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Quadratic fields obtained by adjoining square roots of square free integers

QUADRATIC FIELDS

A field extension of Q is a quadratic field if it is of dimension 2 as a vector
space over Q. Let K be a quadratic field.

Let α be in K \Q, so that K = Q[α]. Then 1, α are Q-linearly independent, but
not so 1, α, and α2. Thus there exists a linear dependence relation of the form
α2 + bα+ c = 0 with b, c rational, and c 6= 0.

Write α2 + bα+ c = (α+ b/2)2 + (c− b2/4). Put β = α+ b/2, so that
Q[β] = Q[α] = K, and β = ±

√
b2 − 4c/2. Here and elsewhere:

For a real number x, the symbol
√

x denotes the positive squre root if x is
positive, the positive imaginary square root if x is negative, and 0 if x is 0.

Thus K is obtained from Q by adjoining a square root of the rational number
b2 − 4c.

Writing b2 − 4c = p/q, where p and q are coprime integers, we get√
b2 − 4c =

√
p/q =

√pq/q, so K is obtained by adjoining the square root of
the integer pq to Q. We may further assume that the integer is square free, for
if d = e2f are integers, then

√
d = e

√
f , so that Q[

√
d] = Q[

√
f ].

Thus our general quadratic field K is of the form Q[
√

d] where d is a square
free integer.
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Quadratic fields obtained by adjoining square roots of square free integers

QUADRATIC FIELDS ↔ SQUARE FREE INTEGERS

Conversely, suppose that d is a square free integer (0 and 1 are not considered
square free). Then by a proof similar to the standard one of the irrationality
of
√

2, it follows that
√

d is irrational. In particular, Q[
√

d] 6= Q and so is a
quadratic field, with 1,

√
d as a Q-basis.

Moreover Q[
√

d] 6= Q[
√

d′] for square free integers d 6= d′. Indeed if√
d = a + b

√
d′ with a, b rational, then d = a2 + b2d′ + 2ab′

√
d′, and since

√
d′

is irrational, we conclude that either a = 0 or b = 0; in the latter case,
√

d = a
(which would mean

√
d is irrational, a contradiction), and in the former case

d = b2d′ means that either d or d′ is not square-free, which again is a
contradiction.

We have thus established a bijective correspondence between quadratic fields
and square free integers d:

d↔ Q[
√

d]

The possible positive values of d are: 2, 3, 5, 6, 7, 10, . . . ; and the possible
negative values are: −1, −2, −3, −5, −6, −7, −10, . . . . Since d is square free, it
is not divisible by 4: we thus have three cases: d ≡ 1, 2, or 3 mod 4. We call
Q[
√

d] imaginary quadratic or real quadratic accordingly as d < 0 or d > 0.
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Rings of integers in quadratic fields

ALGEBRAIC NUMBERS AND ALGEBRAIC INTEGERS
A complex number α is algebraic if it is the root of a (non-zero) polynomial
with integer coefficients. More formally, α in C is algebraic if there is a
polynomial p = p(X) := anXn + an−1Xn−1 + · · ·+ a1X + a0, with aj integral
and an 6= 0, of which α is a root.

I Since α must be a root of one of the irreducible factors of the
polynomial p, we may assume that p is irreducible; this means, in
particular, that p is primitive, that is, the highest common factor of its
coefficients is 1.

I Multiplying by −1 if necessary, we may further assume that the leading
coefficient of p is positive.

We claim that the above two assumptions determine the polynomial p
uniquely. In fact, we claim:

If p′ is a polynomial with integer coefficients of which α is a root, then p
divides p′.

Indeed, suppose that p′ is another such polynomial. Then consider the
greatest common divisor (with positive leading coefficient) r of p and p′. It
has α as a root, for, being a divisor of both p and p′ in the PID Q[X], it is of the
form ap + a′p′ for some a and a′ in Q[X]. Thus r is not a unit, which means
that it is an associate of p. Both r and p having leading coefficient positive, we
conclude that r = p. Now, r and hence p divides p′. By the irreducibility of p′

and the positivity of its leading coefficient, we conclude that p = p′.
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Units in Gaussian integers

UNITS IN GAUSSIAN INTEGERS

I The only units in Z[i] are ±1 and ±i.

If u is a unit, then write uv = 1.

Apply conjugation: ūv̄ = 1.

Multiply the two equations: (uū)(vv̄) = 1.

Since uū is a positive integer, uū = 1.

Writing u = a + bi with a and b integers,

we get uū = a2 + b2 = 1.

So either a2 = 1 and b2 = 0,

or a2 = 0 and b2 = 1.

In the first case, a = ±1 and b = 0, so u = ±1;

in the second, a = 0 and b = ±1, so u = ±i. �
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Gaussian integers form a Euclidean domain

THE RING Z[i] OF GAUSSIAN INTEGERS IS A EUCLIDEAN DOMAIN

W.R.T. | |2

The norm of a Gaussian integer is the square | |2 of its modulus as a complex
number:

|a + bi|2 = (a + bi)(a− bi) = a2 + b2

The result now can be stated thus:
Given a and d 6= 0 Gaussian integers, there exist Gaussian integers
q and r such that

a = dq + r with |r|2 < |d|2

We give two proofs.
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Gaussian integers form a Euclidean domain

GEOMETRIC PROOF THAT Z[i] IS A EUCLIDEAN DOMAIN W.R.T | |2

Consider the ideal (d) in Z[i] generated by d. It is a “lattice”:

Choose a point of the lattice that is closest to a: this point is not always
unique. Write that point as qd with q ∈ Z[i]. Set r = a− qd. Observe that

|r|2 = |a− qd|2 ≤ |d|
2

2
< |d|2
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Gaussian integers form a Euclidean domain

A SECOND PROOF THAT Z[i] IS A EUCLIDEAN DOMAIN W.R.T | |2

Divide a by d as a complex number: write a/d = w = x + iy.

Choose Gaussian integer m + in closest to w = x + iy (need not be unique).

Put q = m + in and r = a− qd. Observe that |w− q|2 ≤ 1/2. Thus

|r|2 = |a− qd|2 = |( a
d
− q)d|2 = |w− q|2 · |d|2 ≤ |d|

2

2
< |d|2
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Factoring integer primes as Gaussian integers

FACTORIZATION OF AN INTEGER PRIME AS A GAUSSIAN INTEGER

I Let p be a prime integer. Then either p is a Gauss prime, or else it is the
product of two complex conjugate Gauss primes: p = ππ̄

Observe that p is not a unit in Z[i]—the only units in Z[i] are ±1, ±i.
Thus p is divisible by a Gaussian prime π: p = πα with α in Z[i].
Apply conjugation: p = p̄ is divisible by π̄: p = p̄ = π̄ᾱ.

Multiply the two equations: p2 = pp̄ = (ππ̄)(αᾱ).

This is an equation in positive integers. Note that ππ̄ 6= 1 since π is a
Gaussian prime. The positive integer ππ̄ divides the positive integer p2.

Thus, either ππ̄ = p2, or ππ̄ = p.

In the former case αᾱ = 1, so α is a unit in Z[i],
so p is an associate of π, and so a Gaussian prime. �
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Factoring integer primes as Gaussian integers

FOR π A GAUSSIAN PRIME, ππ̄ IS EITHER A PRIME OR A PRIME SQUARED

I Let π be a Gaussian prime. Then ππ̄ is either prime or the square of a
prime.

Condier the prime factorization in positive integers of ππ̄:

ππ̄ = pq · · · (with possible repetitions on the right hand side)

This is a factorization also in Z[i], although not necessarily a prime
factorization.

Since π is prime, it divides one of the integer prime factors, say p, of ππ̄.

Now, proceeding as before, we get that either ππ̄ = p or ππ̄ = p2.

Recap: p = πα; p = p̄ = π̄ᾱ; p2 = pp̄ = (ππ̄)(αᾱ)

ππ̄ is an integer 6= 1 dividing p2: so either ππ̄ = p, or ππ̄ = p2. �
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Factoring integer primes as Gaussian integers

FACTORING INTEGER PRIMES IN Z[i]

We have seen that an integer prime p (as an element of Z[i]) is either a

Gaussian prime or a product of two conjugate Gaussian primes: p = ππ̄.

In the latter case, writing π = a + bi with a and b integers,

we get p = a2 + b2, a sum of two squares.

Conversely, suppose p = a2 + b2 for a and b integers.

Then factoring in Z[i], we get p = (a + bi)(a− bi).

Observe that a + bi must be a Gaussian prime:

if a + bi = αβ, with α Gaussian prime, then p = (a + bi)(a− bi) = (αᾱ)(ββ̄),

so αᾱ = p (since αᾱ 6= 1 because α not a unit).

And so |β| = 1, which means β is a unit,

so a + bi is an assoicate of α, and so also a Gaussian prime.

We have proved
I An integer prime p is a product of two conjugate Gaussian primes if and

only if it is the sum of two integer squares.
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Factoring integer primes as Gaussian integers

FACTORING INTEGER PRIMES IN Z[i] (CONTINUED)

I An integer prime p is a Gaussian prime if and only if

−1 is not a square in the field Z/pZ.

Indeed, p is a Gaussian prime, if and only if Z[i]/(p) is a domain.

Observe that

Z[i] ' Z[X]

(X2 + 1)
so that

Z[i]
(p)
' Z[X]

(X2 + 1, p)
' (Z/pZ)[X]

(X2 + 1)

But (Z/pZ)[X]/(X2 + 1) is a domain (equivalently a field)

⇔ (X2 + 1) is irreducible in (Z/pZ)[X]

⇔ (X2 + 1) has no root in Z/pZ
⇔−1 is not a square in Z/pZ. �
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Factoring integer primes as Gaussian integers

FACTORING INTEGER PRIMES IN Z[i] (CONTINUED)

Let p be an integer prime.
I −1 is a square in Z/pZ if and only if p = 2 or p ≡ 1 mod 4.

Suppose that −1 is a square in Z/pZ and p 6= 2.

Then the square root of −1 has order 4 in (Z/pZ)×. So 4 divides p− 1.

Conversely, suppose first that p = 2.

Then −1 ≡ 1 mod 2, so −1 is a sqaure mod 2.

Now suppose p ≡ 1 mod 4. Consider the 2-Sylow subgroup of (Z/pZ)×.

This contains ±1 and has order at least 4. Choose a in it, a 6= ±1.

Then the order of a is a multiple of 4:

if the order were 1, then a = 1 (not possible);

if the order were 2, then a = −1

for X2 − 1 has precisely two roots ±1 in Z/pZ.

Thus some power of a, say b, has order 4. Then b2 = −1. �
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Factoring integer primes as Gaussian integers

FACTORING INTEGER PRIMES IN Z[i] (SUMMARY)

To summarise: the following are equivalent for an integer prime p:
I p factors as a product of conjugate Gaussian primes in Z[i].
I p = a2 + b2 for some integers a, b.
I −1 is a square in the field Z/pZ.
I p = 2 or p ≡ 1 mod 4.

An integer prime p such that p ≡ 3 mod 4 continues to be a Gaussian prime.
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Norm in rings of integers of imaginary quadratic fields (RIIQFs)

NORM IN RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS
(RIIQFS)

Let K := Q[
√

d] with d < 0 square-free integer. Set δ :=
√

d; η := 1
2 (1 + δ).

Let R be the ring of algebraic integers in the imaginary quadratic field K.

Recall: R = Z + Zδ if d ≡ 2, 3 mod 4, R = Z + Zη if d ≡ 1 mod 4.

For α in R, define its norm N(α) by: N(α) = αᾱ = |α|2 (observe: ᾱ ∈ R)

If α = a + bδ with a, b integers, N(α) = (a + bδ)(a− bδ) = a2 − db2,

which is a positive integer except when α = 0.

If α = 1
2 (a + bδ) with a, b odd integers and d ≡ 1 mod 4,

N(α) =
1
2

(a + bδ) · 1
2

(a− bδ) =
1
4

(a2 − db2)

which again is a positive integer except when α = 0.

The norm is multiplicative: N(αβ) = N(α)N(β)

A factorization in R of the form α = βγ implies, by taking norms,

a factorization N(α) = N(β)N(γ) in non-negative integers.
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Units in RIIQFs

UNITS IN RIIQFS

We are considering the ring R of integers in an imaginary quadratic field

Q[
√

d] with d < 0 a square-free integer. Notation: δ :=
√

d, η := 1
2 (1 + δ).

I α in R is a unit if and only if N(α) = 1

If N(α) = 1, then αᾱ = 1, so α is a unit (since ᾱ ∈ R).

Conversely, if αβ = 1, then N(α)N(β) = 1, and so N(α) = 1

(since both N(α) and N(β) are positive integers).

I Case d = −1: the units in R are ±1, ±i.
I Case d = −3: the units in R are the (six) powers of 1

2 (1 + i
√

3).
I All other cases: the only units in R are ±1.

We only have to verify that N(α) = 1 in only these cases.

If α = a + bδ with a, b integers, then N(α) = a2 − db2. So the only way
N(α) = 1 is if a = ±1 and b = 0, or a = 0, d = −1, and b = ±1.

If α = 1
2 (a + bδ) with a, b odd integers and d ≡ 1 mod 4, then

N(α) = 1
4 (a2 − db2), so N(α) = 1⇒ a = ±1, d = −3, and b = ±1.
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Factorization in RIs of imaginary quadratic fields

EXISTENCE OF FACTORIZATION IN RIIQFS

We are considering the ring R of integers in an imaginary quadratic field

Q[
√

d] with d < 0 a square-free integer. Notation: δ :=
√

d, η := 1
2 (1 + δ).

I Every non-unit non-zero α in R is (not necessarily uniquely)
a (finite) product of irreducibles.

Proceed by induction on N(α). Note N(α) 6= 1 since α is not a unit.

If α is irreducible, we are done. If not, α = βγ with β and γ non-units.

We have N(α) = N(β)N(γ) with neither N(β) nor N(γ) being 1.

Thus both N(β) and N(γ) are < N(α).

By induction, both β and γ are finite products of irreducibles.

Thus so is α = βγ. �
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Non-uniqueness of factorization in imaginary quadratic fields

NON-UNIQUENESS OF FACTORIZATION IN RIIQFS

We are considering the ring R of integers in an imaginary quadratic field
Q[
√

d] with d < 0 a square-free integer.

Sufficient condition for α in R to be irreducible: N(α) 6= 1 (so that α is not a
unit) and there does not exist β in R with 1 < N(β) < N(α) and N(β)|N(α)
(so that α = βγ with neither β nor γ a unit is ruled out).

Now put d = −5, and consider (1 +
√
−5) · (1−

√
−5) = 6 = 2 · 3

Claim: 1 +
√
−5, 1−

√
−5, 2, 3 are all irreducible

and no two of them are associate.

The only units in R are ±1. Since the four numbers are distinct and no two
are negatives of each other, we conclude that no two of the four are associate.

The list of all elements in R with small norms is:
Norm zero: 0 Norm 1: ±1 Norm 4: ±2 Norm 5: ±

√
−5

Norm 6: ±1±
√
−5 (four possibilities) Norm 9: ±2±

√
−5 (four

possibilities), ±3

Elements with norms 4, 5, 6, and 9 are thus irreducible by the above criterion
(for d = −5).
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Non-uniqueness of factorization in imaginary quadratic fields

NON-UNIQUENESS OF FACTORIZATION IN RIIQFS (CONTINUED)

We are considering the ring R of integers in an imaginary quadratic field
Q[
√

d] with d < 0 a square-free integer. Notation: δ :=
√

d, η := 1
2 (1 + δ).

I Suppose d ≡ 3 mod 4 and d 6= −1. Then R is NOT a UFD.
I If d = −1, then R = Z[i], and we’ve seen it is an Euclidean domain (in

particular a UFD).

Generalizing the idea of factoring 6 in the case d = −5, we consider:

(1 + δ) · (1− δ) = 1− d = 2 · 1− d
2

Claim: 2 is an irreducible. To justify this, observe that N(2) = 4 and that there
is no α in R with 1 < N(α) < 4. Indeed the possible norms are:

0 (0), 1 (±1), 4 (±2), 9 (±3), . . . , −d (±δ), 1− d (±1± δ), . . .

If R were a UFD, 2 would be prime, so would divide one of the factors on the
left side in the above equation. But neither 1

2 (1 + δ) nor 1
2 (1− δ) belong to R,

so that is not possible. �
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Which RIIQFs and UFDs?

WHICH RIIQFS ARE UFDS? THE GAUSS-BAKER-STARK THEOREM

We are considering the ring R of integers in an imaginary quadratic field
Q[
√

d] with d < 0 a square-free integer. Notation: δ :=
√

d, η := 1
2 (1 + δ).

I R is a UFD if and only if d is one of:

−1,−2,−3,−7,−11,−19,−43,−67,−163

We have just seen that except for d = −1 (in which case R is the Gaussian
integers), R is not a UFD when d ≡ 3 mod 4.

Gauss proved the if part of the theorem and conjectured the only if part.

It was not until 1966 that the only if part was proved (by Baker and Stark).
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Ideals vs. numbers; Unique factorization restored

IDEALS VS. NUMBERS; UNIQUE FACTORIZATION RESTORED
We are considering the ring R of integers in an imaginary quadratic field
Q[
√

d] with d < 0 a square-free integer. Notation: δ :=
√

d, η := 1
2 (1 + δ).

We’ve just seen that while
factorization exists, it is not unique
except for 9 special values of d (as in
the Gauss-Baker-Stark theorem).
Dedekind considered ideals in place of
numbers and thus “restored” unique
factorization. Following him, we now
consider ideals and their factorization.
Our proof in RIIQFs of Dedekind’s unique factorization (of ideals) is based
upon the fact that non-zero ideals in RIIQFs are “lattices” in R2.

A lattice in R2 is just the Z-span Zα+ Zβ of two R-linearly indenpendent
elements α and β in R2. For instance, R is a lattice. Indeed, R equals Z + Zδ
when d ≡ 2, 3 mod 4, and Z + Zη when d ≡ 1 mod 4, and so the Z-span of
the two R-linearly independent elements 1, δ or 1, η.

While Dedekind’s factorization of ideals holds in general for rings of integers
in finite extensions of Q, our proof based upon facts about lattices is special
to the case of RIIQFs.
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Rings of integers in IQFs as lattices

RIIQFS AS LATTICES

Let R be the ring of integers in the imaginary quadratic field Q[
√
−d],

where d < 0 is a square free integer. Put δ :=
√

d and η := 1
2 (1 + δ).

If d ≡ 2, 3 mod 4, then R = Z + Zδ. Thus R is a “rectangular”
lattice in this case; it is even “square” in the special case d = −1.

Example: d = −5 Example: d = −7

If d ≡ 1 mod 4, then R = Z + Zη. Thus R is a “parallelogram” lattice in this
case; it is even “rhombic” in the special case d = −3.
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Rings of integers in IQFs as lattices

IDEALS IN RIIQFS AS LATTICES

A lattice in R2 is clearly (1) an additive subgroup of R2; (2) discrete (that is,
every point in it has an open neighbourhood containing only that point of the
subgroup); and (3) contains two R-linearly independent elements.

Conversely, Any subset of R2 with the above three properties is a lattice. We
assume this for the moment and proceed.

I Every non-zero ideal I in R is a lattice. Proof: It is clearly a subgroup
of R2; it’s discrete because R is; if α is any non-zero element of I,
so is αδ, and the pair α, αδ are R-linearly independent.

I It is easy to give examples of lattices that are not ideals: for instance,
Z + 2Zi in the ring Z[i] of Gaussian integers.

I It is also easy to characterize lattices that are ideals: namely, a lattice is
an ideal if and only if it is closed under multiplication by δ (when
d ≡ 2, 3 mod 4), respectively by η (when d ≡ 1 mod 4). Indeed, R equals
Z + Zδ in the former case and Z + Zη in the latter case, so that any
additive subgroup closed under multiplication by δ, respectively η, is
closed under multiplication by R.
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