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Standard form of prime factorization of a number; GCD and LCM

STANDARD FORM AS A PRODUCT OF PRIMES: GCD AND LCM

As we all know well, every positive integer is uniquely a product of primes.
Given a positive integer n, we can write:

n = prqs · · · or, alternatively, n = pr1
1 · · · p

rk
k

Here we assume tacitly that p, q, . . . are distinct primes and that r, s, . . . are
positive (sometimes only non-negative) integers; in the latter case, that p1, p2,
. . . are distinct primes and that r1, r2, . . . are positive (sometimes only
non-negative) integers.

Such an expression for n is said to be in standard form.

If m = prqs · · · and n = pr′qs′ · · · are in standard form—where the exponents
are assumed to be non-negative—then the GCD or HCF of m and n, denoted
(m, n), and the LCM of m and n are given by

(m, n) = HCF of m and n = pmin(r,r′)qmin(s,s′) · · ·

LCM of m and n = pmax(r,r′)qmax(s,s′) · · ·

Since {r, r′} = {min(r, r′),max(r, r′)}, {s, s′} = {min(s, s′),max(s, s′)}, . . . ,
it follows that m · n = their HCF · their LCM.
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The functions τ and σ

THE FUNCTIONS τ(n) AND σ(n)

Let n = pr1
1 pr2

2 · · · be in standard form. Then
I the number of divisors τ(n) of n is (r1 + 1)(r2 + 1) · · · , for the standard

form of any divisor is pr′1
1 pr′2

2 · · · with 0 ≤ r′1 ≤ r1, 0 ≤ r′2 ≤ r2, . . . ,
and there is a one-to-one correspondence between divisors
and the choices (r′1, r

′
2, . . .).

I the sum of the divisors σ(n) is (1 + p1 + · · ·+ pr1
1 )(1 + p2 + · · ·+ pr2

2 ) · · · =

pr1+1
1 − 1
p1 − 1

· pr2+1
2 − 1
p2 − 1

· · · ·

To justify the above formula, recall how to sum a geometric series. Writing
S = 1 + p + p2 + · · ·+ pr, we have:

p · S = p + p2 + · · ·+ pr−1 + pr + pr+1

S = 1 + p + p2 + · · ·+ pr−1 + pr

so that pS− S = −1 + pr+1 and S = (pr+1 − 1)/(p− 1).
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Definition of multiplicative arithmetical functions

MULTIPLICATIVE ARITHMETICAL FUNCTIONS

We’ve just seen that if n = pr1
1 pr2

2 · · · is in standard form, then

τ(n) = (r1 + 1)(r2 + 1) · · · σ(n) =
pr1+1

1 − 1
p1 − 1

· pr2+1
2 − 1
p2 − 1

· · ·

A function (say, taking real values) on positive integers is called an
arithmetical function; an arithmetical function f is called multiplicative if
f (mn) = f (m)f (n) whenever m and n are coprime (i.e., relatively prime).

The functions τ and σ just defined are multiplicative arithmetical functions.
Indeed, if m = pr1

1 pr2
2 · · · and n = qs1

1 qs2
2 · · · are the standard forms for

coprime integers m and n, then pr1
1 pr2

2 · · · q
s1
1 qs2

2 · · · is the standard form of mn.
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perfect numbers defined; even perfect numbers

PERFECT NUMBERS

A positive integer n is called perfect if the sum σ(n) of its divisors equals 2n.
For example, 6 (1 + 2 + 3 + 6 = 12) and 28 (1 + 2 + 4 + 7 + 14 + 28 = 56).
Suppose n is an even perfect number. Write n = 2km with m odd and k ≥ 1.
We have

σ(n) = σ(2k)σ(m) = (2k+1 − 1)σ(m)

Since σ(n) = 2n, we get: (2k+1 − 1)σ(m) = 2k+1m.

Thus 2k+1 − 1 divides m. Put ` := m/(2k+1 − 1), so that

m = (2k+1 − 1)` and σ(m) = 2k+1`.

If ` > 1, then m has at least 3 distinct divisors, 1, `, and m; so

σ(m) ≥ 1 + m + l = 1 + (2k+1 − 1)`+ ` = 1 + 2k+1`

> 2k+1` = σ(m)

But this is a contradiction. So ` = 1, which means that m = 2k+1 − 1 and
σ(m) = 2k+1; since σ(m) = m + 1, we conclude that m = 2k+1 − 1 is a prime.

Thus the even perfect numbers are precisely those of the form

n = 2k(2k+1 − 1) with 2k+1 − 1 a prime
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Even perfect numbers

EVEN PERFECT NUMBERS

We’ve just seen that the even perfect
numbers are precisely those of type
n = 2p−1(2p− 1) with p an integer such
that 2p − 1 a prime. The observation is
due to the great mathematician
Leonhard Euler (1707–1783).

For 2p − 1 to be a prime, it is necessary that p be prime: for, if p = rs, then

2p − 1 = 2rs−1 = (2r − 1)(2r(s−1) + 2r(s−2) + · · ·+ 2r + 1)
So to generate even perfect numbers, we must take p to be prime and check
if 2p − 1 is prime. For the values 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 of p,
the respective values of 2p − 1 are:
3, 7, 31, 127, 2047 = 23·89, 8191, 131071, 524287, 47·178481, 233·1103·2089

Thus the first few even perfect numbers are: 2 · 3 = 6, 4 · 7 = 28,
24 · 31 = 496, 26 · 127 = 8128, 212 · 8191 = 33550336.
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Mersenne primes and perfect numbers

MERSENNE PRIMES AND PERFECT NUMBERS

A prime number of the form 2p − 1 is called a Mersenne prime after a certain
Frenchman Marin Mersenne who lived in the 17th Century.

As we just saw, in order that 2p − 1 be prime, it is necessary that p be prime.
But the primality of p is by no means sufficient: 211 − 1 = 2047 = 23 · 89, for
example. We know precious little about Mersenne primes:

I It is not known if there are infinitely many Mersenne primes.
I The total number of known Mersenne primes is 48 (the latest being

discovered in Janurary 2013! It has 17,425,170 digits!).
I It is not even known whether 2p − 1 is composite for infinitely many

primes p.

As to perfect numbers, our knowledge of them is equally thin:
I Since the known number of Mersenne primes is 48, it follows that the

known number of even perfect numbers is also 48.
I We do not know even a single odd perfect number. Nor do we know

that they do not exist.
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Primality testing

PRIMALITY TESTING: THE AKS TEST

As you can see, it would help, in the search for Mersenne primes, to be able
to tell “quickly” whether a given large number (with thousands of digits or
even larger) is prime. This question of whether there is a quick test for
primality is a fundamental one and was open for a long time (although
efficient algorithms were known to check primality of numbers of the form
2p − 1 with p prime).

Screenshot of Wikipedia page:
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Some open problems

SOME OPEN PROBLEMS

A similar test for whether or not a number is square-free (that is, whether the
square of any prime divides it) is not known. For this and many other simply
stated open problems in mathematics, one could see the video of a lecture by
Joseph Oesterlé on matsciencechannel–YouTube:
Some simple open problems in Mathematics.

Whether there are infinitely many
prime pairs that are 2 apart, like:

3, 5 5, 7 11, 13 17, 19 29, 31 · · ·

is a very famous problem called the
twin prime problem which has been
open for several hundred years and
towards which there has been
spectacular recent progress
(by Yitang Zhang, April 2013).

from the NY times of May 20, 2013
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The functions µ and φ

THE MÖBIUS FUNCTION µ AND THE EULER TOTIENT FUNCTION φ

The Möbius function µ(n) of a positive integer n = pr1
1 · · · p

rk
k in standard form

with all exponents r1, . . . , rk assumed to be positive is defined to be

0 if at least one of the exponents r1, . . . rk is ≥ 2
(−1)k otherwise (that is, if either r1 = . . . = rk = 1, or if k = 0, i.e., n = 1)

It is easily seen to be multiplicative. Its usefulness will soon become clear.

The Euler totient function φ(n) of a positive integer n is the number of integers
among 1, . . . , n that are coprime to n. We take φ(1) = 1 (by definition, if you
wish). We will presently show that for n = pr1

1 · · · p
rk
k in standard form with

r1, . . . , rk all > 0,
φ(n) = n · (1− 1

p1
) · · · (1− 1

pk
)

In other words,

φ(n) = n · p1 − 1
p1

· · · · · pk − 1
pk

= (p1 − 1)pr1−1
1 · · · (pk − 1)prk−1

k

It follows immediately from the formula above for φ that it is multiplicative.
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Proof of the formula for φ

PROOF BY INCLUSION-EXCLUSION OF THE FORMULA FOR φ

If d|n, then there are n/d integers from among 1, . . . , n that divisible by d:
namely, d, 2d, 3d, . . . , (n/d)d = n.

Suppose that n = pk is a prime power. To compute φ(n) we need only delete
all multiples of p from 1, . . . , n, and count how many remain. Since the
number of these multiples is n/p = pk−1, we get

φ(pk) = pk − pk−1 = pk−1(p− 1) = pk(1− 1
p
)

Now suppose n = pr1
1 pr2

2 has two prime divisors p1 and p2. To compute φ(n),
we must now delete all multiples of p1 and also all multiples of p2 from
1, . . . , n, and count how many remain. The number of multiples of p1 here
is n/p1; the number of multiples of p2 is n/p2. Are there numbers that are
multiples of both p1 and p2? Yes, of course. They are precisely those that are
multiples of p1p2, and their number is n/p1p2. We therefore get

φ(n) = φ(pr1
1 pr2

2 ) = n− n
p1
− n

p2
+

n
p1p2

= n(1− 1
p1
− 1

p2
+

1
p1p2

) = n(1− 1
p1

)(1− 1
p2

)
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The inclusion-exclusion principle formulated

PROOF BY INCLUSION-EXCLUSION (CONTINUED)

Now suppose n = 30 = 2 · 3 · 5.

The red, blue, and green circles in the
picture consist respectively of the
multiples of 2, 3, and 5.

Those integers from 1, . . . , 30 that are
relatively prime to 30 lie outside all
three circles.

Thus φ(30) = 8.

The priniciple of “inclusion exclusion”: let S = S0 be a set, and S1, . . . , Sk be
subsets. Then the cardinality of the complement of the union of the subsets is:

| (S \ (S1 ∪ · · · ∪ Sk)) | =
k∑

j=0

(−1)j

 ∑
1≤i1<...<ij≤k

|Si1 ∩ . . . ∩ Sij |


In case k = 3, for example, we get:

|S\(S1∪S2∪S3)| = |S| − (|S1|+|S2|+|S3|) + (|S1∩S2|+|S1∩S3|+|S2∩S3|)− |S1∩S2∩S3|
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Proof of the inclusion-exclusion principle

PROOF OF THE INCLUSION-EXCLUSION PRINCIPLE

J. J. Sylvester (1814–1897) The justification for the principle of inclusion
exclusion is this. Consider the contribution of
a given element, say s, of the set S to the
expression on the right hand side. If s does
not belong to any of the subsets S1, . . . , Sk,
then it contributes only to |S| and to nothing
else, so its total contribution is 1.
Now suppose that s belongs to some of the
subsets, say m of them, namely S`1 , . . . , S`m .
Then s contributes to 2m terms on the right:
those with j ≤ m and i1, . . . , ij

chosen from `1, . . . , `m. Since there are
(m

j

)
of

such choices, the total contribution is∑k
j=0(−1)j(m

j

)
= (1− 1)m = 0.

This finishes the justification.
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Proof of the formula of φ by inclusion-exclusion

PROOF BY INCLUSION-EXCLUSION (CONTINUED)
We now give the formal proof of the following formula for φ(n),
when n = pr1

1 · · · p
rk
k is in standard form with r1, . . . , rk all positive:

φ(n) = φ(pr1
1 · · · p

rk
k ) = n · (1− 1

p1
) · · · (1− 1

Pk
) = (p1 − 1)pr1−1

1 · · · (pk − 1)prk−1
k

Apply the inclusion-exclusion priniciple with S = {1, . . . , n} and subsets
S1, . . . , Sk, where Sj consists of all those elements of S that are multiples of pj.

I If an element of S has a common factor with n, then at least one of the
primes p1, . . . , pk divide it. Thus φ(n) counts the cardinality of the
complement in S of the union S1 ∪ · · · ∪ Sk.

I The intersection Si1 ∩ · · · ∩ Sij consists of simultaneous multiples of pi1 ,
. . . , pij ; since the pi are mutually relatively prime, this intersection
consists of precisely of the multiples of pi1 · · · pij . The cardinality of
Si1 ∩ · · · ∩ Sij is thus n/pi1 · · · pij .

Plugging this into the formula inclusion-exclusion formula, we get

φ(n) =
k∑

j=0

(−1)j n
pi1 · · · pij

= n · (
k∑

j=0

(−1)j 1
pi1 · · · pij

) = n · (1− 1
p1

) · · · · · (1− 1
pj
)
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New multiplicative functions from old

OTHER MULTIPLICATIVE FUNCTIONS

We have so far defined four multiplicative functions: τ , σ, µ, and φ. These are
by no means all. In fact, there are infinitely many of them:

I for example, n 7→ nα for any real number α is mutliplicative;
I moreover, the value of a multiplicative function on prime powers

determines it, but these values can be fixed arbitrarily without any
restriction.

Given an arithmetical function f , we may define another one f̃ as follows:
f̃ (n) =

∑
d|n f (d). If f is multiplicative, then so is f̃ . Indeed, if m and n are

coprime, and D, E, and F the sets of divisors respectively of m, n, and mn,
then D× E→ F given by (d, e) 7→ de is a bijection. Thus

f̃ (mn) =
∑
d|mn

f (d) =
∑
d1|m

∑
d2|n

f (d1d2) = (
∑
d1|m

f (d1)) · (
∑
d2|n

f (d2)) = f̃ (m) · f̃ (n)

I If c1 denotes the constant function with value 1 (that maps every positive
integer to 1), then c̃1(n) =

∑
d|n c1(d) =

∑
d|n 1 = τ(n).

I If ι is the identity function (that maps every positive integer to itself),
then ι̃(n) =

∑
d|n ι(d) =

∑
d|n d = σ(n).
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µ̃ and φ̃

TWO MORE COMPUTATIONS

I We claim that µ̃ = 1, where 1(n) is zero for all n except 1(1) = 1.
Proof: Since µ is multiplicative, so is µ̃. We clearly have µ̃(1) = µ(1) = 1
(from the definition of µ̃). Thus we need only show that µ̃(pk) = 0
for every prime p with k positive.

Again from the definition of µ̃, we have µ̃(pk) =
∑

0≤j≤k µ(p
j). But

µ(pj) 6= 0 only when j = 0 and j = 1. In the former case it is 1 and in the
latter it is −1. Thus µ̃(pk) = 0 when k is positive.

I Let us compute φ̃. Since φ is multiplicative (by our formula), so is φ̃.
It is thus enough to compute φ̃ on a prime power pk.
As is easily seen, φ(pj) = pj − pj−1 for j > 0. So

φ̃(pk) = φ(1) + φ(p) + φ(p2) + · · ·+ φ(pk−1) + φ(pk)

= 1 + (p− 1) + (p2 − p) + · · ·+ (pk − pk−1) = pk.

This proves that φ̃ = ι, the identity function.
I Summary of our computations: c̃1 = τ , ι̃ = σ, µ̃ = 1, φ̃ = ι.



HCF and LCM τ and σ Perfect numbers Open problems µ and φ Inclusion-Exclusion Möbius inversion

Möbius inversion formula

THE MÖBIUS INVERSION FORMULA

The Möbius inversion formula gives an answer to the following natural
question: suppose that f is an arithmetical function; given f̃ , can you
determine f ? If so, how to do it? Answer:

f (n) =
∑
d|n

f̃ (d)µ(n/d) =
∑
d|n

µ(d)f̃ (n/d) =
∑

d1d2=n

µ(d1)f̃ (d2)

For the proof, expand the right hand side by substituting for f̃ :∑
d|n

µ(d)f̃ (n/d) =
∑
d|n

µ(d)(
∑

e|(n/d)

f (e)) =
∑
e|n

f (e)(
∑

d|(n/e)

µ(d)) =
∑
e|n

f (e)µ̃(n/e)

But, as we just saw, µ̃ = 1, which means that µ̃(n/e) is non-zero only for e = n
in which case it is 1. Thus the last summation in the above display reduces
to f (n), and the Möbius inversion is proved.
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Convolution product

MÖBIUS INVERSION REORGANIZED: CONVOLUTION PRODUCT

To better organize the idea of Möbius inversion, we introduce the following
convolution product on arithmetical functions:

f ∗ g (n) =
∑
d|n

f (d)g(n/d) =
∑

d1d2=n

f (d1)g(d2)

I f̃ = f ∗ c1 (where c1 is the function that takes value 1 everywhere).
Indeed, f ∗ c1(n) =

∑
d|n f (d)c1(n/d) =

∑
d|n f (d) = f̃ (n).

I The convolution product is commutative and associative. It admits an
identity, namely the function 1 that takes value 1 at 1 and 0 elsewhere:
f ∗ 1 = 1 ∗ f = f .

I (Routine exercise) If f and g are multiplicative, so is f ∗ g.
I On the one hand, µ ∗ c1 = c1 ∗ µ = µ̃ from the first item above; on the

other, µ̃ = 1, as seen on an earlier slide. Thus c1 and µ are inverses of
each other with respect to convolution.

I The Möbius inversion formula can now be written as: f = f̃ ∗ µ,
and its proof as:

f̃ ∗ µ = (f ∗ c1) ∗ µ = f ∗ (c1 ∗ µ) = f ∗ µ̃ = f ∗ 1 = f
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