
ROTATIONS AND QUATERNIONS

VIJAY KODIYALAM

This is a companion article for a 1 hour talk at the “One per cent” Mathematics
workshop for students of classes XI and XII organised by K. N. Raghavan and
Parameswaran Sankaran at IMSc, Chennai on 29th November, 2013. It covers
some extensions and proofs that were omitted. Ideally it should be read having
watched the video of the talk.

1. Rotations in 3-dimensional space

We will restrict attention in this article to rotations about the origin in 3-space.
Such a rotation is described by an axis - which we think of as a unit vector - and
an angle of rotation. We will imagine that 3-space is rotated by the given angle
about the given axis, where the direction of rotation is given by the right hand rule
- when the right thumb points in the direction of the axis, the curled up fingers of
the right hand indicate the direction of rotation.

One of our main interests is in trying to figure out the image of a given point
under a given rotation. Another is to explain the rather unexpected fact - which was
demonstrated using a cube - that a composite of two rotations is always given by
a single rotation and to be able to compute the final angle and axis of a composite
of rotations.

It turns out that both are easily explained using the algebra of quaternions.

2. The algebra of quaternions

Consider as an analogue of complex numbers, all “numbers” of the form w +
xi+ yj+ zk where w, x, y, z are real numbers and i, j,k are symbols that commute
with all real numbers and satisfy

i2 = j2 = k2 = −1

ij = k = −ji

jk = i = −kj

ki = j = −ik.

One checks that this is an associative multiplication when extended in a linear way
to all such “numbers” which are the quaternions.

Define the norm of a quaternion q = w+xi+ yj+ zk, again by analogy with the

complex numbers, as |q| =
√

w2 + x2 + y2 + z2. Just as for complex numbers, the
quaternionic norm is multiplicative, i.e., |qq̃| = |q||q̃|.

Exercise: Prove this and use it to show that if two positive integers are each
a sum of 4 perfect squares, then, so is their product. Thus, to show that every
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positive integer is a sum of (at most) 4 squares, it suffices to verify this for prime
numbers.

Also, if we define the conjugate of q = w+ xi+ yj+ zk as q = w− xi− yj− zk,
then, q−1 = q

|q| . This q−1 is both a left and right inverse of q - we do need to

consider the possibility that these might be different, though with multiplication
being associative, a simple proof - which everyone must do once - shows that if
something has both a left and right inverse, then they are equal.

The quaternions form what is known as a division ring, i.e., roughly, they obey
all the usual laws of arithmetic (of, say, the real or complex numbers) except that
of commutativity of multiplication. Thus, they extend the number system of com-
plex numbers - albeit, non-commutatively. It should be noted that while the real
numbers commute with all quaternions, the complex numbers do not.

We will regard 3-space as contained in the 4-dimensional space of quaternions by
identifying the point (x, y, z) with the “purely imaginary” quaternion xi+ yj+ zk.

3. Describing rotations by quaternions

The main result is the following. Take an axis of rotation determined by a unit
vector u and an angle of rotation θ. Associate to this the (unit) quaternion

q = cos(
θ

2
) + sin(

θ

2
)u.

For any point P in 3-space, represented by the quaternion p, the quaternion qpq−1

still lies in 3-space (i.e, is still purely imaginary) and represents the image of p
under the rotation of θ about the axis u.

To try and prove this, begin with the given u and take the plane through the
origin that is perpendicular to u. Pick any non-zero unit vector v in this plane and
let w = u × v. Recall the 3-vector identity a × (b × c) = (a.c)b − (a.b)c, and
use it to conclude that u = v ×w and v = w × u - notice the similarity with the
multiplication of i, j,k in the quaternions (and the difference).

Also observe at this point that a quaternion may be regarded as a “sum” of a
scalar w and a vector v. With that, the definition of quaternion multiplication can
be written in terms of dot and cross product of vectors as:

(w + v)(w̃ + ṽ) = (ww̃ − v.ṽ) + (wṽ + w̃v + v × ṽ)

Exercise: One of the nice things about quaternions is that −1 has infinitely many
distinct quaternion square roots - in fact, one for every direction in 3-space. Show
this by using the formula above to see that if v is a unit vector in 3-space regarded
as a (purely imaginary) unit quaternion, then v2 = −1.

Next, observe that rotation is an operation on 3-space that commutes with scal-
ing. What this means is that the result of multiplying a vector by a scalar and then
rotating it is the same as first rotating it and then multiplying by that scalar. Also
note that rotation distributes over addition. In other words, the rotation of a sum
of two vectors is the sum of their rotations.

Hence, to verify that that qpq−1 represents the rotation of vector p, it suffices to
check this when p = u,v,w. For p can be written as a sum of scalings of u,v,w and
both rotations and the operation p 7→ qpq−1 commute with scaling and distribute
over addition of vectors.
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Now q = cos( θ
2
) + sin( θ

2
)u and q−1 = cos( θ

2
) − sin( θ

2
)u. We will now check in

the 3 cases p = u,v,w that qpq−1 is the same as the result of rotation of p around
the u axis by an angle θ.

Case I: Suppose that p = u. We know that a rotation around the u axis should
keep u fixed. Now consider

qpq−1 = quq−1 = (cos(
θ

2
) + sin(

θ

2
)u)u(cos(

θ

2
)− sin(

θ

2
)u)

= (−sin(
θ

2
) + cos(

θ

2
)u)(cos(

θ

2
)− sin(

θ

2
)u)

= (cos2(
θ

2
) + sin2(

θ

2
))u = u

The last two equalities follow from the definition of quaternion multiplication in
terms of dot and cross products. So for p = u, we have what we need.

Case II: Suppose that p = v. We first calculate:

qpq−1 = qvq−1 = (cos(
θ

2
) + sin(

θ

2
)u)v(cos(

θ

2
)− sin(

θ

2
)u)

= (cos(
θ

2
)v + sin(

θ

2
)w)(cos(

θ

2
)− sin(

θ

2
)u)

= cos2(
θ

2
)v + sin(

θ

2
)cos(

θ

2
)w − cos(

θ

2
)sin(

θ

2
)(v × u)− sin2(

θ

2
)(w × u)

= cos(θ)v − sin(θ)w

Case III: I’ll leave it to you to verify that if p = w, then qpq−1 = sin(θ)v +
cos(θ)w.

But now considering the v - w plane, a rotation of θ about the u-axis should
take v to cos(θ)v − sin(θ)w and w to sin(θ)v + cos(θ)w. This shows that in all 3
cases rotation does exactly the same thing as qpq−1 - finishing the proof.

Now let us also observe the following. Given any unit quaternion q - meaning of
norm 1 - it can always be written as cos( θ

2
) + sin( θ

2
)u - actually in two ways, one

obtainable from the other from changing the sign of u and changing the angle by
180◦.

This now shows that the composite of two rotations is a rotation (since a product
of unit quaternions is a unit quaternion) and how to compute the axis and angle of
the final rotation (multiply the associated unit quaternions - carefully, in the right
order - and deduce the angle and axis from the result).

4. What is the Dirac belt trick about?

As I understand it, it is an “explanation” of why θ
2
occurs in the quaternion

associated to a rotation by θ rather than θ itself. It really has to so with some nice
physics which I unfortunately do not know.

Consider the set of all unit quaternions. This forms the unit 3-sphere w2 + x2 +
y2 + z2 = 1 in 4-dimensional space. On the other hand consider the “set of all
rotations of 3-space”. What kind of object is this ?

Under a rotation, suppose the unit vectors i, j,k go to the vectors u,v,w respec-
tively. It is clear geometrically that u,v,w are also mutually perpendicular unit
vectors, and as we said earlier, completely determine the rotation. Thus a rotation
is “the same” as the set of 3 mutually perpendicular unit vectors. We can arrange
these three vectors in order as the columns of a 3× 3 matrix.
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So every rotation R gives a 3 × 3 matrix, also denoted R, whose columns are
unit mutually perpendicular vectors. The matrix thus satisfies RTR = I. This also
implies that RRT = I. Here, of course, RT stands for the transpose matrix of R.

The thing is that the converse holds too - almost. Given any three mutually
perpendicular unit vectors, is there a rotation that takes i, j,k to those ? Not
quite, for geometrically, rotations preserve cross products of vectors, so if we know
where i, j go under a rotation, there is only one choice for where k can go - namely
the cross product of the two images. This is a unit vector perpendicular to both
and one of the only two such. Thus given any 3 mutually perpendicular vectors
u,v,w, there is a rotation that maps i, j,k to either u,v,w or to u,v,−w.

What characterises images of i, j,k under a rotation is that the scalar triple
product u.(v×w) = 1 as opposed to −1 - which is also a possibility for a triple of
mutually perpendicular vectors.

Since the scalar triple product is just the determinant of the associated matrix,
we may conclude that the set of all rotations in 3-space is “the same” as the set of
all 3× 3 matrices R that satisfy RRT = I = RTR and det(R) = 1.

So on the one hand, we have unit quaternions that describe rotations and on the
other, we have the collection of 3× 3 matrices as above. What is the connection ?
The fact is that there is a natural way of getting a 3× 3 matrix from a quaternion
in such a way that exactly two quaternions correspond to a single matrix and these
two are negatives of each other.

Dirac’s belt trick has to finally do with the fact that the negative of a negative
is the identity. We will stop at this for the interested reader to pursue further.

Acknowledgements: My thanks to K. N. Raghavan for a careful reading of this
and comments and for preparing a companion sheet to this article with two detailed
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