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Let A be a ring (with identity). We call A simple if it is non-zero (that is, 1 6= 0) and has no

proper non-zero two-sided ideals. We call A semisimple if it is semisimple as a (left) module

over itself.1 Our goal here is to prove structure theorems for simple and semisimple finite

dimensional algebras over a field.

1. Preliminaries

• Simple module and Schur’s lemma

• every simple module is a quotient of the ring

• Semisimple modules: equivalent conditions

• Isotypical components

• semisimplicity of group ring

• modules for the group ring are representations of the group

2. Simple finite dimensional algebras
[s:s]

Let F be a field and A an (associative) algebra (with identity) over F with dimF A <∞.
[ss:example]

2.1. An example. The prototypical example of such an algebra A is EndFV , the ring of

F -linear endomorphisms of a finite dimensional (non-zero) F -vector space V .

There is a natural bijective inclusion-reversing corresponding between subspaces of V and

left ideals of EndFV : to a subspace W is associated the left ideal W⊥ consisting of all endo-

morphisms that vanish on W . There is also a natural inclusion-preserving correspondence

between subspaces and right ideals: given a subspace W , the set rW of all endomorphisms

with range contained in W is a right ideal. In particular, there are only two left ideals that

are also right ideals: 0⊥ which is the whole of EndFV and V ⊥ which is 0.

The F -dimension of W⊥ is dimV · dim(V/W ), that of rW is dimV · dimW . If W1 and

W2 are subspaces of the same dimension, then W⊥
1 and W⊥

2 are isomorphic as A-modules:

choosing g to be a linear isomorphism of V that maps W1 to W2, we have φ 7→ φg an

A-module isomorphism of W⊥
2 onto W⊥

1 .

Any minimal (non-zero) left ideal ` of A arises as H⊥ for some hyperplane H of V . It

is isomorphic to V as A-modules. Indeed, choosing a non-zero element of V/H (two such
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elements are scalar multiples of each other), any element of H⊥ is determined by the value

at this element, and the resulting evaluation map from H⊥ to V defines an A-isomorphism.

EndFV is semisimple: if we choose as many hyperplanes H1, . . . , Hn in V as the dimen-

sion n of V such that they intersect trivially, then EndFV is the (internal) direct sum of the

corresponding minimal left ideals.

The algebra EndFV is (non-canonically) isomorphic to its opposite. To see this, fix a

non-degenerate bilinear form on V . Using this form, we can identity V with its dual V ∗

and so also EndFV with EndFV
∗. The association ϕ↔ ϕ∗, where ϕ∗ is the transpose of ϕ,

defines an isomorphism between (EndFV )opp and EndFV
∗.

[ss:simple]
2.2. The structure of a simple algebra. Assume that F is algebraically closed and let

` be a minimal (non-zero) left ideal of a simple finite dimensional algerba A over F . The

natural map ρ : A → EndF ` defining the action of A on ` is injective since the kernel is

a proper two-sided ideal and A is simple. We claim that ρ is surjective and therefore an

isomorphism. Indeed this follows from the following famous result.
[l:burnside]

Lemma 1. (Burnside) Let B be an algebra (not necessarily finite dimensional) over an

algebraically closed field F , and V a simple finite dimensional B-module. Then the canonical

map B → EndFV defining the action of B on V is an epimorphism.

Proof: It is enough to show the following: given a F -basis v1, . . . , vn of V , and arbi-

trary elements w1, . . . , wn of V , there exists an element b in B such that bv1 = w1, . . . ,

bvn = wn. Consider the B-module map ψ : B → `⊕n defined by b 7→ (bv1, . . . , bvn). Since V

is simple, V ⊕n is semisimple. The image of ψ being a submodule of V ⊕n, it is isomorphic to

V ⊕r with r ≤ n. By Schur’s lemma, any B-module map between V ⊕r and V ⊕n is given by

(u1, . . . , ur) 7→ (u1, . . . , ur)M , where M is an r×n matrix over EndBV , and we think of V and

its direct sums naturally as right modules over EndBV . Since 1 in B maps to (v1, . . . , vn) un-

der ψ, it follows that there exists (u1, . . . , ur) in V ⊕r such that (u1, . . . , ur)M = (v1, . . . , vn).

Our hypothesis that F is algebraically closed now means that EndBV is F . Since v1, . . . , vn
are linearly independent, this is possible only if r = n, and the lemma is proved. �

We’ve thus proved the following theorem:Structure of a
simple algebra

[t:simple]
Theorem 2. A finite dimensional simple algebra over an algebraically closed field is isomor-

phic to the ring of linear endomorphisms of any of its minimal left ideals.

Combining the theorem with the facts proved in §2.1, we conclude that such an algebra

is semisimple: indeed, it is isomorphic to `⊕n where ` is any minimal left ideal and n the

F -dimension of `. The F -dimension of such an algebra is the square of the dimension of any

of its minimal left ideals.
[c:burnside]

Corollary 3. Let F be an algebraically closed field. Let V , W be finite dimensional simple

modules respectively for F -algebras B and C. Then V ⊗ W is a simple B ⊗ C-module.

Moreover, every simple finite dimensional B ⊗ C-module arises thus.
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Proof: Since the canonical maps from B and C respectively to EndFV and EndFW are sur-

jective (by Lemma 1), the image of B⊗C under their tensor product is EndFV ⊗EndFW =

EndF (V ⊗W ), which proves the first assertion. For the converse, given a finite dimensional

B ⊗ C-module X, let V be a simple B-submodule (this exists because dimF X <∞). Now

HomB(V,X) is naturally a C-module (by the action on X, since the actions of B and C

commute), and we have an evaluation morphism ev : V ⊗ HomB(V,X) → X, which is

B ⊗ C-linear. The image of ev is non-zero, and therefore onto X since X is simple. Let W

be any simple C-submodule of HomB(V,X). Since ev(V ⊗ ϕ) 6= 0 for ϕ 6= 0 (by the nature

of HomB(V,X)), we have ev(V ⊗W ) is non-zero and therefore all of X. In other words,

ev : V ⊗W → X is an isomorphism (that it is injective uses the first part). �

[sss:nonac]

2.2.1. The case when F is not algebraically closed. If the base field is not algebraically closed,

then the result above still holds in a slightly modified form. Let ` be a minimal left ideal

and put D := EndA`. By Schur’s lemma, D is a division subring of EndF `. We now consider

` as a (finite dimensional) vector space over D: observe that dimD ` · dimF D = dimF `. The

claim now is that A→ EndFV maps onto EndD`.

To prove the claim, choose v1, . . . , vn to be a D-basis of ` and proceed as before. The matrix

M will now have entries over D, and once again r = n is forced by the linear independence

of v1, . . . , vn (this time over D). We’ve thus proved the following theorem: Structure of a
simple algebra:
base field not
necessarily
algebraically
closed

Theorem 4. A finite dimensional simple algebra over a field is isomorphic to EndD`, where

` is any minimal left ideal and D the division ring EndA`.

[ss:exrevisit]2.3. Revisiting the prototypical example. In the light of §2.2.1, it is natural to look

back at Example 2.1 and generalize it. To this end, let D be a division ring with F imbedded

centrally in it and dimD F < ∞. Let V be a finite dimensional (left) D-vector space, and

put A = EndDV .

The correspondence of left ideals of A with D-subspaces of V works in a similar fashion.

So does the correspondence of right ideals. In particular, A is simple as before. Subspaces

of the same dimension correspond to isomorphic one-sided ideals. Any minimal left ideal of

A is isomorphic to V as A-modules.

The dual HomD(V,D) is naturally a right D-vector space and so a left Dopp-vector space.

The association ϕ↔ ϕ∗, where ϕ∗ is the transpose of ϕ, defines an isomorphism of (EndDV )opp

with EndDoppV ∗.

3. Semisimple finite dimensional algebras
[s:ss]

[ss:exampless]3.1. Prototypical examples of semisimple algebras. Let V1, . . . , Vk be finite dimen-

sional vector spaces over the (arbitrary) field F and A be the product EndFV1×· · ·×EndFVn.

The vector spaces Vj are naturally A-modules: indeed, each Vj is an EndFVj-module and

thus also an A-module via the projection A→ EndFVj. As observed in §2.1, each EndFVj is

semisimple as a module over itself. So each EndFVj is a semisimple A-module and A being

the direct sum of these as a module is also semisimple.
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[ss:ssimple]
3.2. The structure of a semisimple algebra. Our goal is to show that every finite di-

mensional semisimple algebra over an algebraically closed field is of the prototypical form

described in §3.1. The following simple, beautiful observation is used crucially in the proof:

Let R be a ring (with identity) and L denote R as a left module over itself.

Then the ring EndR(L) of R-endomorphisms of L is naturally isomorphic to

the opposite ring Ropp of R.

Indeed, L being generated by 1, any R-endomorphism of L is determined by where it maps 1,

say to r, but then it must be right multiplication by r.

[t:wedderburn]
Theorem 5. (Wedderburn) Let A a finite dimensional semisimple algebra over an arbitrary

field F . Let left ideals `1, . . . , `k be so chosen that no two of them are isomorphic and

together they represent all isomorphism classes of simple modules. Let πi : A→ EndF `i for

1 ≤ i ≤ k be the algebra homomorphisms defining the actions of A on `i. Then their product

π : A→ EndF `1 × · · · × EndF `k (1)

is an isomorphism onto EndD1`1 × · × EndDi
`k, where Di are the division rings EndA`i. In

particular, if F is algebraically closed, π is a bijection.

Proof: That π is an injection is quite easy to see. Write A = I1 ⊕ · · · ⊕ Ik, where Ij is

the isotypical components of A corresponding to `j. If a is in the kernel of π, then it kills

all Ij and so all of A, and hence is zero (since A has identity). It remains only to show that

the image of π is the product of the images of πi: note that πi is onto EndF `i in case F is

algebraically closed (Lemma 1) and that its image is EndDi
`i in general (§??). For this, it is

enough to prove the claim:

πi(Ij) = 0 for j 6= i

Indeed, then πi(Ii) = πi(A), and given arbitrary bi in πi(A), choosing ai ∈ Ii such that

πi(ai) = bi, we get π(a1 + · · ·+ ak) = (π1(a1), . . . , πk(ak)) = (b1, . . . , bk).

To prove the claim, we use the observation made at the beginning of this subsection. Each

Ij (defined as above) is preserved by EndAA, and so under right multiplication by elements

of A. In other words, the Ij are two-sided ideals (not just left ideals). Thus IjIi = 0 for

j 6= i, so Ij ⊆ Ann `i for j 6= i, which is precisely the claim. �

We list some consequences:

• (A criterion for simplicity)A semisimple finite dimensional algebra is simple if

and only if it admits precisely one simple module.

• (Density) Assume F to be algebraically closed. Let V1, . . . , Vn be pairwise non-

isomorphic simple modules for a semisimple finite dimensional algebra A over F .

Given arbitrary linear transformations ϕi ∈ EndFVi, there exists a in A such that ϕi

is left multiplication of a on Vi.
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• (left semisimple is right semisimple) The opposite of a finite dimensional semisim-

ple algebra is semisimple. In particular, the notions of left and right semisimplicity

coincide for finite dimensional algebras.
[ss:oreps]

3.3. Applications to the ordinary representation theory of a finite group. The

“ordinary” in the title refers to the fact that the base field is algebraically closed of char-

acteristic zero. Let F be such a field, e.g., that of complex numbers. Let G be a finite

group. The group ring FG of G with coefficients in F evidently has F -dimension |G| (the

cardinality of G). Moreover, it is semisimple by Maschke’s theorem (§??). Wedderburn’s

theorem therefore applies: if V1, . . . , Vk be simple modules such that no two are isomorphic

and together represent all simple isomorphism classes, then FG ' EndFV1 × · · · × EndFVk.

• Equating the dimensions of the centres on both sides, we see that there are as many

simple isomorphism classes as conjugacy classes in the group.

• Equating F -dimensions on both sides, we get |G| = (dimV1)
2 + · · ·+ (dimVk)2.

4. The commutant of a semisimple algebra
[s:comm]

We begin with a simple but crucial observation. Let F be a field and V , W finite dimensional

vector spaces over F . Consider the subalgebras EndFV and EndFW of EndF (V ⊗W ). As

can be easily checked, they are commutants of each other:

EndFW is precisely the subset of those elements of EndF (V ⊗W )
that commute with EndFV (and vice versa). (2)

[ss:schur]
4.1. Commutant and bicommutant, after Schur. Let now F be algebraically closed,

V a finite dimensional F -vector space, and A a semisimple subalgebra of EndFV . Then V

is semisimple as an A-module (every A-module is semisimple). Following Schur, we pose:

Can we identify the commutant C (:= EndAV ) of A inside EndFV ? (3)

Towards an answer to the above, let `1, . . . , `k be minimal left ideals of A so chosen that no

two are isomorphic as A-modules and together they represent all simple isomorphism classes

of A-modules. Rewrite the isotypical decomposition `⊕r11 ⊕ · · · ⊕ `⊕rkk of V as

V = `1 ⊗ ρ1 ⊕ · · · ⊕ `k ⊗ ρk (4)

where ρ1, . . . , ρk are F -vector spaces of respective dimensions r1, . . . , rk, and A acts on

`i ⊗ ρi by a(x⊗ y) = ax⊗ y.

Let S denote the subalgebra EndF (`1 ⊗ ρ1)× · · · × EndF (`k ⊗ ρk) of EndFV . The image

of A in EndFV (under the map that defines V as an A-module) is contained in S: it is in

fact A1 × · · · × Ak, where Ai denotes the image of EndF `i in EndF (`i ⊗ ρi). Since EndAV

preserves the isotypical A-components of V , it is a subalgebra of S. From observation (2) it

now follows that it is C1 × · · · × Ck where Ci denotes the image of EndFρi in EndF (`i ⊗ ρi)
(which, let us note, is isomorphic to EndFρi).

Thus the commutant C is isomorphic to EndFρ1×· · ·×EndFρk. It is therefore semisimple

(§3.1). Moreover there is a bijective correspondence `i ↔ ρi between simple isomorphism

classes of A and those of C. Since A and C commute, we may consider V as an A⊗C-module
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with (a⊗ c)v = a(cv) = c(av). The decomposition (4) of V is also its isotypic decomposition

as an A⊗C-module: each `i ⊗ ρi is simple (Corollary 3) and occurs exactly once. This last

fact is expressed by saying that V is multiplicity free as an A ⊗ C-module. Note that out

of the k2 simple modules of A⊗ C (namely `i ⊗ ρj), only k appear in V (those of the form

`i ⊗ ρi, which defines the bijective correspondence).

Finally, observe that A is the commutant of C: this follows from the same kind of reasoning

that we used to identify C explicitly. In other words, A is its own bicommutant .
[ss:commex]

4.2. Examples. At least two examples to be included here: schur-weyl, cauchy
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