
Character theory

The “representation theory” for a group G consists of understanding of the
following questions:

• Describe the irreducible characters and the irreps.

• Given a representation, find techniques for decomposing into irreps.

• Plethysm: Decompose into irreducible components the representa-
tions associated to a given representation U such as U ⊗U , Symk(U),
∧k(∧l(U)). The problem of decomposing V ⊗W for irreps V and W
is called the Clebsch-Gordon problem.

Orthonormality of Irreducible Characters

On complex-valued functions on the group introduce the following hermitian
inner product:

〈e, f〉 :=

∫
G
e(g)f(g) dg

The theorem is the following:

The characters of the irreducible representations form an or-
thonormal basis for the space of class functions with this inner
product.

Let us first show the orthonormality of the irreducible characters. This
part of the proof, as also the other half, is a combination of the averaging
technique and Schur’s lemma. Given a G-module U , the expression Av :=∫
G g dg has meaning as an element of End(U). Being a projection onto UG,

its trace equals dimUG. Now let V and W be irreducible representations,
and set U = Hom(V,W ). By Schur, UG has dimension 0 or 1 according as
V and W are equivalent or not, so that accordingly Av has trace 0 or 1. On
the other hand, Hom(V,W ) being isomorphic to V ∗⊗W , the trace of Av is
just 〈χ(V ), χ(W )〉.

Here are some corollaries:
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• The character determines the representation. In fact, the number of
copies of an irrep V in a given representation U is just the inner
product of the characters of V and U .

• A representation is irreducible if and only if its character has norm 1.

• Each irrep V occurs in the regular representation dimV times. In
particular, we have the following formula:

|G| = the sum of the squares of the dimensions of all irreps

• We will show shortly that the number of irreps equals the number
of conjugacy classes. Assume this for the moment and consider the
square matrix of the character table where each entry is multiplied
by
√
c/|G| where c is the cardinality of the corresponding conjugacy

class. The orthonormality of characters amounts to the rows of this
matrix being orthonormal. The matrix is thus orthogonal, and the
columns are also orthonormal. This gives the following:∑

χ

χ(g)χ(h) =

{
0 if g and h are not conjugate
|G|/c if g and h are conjugate

Let us now show that there are no more linearly independent class func-
tions than irreps. Let φ be a class function such that 〈φ, χ〉 = 0 for all
characters χ. The element Φ :=

∑
φ(g)g is, on the one hand, by Schur,

acting on any irreducible V as a scalar, but, on the other, has trace 0 as
an elment of End(V ). It is therefore zero on V and so also on any module
U . (Moral: A scalar matrix in characteristic zero vanishes if its trace does.)
But then the action of Φ on 1 in the regular representation is Φ, so that Φ
is zero. This shows that φ is zero and the theorem is completely proved.

0.1 A projection formula

Let us write down a formula for the G-projection from a G-module U to its
isotypical component corresponding to an irrep V . (By Schur, there is only
one projection.) But what is an “isotypical component”? For a G-module
U and an irrep V , define the isotypical component of U corresponding to
V to be the sum of all simple submodules of U isomorphic to V . That U
is a sum of its isotypical components follows from complete reducibility and
that this sum is direct from complete reducibility and Schur.
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Consider
∫
G χV (g)g dg in End(U). This is a G-map and thus by Schur

restricts to a scalar on each irreducible sub W . The trace of this restriction
is either 1 or 0 according as W is equivalent or not to V . Thus dimV ·∫
G χ(g)g dg is the required formula.

The Example of S3

The representation theory of the symmetric group G = S3 can be under-
stood by elementary means as follows. Let σ = (12) and τ = (123). The
elements α = (ω, 1, ω2) and β = (1, ω, ω2) form a basis for the standard
representation. We have

τα = ωα, τβ = ω2β, σα = β, σβ = α.

Let U be any G-module. Let U = U1 ⊕ Uω ⊕ Uω2 be the decomposition
of U into eigenspaces for τ . The relation τσ = στ2 shows that σ stabilises
U1 and maps Uω isomorphically onto Uω2 . Let U1 = U1,1 ⊕ U1,−1 be the
decomposition of U1 into eigenspaces for σ. Let v1, . . . , vk be a basis of
Uω and set V1 := Cv1 ⊕ Cσv1, . . . , Vk := Cvk ⊕ Cσvk. Then Uω ⊕ Uω2 =
V1⊕ · · ·⊕Vk and each Vj is isomorphic to the standard representation. The
elements (vj ± σvj)/2 are eigenvectors for σ with eigenvalues ±1 and form
a basis for Vj . Thus we have

U = Trivial⊕a ⊕ Sign⊕b ⊕ Standard⊕c

where

a+ b = dimension of the eigenspace U1 of τ

a+ c = dimension of the +1 eigenspace for σ

b+ c = dimension of the −1 eigenspace for σ

c = dimension of either eigenspace Uω or Uω2

Solution of the Clebsch-Gordon problem

The elements α⊗α, α⊗β, β⊗α, β⊗β are eigenvectors for τ with eigenvalues
ω2, 1, 1, ω; the elements (α⊗β±β⊗α)/2, (α⊗α±β⊗β)/2 are eigenvectors
for σ with eigenvalues ±1, ±1. Thus

Standard⊗ Standard = Trivial⊕ Sign⊕ Standard.
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