊂M , then the map f : P −→M obtained
by restricting the range of f may not be continuous. However, if

f : P −→M

is continuous, then it is also smooth.

Definition 4.7. Let f : M −→ N be a smooth map. Then a point p ∈ M is
called a critical point of f if f is not a submersion at p. Other points of M are
called regular points of f . A point q ∈ N is called a critical value of f if f−1(q)
contains at least one critical point. Other points of N (including those for which
f−1(q) is empty) are called regular values of f .

Theorem 4.8 (Preimage theorem). . Let M and N be manifolds of dimension
n and m respectively, where n ≥ m. If q is a regular value of a smooth map
f : M −→ N , then f−1(q) is a submanifold of M of dimension n−m.
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Proof. Since f is a submersion at a point p ∈ f−1(q), we can choose local co-
ordinate systems about p and q such that f(x1, . . . , xn) = (x1, . . . , xm), and q
corresponds to (0, . . . , 0). Therefore, if U is the coordinate neighbourhood at p
on which the functions x1, . . . , xn are defined, then f−1(q) ∩ U is the set of points
(0, . . . , 0, xm+1, . . . , xn). Thus the functions xm+1, . . . , xn form a coordinate system
on the relative open set f−1(q) ∩ U of f−1(q). �

We may apply the theorem in the following situation. Let m > n, and N be
an m-manifold. Let f : N −→ Rm−n be a smooth map. Then M = f−1(0) is the
solution set of the system of equations

f1(x1, . . . , xn) = 0, . . . , . . . , fm−n(x1, . . . , xn) = 0,

where fi : N −→ R are the components of f .

Proposition 4.9. If f , N , and M are as above and rank f = m− n at each point
of N , then M is an n-dimensional submanifold of N .

Proof. The proof follows immediately from the previous theorem. �

The converse is true locally.

Proposition 4.10. Every n-submanifold M of an m-manifold N is locally definable
as the set of common zeros of a set of functions f1, . . . , fm−n : U −→ R such that

rank
(
∂fi
∂xj

)
= m− n,

where U is a coordinate neighbourhood in N of a point in M with coordinates
x1, . . . , xm.

Proof. The proof follows immediately from the local immersion theorem. If p ∈M ,
then there exists local coordinate system x1, . . . , xm defined on a neighbourhood U
of p in N such that M ∩ U is given by the equations

xn+1 = 0, . . . , xm = 0.

�

5. Tangent spaces and derivative maps

Let U be an open set of a manifold M , and C∞(U) denote the set of all smooth
functions from U to R. Let p ∈ M , and C̃∞(p) be the union of all C∞(U) as
U runs over all open neighbourhoods of p. This is an algebra over R, because if
f ∈ C∞(U), and g ∈ C∞(V ), then f + g, fg ∈ C∞(U ∩ V ), and λf ∈ C∞(U) for
all λ ∈ R. Two functions f and g as above are said to be equivalent (or have
the same germ at p) if f = g in a neighbourhood of p. The quotient set C∞(p)
of C̃∞(p) under this equivalence relation is also an algebra, called the algebra of
germs of smooth functions at p.

In fact, C∞(p) is the quotient algebra C̃∞(p)/C̃∞0 (p), where C̃∞0 (p) is the ideal
consisting of functions which vanish in a neighbourhood of p (neighbourhood de-
pending on the function).
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Definition 5.1. A tangent vector of M at a point p ∈M is the geometric name
of what is called a derivation of the algebra C∞(p) on R. It is a linear functional
Xp : C∞(p) −→ R satisfying the Leibniz formula

Xp(fg) = f(p) ·Xp(g) + g(p) ·Xp(f), f, g ∈ C∞(p).

The formula implies that if f is a constant function, then Xpf = 0 for all p ∈M .

The set τ(M)p of all tangent vectors of M at p is called the tangent space
of M at p, or the space of derivations at p. It is a vector space over R, where
the vector space operations are defined by (Xp + Yp)(f) = Xp(f) + Yp(f), and
(λXp)(f) = λXp(f) for Xp, Yp ∈ τ(M)p, f ∈ C∞(p), and λ ∈ R.

The geometric picture behind the definition will be clear after we prove that the
dimension of the vector space τ(M)p is n, which is also equal to the dimension of
M .

Proposition 5.2. If φ = (x1, . . . , xn) is a coordinate system in M at p, then the
operators [ ∂

∂xi

]
p

: C∞(p) −→ R, i = 1, . . . , n,

defined by f 7→ (∂f/∂xi)(p) are tangent vectors of M at p, and they form a basis
of the vector space τ(M)p.

Here (∂f/∂xi)(p) is the partial derivative as defined in §3, p. 8.

We first prove a lemma.

Lemma 5.3. 1 Let a ∈ Rn and f ∈ C∞(a). Then there exist functions g1, . . . , gn ∈
C∞(a) and a neighbourhood U of a in Rn contained in the intersection of the
domains of f, g1, . . . , gn such that gi(a) = (∂f/∂ui)(a), 1 ≤ i ≤ n, and

f(u) = f(a) +
n∑
i=1

(ui − ui(a)) · gi(u), u ∈ U,

where u = (u1, . . . , un), ui : Rn −→ R, is the coordinate system in Rn.

Proof. Define

gi(u) =
∫ 1

0

∂f

∂ui
(t(u− a) + a)dt.

This is C∞ in a neighbourhood of a, and gi(a) = (∂f/∂ui)(a). Therefore

f(u)− f(a) =
∫ 1

0

d

dt
f(t(u− a) + a)dt

=
∫ 1

0

{
n∑
i=1

∂f

∂ui
(t(u− a) + a) · (ui − ui(a))

}
dt

=
n∑
i=1

gi(u) · (ui − ui(a)).

1The lemma is not true for Cr manifolds where r < ∞, because the functions gi may not be
always Cr. In this case the space of derivations at p is infinite dimensional, and the tangent space
is defined to be the space spanned by [∂/∂xi]p, see W.F. Newns and A.G. Walker, Tangent planes

to a differentiable manifold, J. London Math. Soc. 31 (1956), 400-407.
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�

Exercise 5.4. Show that if a ∈ Rn and f ∈ C∞(a), then there exist functions
λij ∈ C∞(a), and a neighbourhood U of a on which f and λij are defined such that
λij(a) = (∂2f/∂ui∂uj)(a), and if u ∈ U then

f(u) = f(a) +
n∑
i=1

(ui − ui(a)) ·
∂f

∂ui
(a) +

n∑
i,j=1

(ui − ui(a))(uj − uj(a)) · λij(u).

Proof of the Proposition. That the operators [∂/∂xi]p are tangent vectors is imme-
diate from the definition. Next, for any f ∈ C∞(p), use the lemma to write f ◦φ−1

in a neighbourhood of a = φ(p) as

f ◦ φ−1(u) = f ◦ φ−1(a) +
n∑
i=1

(ui − ui(a)) · gi(u),

where gi is a C∞ function in a neighbourhood of a with

gi(a) = (∂(f ◦ φ−1)/∂ui)(a).

Transferring this relation to a neighbourhood of p in M , write

f(x) = f(p) +
n∑
i=1

(xi − xi(p)) · hi(x),

where hi = gi ◦ φ ∈ C∞(p) with hi(p) = gi(a) = (∂f/∂xi)(p). Now apply a
derivation Xp ∈ τ(M)p to f using the Leibniz formula :

Xp(f) =
n∑
i=1

Xp(xi) · hi(p) =
n∑
i=1

Xp(xi) ·
[
∂f

∂xi

]
p

(recall that Xp(c) = 0 for any constant function c). Thus in terms of the coordinate
system (x1, . . . , xn), Xp takes the form

Xp =
n∑
i=1

Xp(xi) ·
[
∂

∂xi

]
p

.

Now [∂/∂xi]p(xj) = (∂(uj ◦φ◦φ−1)/∂ui)(a) = δij (Kronecker delta). Therefore the
vectors {[∂/∂xi]p} are linearly independent, as may be seen by evaluating a linear
combination of these vectors on xj in turn. �

It follows that if U is an open neighbourhood of p, then τ(U)p = τ(M)p, because
the definition of τ(M)p uses only C∞(p), and not the entire M . Also, the tangent
space τ(M)p is isomorphic to Rn, where [∂/∂xi]p corresponds to the i-th unit
coordinate vector of Rn, and therefore the tangent space τ(Rn)p can be identified
with the set of all pairs (p, v), where v ∈ Rn.

A smooth curve in M is a smooth map σ : I −→ M , where I is an open
interval in R. For each t0 ∈ I, σ gives rise to a tangent vector σ̇(t0) : C∞(p) −→ R
of M at p = σ(t0) defined by

σ̇(t0)(f) =
[
d

dt
f(σ(t))

]
t=t0

,

which is the derivative of f along σ at p. The components of σ(t) with respect
to a local coordinate system (x1, . . . , xn) at p are the real-valued functions σi(t) =
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xi(σ(t)), and their derivatives σ̇i(t0) = (d(σi(t))/dt)(t0) are the components of the
tangent vector σ̇(t0) with respect to the basis [∂/∂xi]p. Because, if (U, φ) is the
coordinate chart at p for which φ = (x1, . . . , xn), xi = ui◦φ, then σi(t) = xi(σ(t)) =
ui ◦ φ(σ(t)), and therefore, by chain rule

σ̇(t0)(f) =
d

dt

[
(f ◦ φ−1) ◦ (φ ◦ σ)

]
(t0)

=
∑
i

∂(f ◦ φ−1)
∂ui

(φ ◦ σ(t0)) ·
∂(ui ◦ φ ◦ σ)

∂t
(t0)

=
∑
i

∂f

∂xi
(p) · dxi

dt
(t0).

We also say that σ̇(t0) is the tangent vector or velocity vector of σ at σ(t0).
In the case when M = Rn, this vector may be viewed as a line segment from σ(t0)
to σ(t0)+ σ̇(t0). Conversely, any tangent vector to M at p is associated to a smooth
curve in this way. For, if φ = (x1, . . . , xn) is a coordinate system at p, then a vector∑
i vi[∂/∂xi]p ∈ τ(M)p is clearly tangent at p to the curve

t 7→ φ−1(x1(p) + tv1, . . . , xn(p) + tvn).

We may therefore define a tangent vector to M at p alternatively as follows.
Consider the set of all smooth curves σ : I −→ M , where I is an open interval
containing 0, such that σ(0) = p. Define an equivalence relation in this set by
taking two curves σ and τ to be equivalent if σ̇(0) = τ̇(0). Then a tangent vector
to M at p is an equivalence class of curves.

Exercise 5.5. Check that the relation on the set of all smooth curves as defined
above is indeed an equivalence relation.

Example 5.6. Let 〈 , 〉 denote the standard inner product in Rn+1. Then the
n-sphere Sn in Rn+1 is given by

Sn = {v ∈ Rn+1|〈v, v〉 = 1}.

Consider a smooth curve σ : I −→ Rn+1 so that σ(s) ∈ Sn for all s ∈ I, and
σ(0) = p. Then 〈σ(s), σ(s)〉 = 1. Differentiating this relation with respect to s at
s = 0, we get

〈σ̇(0), σ(0)〉+ 〈σ(0), σ̇(0)〉 = 0, or 〈σ̇(0), σ(0)〉 = 0.

Since σ̇(0) is a vector in τ(Sn)p, the above relation says that τ(Sn)p is the hyper-
plane in Rn+1 orthogonal to σ(0) = p.

Definition 5.7. If f : M −→ N is a smooth map between manifolds, then the
derivative map or differential of f at a point p ∈ M is a linear map dfp :
τ(M)p −→ τ(N)f(p) defined by

dfp(Xp)(g) = Xp(g ◦ f), Xp ∈ τ(M)p, g ∈ C∞(f(p)).

Taking Xp as the velocity vector σ̇(0) of a smooth curve σ in M at σ(0) = p
with parameter t, the definition may be given in the following alternative form:

dfp(σ̇(0))(g) =
d

dt
(g ◦ f(σ(t)))(0).
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We may rephrase the previous definition of the velocity vector σ̇(0) as follows

σ̇(0) = dσ0

( d
dt

)
,

where dσ0 : τ(I)0 = R −→ τ(M)p is the derivative map of σ at 0, and d/dt is the
basis of R. Because

dσ0

( d
dt

)
(g) =

d

dt
g(σ(t))(0) = σ̇(0)(g).

Let (U, φ) with φ = (x1, . . . , xn), xi = ui ◦ φ, be a coordinate chart at p, and
(V, ψ) with ψ = (y1, . . . , ym), yj = vj ◦ ψ, be a coordinate chart at q = f(p), where
ui (resp. vj) are the coordinate functions on Rn (resp. Rm). Then

dfp

([
∂

∂xi

]
p

)
(g) =

∂

∂xi
(g ◦ f)(p) =

∂

∂ui
(g ◦ f ◦ φ−1)(φ(p))

=
∂

∂ui
(g ◦ ψ−1 ◦ ψ ◦ f ◦ φ−1)(φ(p)) =

∂

∂ui
(g ◦ f)(φ(p)),

where f = ψ ◦ f ◦ φ−1 : φ(U) −→ ψ(V ), and g = g ◦ ψ−1 : ψ(V ) −→ R are smooth
maps. By the chain rule, the last expression is equal to

m∑
j=1

∂f j
∂ui

(φ(p)) · ∂g
∂vj

(ψ(q)) =
m∑
j=1

∂fj
∂xi

(p) · ∂g
∂yj

(q).

Therefore

dfp

([
∂

∂xi

]
p

)
=
∂f1
∂xi

(p)
[
∂

∂y1

]
f(p)

+ · · ·+ ∂fm
∂xi

(p)
[
∂

∂ym

]
f(p)

.

Therefore the i-th column vector of the matrix of the linear map dfp with respect
to the bases [∂/∂xi]p and [∂/∂yj ]f(p) of the tangent spaces τ(M)p and τ(N)f(p) is(∂f1

∂xi
(p), . . . ,

∂fm
∂xi

(p)
)
.

Therefore the matrix of dfp is the Jacobian matrix of f at p, as defined in §(1.4)

(Jf)(p) =
(
∂fi
∂xj

(p)
)
.

Thus if we represent a tangent vector Xp =
∑
i ai

( ∂

∂xi

)
p

by the n × 1 matrix

A = (ai), then the tangent vector dfp(Xp) is represented by the m × 1 matrix
(Jf)(p) ·A. In particular, for the coordinate chart (U, φ),

dφp

(∑
i

ai

( ∂

∂xi

)
p

)
= (a1, . . . , an),

If f : M −→ N and g : N −→ L are smooth maps of manifolds, then

d(g ◦ f)p = dgf(p) ◦ dfp, p ∈M.

For. if Xp ∈ τ(M)p and h ∈ C∞(g(f(p))), then

d(g ◦ f)p(Xp)(h) = Xp(h ◦ g ◦ f) = dfp(Xp)(h ◦ g) = dgf(p)(dfp(Xp))(h).

In terms of local coordinates this computation exhibits the chain rule and the
multiplicative behaviour of Jacobian matrices.
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6. Tangent Bundles and Vector Fields

Definition 6.1. The tangent bundle τ(M) of M is the disjoint union of all
tangent spaces τ(M)p as p runs over M .

This is the set of all ordered pairs (p, v) such that v ∈ τ(M)p. The map π :
τ(M) −→ M , given by (p, v) 7→ p, is called the projection map of the tangent
bundle. The following theorem shows we can pull back the differential structure on
M by π to obtain a unique differential structure on τ(M).

Theorem 6.2. If M is a manifold of dimension n, then its tangent bundle τ(M)
is a manifold of dimension 2n.

Proof. Each chart (U, φ) of M determines a map τφ : π−1(U) −→ φ(U) × Rn ⊂
Rn × Rn given by τφ(p, v) = (φ(p), dφp(v)). Clearly, τφ is a bijection with inverse
τ−1
φ given by τ−1

φ (a,w) = (p, dφ−1
p (w)) where p = φ−1(a). For two compatible

charts (U, φ) and (V, ψ) of M , the map τψ ◦ τ−1
φ : φ(U ∩V )×Rn −→ ψ(U ∩V )×Rn

is given by

τψ ◦ τ−1
φ (a,w) = τψ(p, dφ−1

p (w))

= (ψ(p), dψp ◦ dφ−1
p (w))

= (ψ ◦ φ−1(a), dψp ◦ dφ−1
p (w)),

where p = φ−1(a). Therefore τψ ◦ τ−1
φ is a homeomorphism. It follows that τ(M)

has a unique topology which makes each τφ a homeomorphism. Moreover, since
τψ◦τ−1

φ is a diffeomorphism, the family of charts {(π−1(U), τφ)} constitute a smooth
atlas on τ(M). Thus τ(M) is a smooth manifold. �

Exercise 6.3. Complete the proof of the above theorem by showing that τ(M) is
second countable and Hausdorff. Also show that the projection π : τ(M) −→M is
a smooth map.

Exercise 6.4. Show that a smooth map f : M −→ N between manifolds induces
a smooth map df : τ(M) −→ τ(N) which is defined by df(p, v) = (f(p), dfp(v)).

Definition 6.5. A vector field X on M is a map X : M −→ τ(M) such that the
value of X at p ∈M is a tangent vector Xp ∈ τ(M)p.

For any f ∈ C∞(U), a vector field X defines a function Xf : U −→ R by
(Xf)(p) = Xp(f). A vector field X is called a smooth vector field if, for every
p ∈M , f ∈ C∞(p) implies Xf ∈ C∞(p) also.

Thus a smooth vector field X may be considered as a map

X : C∞(M) −→ C∞(M)

given by f 7→ Xf . We have

(i) X(λf + µg) = λXf + µY f ,

(ii) X(fg) = f(Xg) + (Xf)g,

for f, g ∈ C∞(M), and λ, µ ∈ R.

Exercise 6.6. Show that a smooth vector field X on M is completely determined
by its action on smooth functions on M satisfying the above properties (i) and (ii).
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Exercise 6.7. Show that if f is a constant function, then Xf = 0.

The set of all smooth vector fields on M is denoted by 3∈(M). This is a module
over the ring C∞(M), where the module operations are given by

(X + Y )f = Xf + Y f, and (fX)g = f(Xg),

for X,Y ∈ 3∈(M) and f, g ∈ C∞(M).

If (U, φ) is a coordinate chart in M with φ = (x1, . . . , xn), then for each i =
1, . . . , n, the assignment p 7→ [∂/∂xi]p is a smooth vector field ∂/∂xi on U . The
tangent vectors ([∂/∂xi]p) are linearly independent at each point p ∈ U . Therefore,
if X is a vector field on U , then X may be written as

X =
n∑
i=1

Xxi ·
∂

∂xi
.

The functions Xxi are called the components of X.

Exercise 6.8. Show that a vector field X is smooth if and only if its components
Xxi are smooth for every coordinate system φ.

Lemma 6.9. If X is a smooth vector field on an open neighbourhood U in M , and
p ∈ U , then there is an open neighbourhood V of p in U , and a smooth vector field
X̂ on M which agrees with X on V .

Proof. Let K be a closed neighbourhood of p in U , and let V be the interior of
K. Then, by the Smooth Urysohn’s Lemma (see Lemma 1.7 (Part 2)), there is a
smooth function φ : M −→ R with support in U such that φ = 1 on K. Then
define a vector field X̂ on M by

X̂(q) = φ(q)X(q) if q ∈ U
= 0 if q /∈ U

Clearly this is the required vector field. �

7. Manifolds with boundary

We extend the notion of manifolds so as to include manifolds with boundary.
For example, the disk Dn = {x ∈ Rn | ‖x‖ ≤ 1} is a manifold with boundary which
is the (n− 1)-sphere

Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

Let Rn+ and ∂Rn+ denote the subsets of Rn given by

Rn+ = {(x1, . . . , xn) ∈ Rn | x1 ≥ 0}, ∂Rn+ = {(x1, . . . , xn) ∈ Rn | x1 = 0}.

We call Rn+ the half space of Rn, and ∂Rn+ the boundary of Rn+ ( a more general
definition says that a half space in Rn is an affine hyperplane, but we will not
consider this). Note that we may identify ∂Rn+ with Rn−1 ⊂ Rn.

Lemma 7.1. Any linear isomorphism Rn −→ Rn, which maps ∂Rn+ onto itself,
maps Rn+ onto itself.
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Proof. The proof is obvious. Because, we may identify ∂Rn+ × R with Rn by the
linear isomorphism α(v0, r) = v0 + re1 (e1 = unit vector along the first coordinate
axis), so that Rn+ = α(∂Rn+ × R+). �

If U is an open subset in Rn+, then its boundary ∂U is the subset ∂U = U ∩∂Rn+,
and its interior Int(U) is the subset Int(U) = U − ∂U . Thus Int(U) is open in Rn,
and ∂U is open in Rn−1.

We may define smooth maps on open subsets of Rn+ by means of Definition
2.4. Thus a map f : U −→ V , where U is open in Rn+ and V open in Rm+ , is
smooth if for each x ∈ U there exist an open neighbourhood U1 of x in Rn, an
open neighbourhood V1 of f(x) in Rm, and a smooth map f1 : U1 −→ V1 such that
f1|U ∩ U1 = f |U ∩ U1.

The notion of derivative of map also extends naturally. Consider a smooth map
f : U −→ Rm, where U is open in Rn+. Then, if x ∈ Int(U), we already know what
is dfx. If x ∈ ∂U , then, since f is smooth at x, f extends to a smooth map F in
an open neighbourhood of x in Rn. In this case, we define dfx to be the derivative
map dFx, which is a linear map from Rn to Rm. The definition is independent of
the choice of the extension F , that is, if F ′ is another local extension of f , then
dF ′x = dFx. To see this, note that if V and V ′ are the domains of F and F ′

respectively, and if {xj} is a sequence of points in V ∩ V ′ ∩ Int(U) converging to x,
then, since F and F ′ agree on V ∩V ′∩Int(U), we have dFxj = dF ′xj

, as sequences in
the vector space L(Rn,Rm) of linear maps from Rn to Rm. This implies, as j →∞,
that dFx = dF ′x, because the derivative maps dF, dF ′ : V ∩ V ′ −→ L(Rn,Rm) are
continuous.

It follows that the definition of differentiability of f : U −→ Rm at a point
p ∈ U may be obtained from Definition 3.1, just by supposing U is an open subset
of the half space Rn+ and keeping the other things the same. The derivative map
dfa : Rn −→ Rm in the new situation will have the same properties (1)-(6) of
Proposition 3.2.

Exercises 7.2. Show that

(1) if f : U −→ Rm is differentiable at a ∈ U , where U is open in Rn+, then

dfa(v) = lim
t→0+

f(a+ tv)− f(a)
t

if v ∈ Rn+

= lim
t→0−

f(a+ tv)− f(a)
t

if − v ∈ Rn+.

(2) if f, g : U −→ Rm are differentiable maps, where U is open in Rn, such that
f and g agree on U ∩ Rn+, then dfa = dga for a ∈ U ∩ Rn+.

Lemma 7.3. If f : U −→ Rm+ is differentiable, where U is open in Rn, such that
f maps a ∈ U into f(a) ∈ ∂Rm+ , then dfa maps Rn into ∂Rm+ .

Proof. Let v ∈ Rn. Then

dfa(v) = lim
t→0

f(a+ tv)− f(a)
t

.
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Therefore given an ε > 0, there is a δ > 0 such that if a+ tv ∈ U , then∥∥∥dfa(v)− f(a+ tv)− f(a)
t

∥∥∥ < ε

for all t ∈ (−δ, δ), t 6= 0. Write

ut = dfa(v)−
f(a+ tv)− f(a)

t
,

where t is as above. Then

t(dfa(v)− ut) = f(a+ tv)− f(a).

Let F1[v] denote the first coordinate of the vector v. Then,
since −f(a) ∈ ∂Rm+ ⊂ Rm+ , and f(a+ tv) ∈ Rm+ , we have

t · F1[dfa(v)− ut] = F1[f(a+ tv)− f(a)] ≥ 0.

Therefore, if 0 < t < δ, then

F1[dfa(v)] ≥ F1[ut] > −ε,
and if −δ < t < 0, then

F1[dfa(v)] ≤ F1[ut] < ε.

Therefore −ε < F1[dfa(v)] < ε, and as ε → 0, we have F1[dfa(v)] = 0. Therefore
dfa(v) ∈ ∂Rm+ . �

Theorem 7.4. (Invariance of Interior and Boundary). Let f : U −→ V be a
diffeomorphism, where U and V are open subsets of Rn+, then

(a) x /∈ ∂U ⇔ f(x) /∈ ∂V ,

(b) f | Int(U), and f | ∂U are diffeomorphisms.

Proof. The derivative map dfa : Rn −→ Rn is an isomorphism for each a ∈ U , by the
functorial properties of derivative (Proposition 3.2). Therefore, by the preceding
lemma, no interior point of U can be mapped onto a boundary point of V , and
conversely. Thus f induces bijections IntU −→ IntV and ∂U −→ ∂V . These are
actually diffeomorphisms, because the restriction of f to any subset of U is always
a smooth map.

�

Definition 7.5. A second countable Hausdorff space M is called a smooth n-
manifold with boundary if is satisfies all the conditions of a smooth manifold,
with the exception that now we allow coordinate neighbourhoods to map onto open
subsets in Rn+.

If φ : U −→ V ⊂ Rn+ is such a coordinate chart, where U is open in M and V
is open in Rn+, then a point of φ−1(∂V ) is called a boundary point for the chart
(U, φ). The definition does not depend on the chart. For, if (U, φ) and (V, ψ) are
two coordinate charts around x ∈ M with φ(x) ∈ ∂Rn+ and ψ(x) ∈ Int(Rn+), then
the diffeomorphism ψ ◦φ−1 will map a boundary point of Rn+ onto an interior point
of Rn+. This is not possible by the invariance of boundary as described in Theorem
7.4. The collection of all boundary points is the boundary of M , which is denoted
by ∂M .

Theorem 7.6. The boundary ∂M of an n-manifold M is a manifold of dimension
n− 1, and ∂M has no boundary.
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Proof. We have already seen that if x is a boundary point with respect to one co-
ordinate system, then it remains a boundary point relative to any other coordinate
system. If φ : U −→ V ⊂ Rn+ is a coordinate chart in M , then φ−1(∂V ) = U ∩ ∂M
is an open set in ∂M , and (U ∩ ∂M, λ ◦ φ) is a coordinate chart for ∂M , where
λ : ∂Rn+ −→ Rn−1 is a linear isomorphism. The collection of all such charts is a
smooth atlas on ∂M . Thus the boundary ∂M is a manifold of dimension n−1. �

The interior of M is the set IntM = M − ∂M . It is a manifold of the same
dimension as M , and it has no boundary.

Exercise 7.7. Show that if f : M −→ N is a diffeomorphism, then f(∂M) = ∂N
and f(IntM) = IntN .

The notion of submanifold can also be extended.

Definition 7.8. An m-submanifold N of an n-manifold M with boundary satisfies
the same conditions as when M is without boundary, except that, for every coor-
dinate chart (U, φ), φ : U −→ Rn+, φ−1(Rm+ ) = U ∩N , where Rm+ is the subspace of
the first m coordinates in Rn+.

A map on a manifold with boundary is smooth, if it is locally extendable to a
smooth map. The concepts of rank, immersion, submersion, embedding, and dif-
feomorphism remain exactly the same as before. However, there are two kinds of
submanifolds N of M arising from two kinds of embeddings, namely, embeddings
of a manifold into a manifold without boundary, or embeddings of a manifold into
a manifold with boundary. Consider, for example, a closed interval I embedded in
Rn+; I may lie entirely in Int(Rn+), or I may have a boundary point in ∂Rn+. The
two cases are essentially distinct, although Proposition 4.4 holds for each of them.
For example, given two submanifolds of Rn+ of the first kind, there exists a diffeo-
morphism of Rn+ carrying one to the other, but there cannot exist a diffeomorphism
of Rn+ carrying a submanifold of the first kind into one of the second kind (why?).

In general, there is no relation between ∂N and ∂M , when N is a submanifold
of M . We define a special kind of submanifold N whose boundary is nicely placed
in the ambient manifold M .

Definition 7.9. An m-submanifold N of an n-manifold M is a neat submanifold
of M if N is a closed subset of M , and

(a) each point p ∈ N has a chart (U, φ) at p in M , where φ : U −→ Rn+, such
that φ−1(Rm+ ) = U ∩N ,

(b) each point p ∈ ∂N has a chart (U, φ) at p in M , where φ : U −→ Rn+, such
that φ−1(∂Rm+ ) = U ∩ ∂N ,

The definition implies that N meets ∂M in the same way as Rm+ meets ∂Rn+.
Indeed, ∂Rm+ = Rm+ ∩ ∂Rn+ implies ∂N = N ∩ ∂M . In particular, if ∂N = ∅, then
N is disjoint from ∂M , and so N is a submanifold of IntM . Note that a curve with
end points in a manifold with boundary is not a neat submanifold of M unless its
end points lie in ∂M .

Exercise 7.10. Show that a closed subset A of an n-manifold M is a neat sub-
manifold of dimension m if and only if at each point p ∈ A there is a chart (U, φ) in
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M and a submersion f : U −→ Rn−m such that f is also a submersion on U ∩ ∂M ,
and f−1(0) = U ∩A.

Exercise 7.11. Extend Definition 4.7 of regular value of a smooth map

f : M −→ N

as follows. A point q ∈ N is a regular value of f if (1) f is a submersion at every
point p ∈ f−1(q), and (2) f | ∂M is a submersion at every point p ∈ f−1(q)∩ ∂M .
If p ∈ IntM , then the condition (2) does not arise, and if p ∈ ∂M , then condition
(1) is redundant, as it follows from the condition (2).

Show that if q is a regular value of f , then f−1(q) is a neat submanifold of M .

It may be noted that the definitions of tangent vector and tangent bundle remain
the same in the context of manifold with boundary.


