Finite dimensional C^* -algebras

S. Sundar

September 14, 2012

Throughout \mathcal{H}, \mathcal{K} stand for finite dimensional Hilbert spaces.

1 Spectral theorem for self-adjoint opertors

Let $A \in B(\mathcal{H})$ and let $\{\xi_1, \xi_2, \dots, \xi_n\}$ be an orthonormal basis. Write

$$A\xi_j = \sum_{i=1}^n a_{ij}\xi_i.$$

Then (a_{ij}) is called the matrix of A w.r.t. the orthonormal basis $\{\xi_1, \xi_2, \dots, \xi_n\}$. Note that $a_{ij} = \langle A\xi_j, \xi_i \rangle$.

Exercise 1.1 Let $A \in B(\mathcal{H})$. Prove that there exists a unique element $A^* \in B(\mathcal{H})$ such that for $\xi, \eta \in \mathcal{H}$,

$$\langle A\xi,\eta \rangle = \langle \xi,A^*\eta \rangle$$
.

The unique element A^* is called the adjoint of A.

Hint: What is the matrix of A^* ?

Exercise 1.2 Let $A \in B(\mathcal{H})$. Let (a_{ij}) and (α_{ij}) be the matrices associated to A and A^* respectively w.r.t an orthonormal basis $\{\xi_1, \xi_2, \dots, \xi_n\}$. Prove that $\alpha_{ij} = \overline{a_{ji}}$.

Exercise 1.3 Prove that $(AB)^* = B^*A^*$, $A^{**} = A$, $(\alpha A + \beta B)^* = \bar{\alpha}A^* + \bar{\beta}B^*$.

Exercise 1.4 Let $W \subset \mathcal{H}$ be a subspace and let $W^{\perp} := \{\eta \in \mathcal{H} : <\xi, \eta >= 0 \text{ for } \xi \in W\}.$ Prove that

- 1. $W + W^{\perp} = \mathcal{H}$ and $W \cap W^{\perp} = \{0\}$.
- 2. Given $\chi \in \mathcal{H}$, there exists unique $\xi \in W$ and $\eta \in W^{\perp}$ such that $\chi = \xi + \eta$.

Definition 1.1 Let $A \in B(\mathcal{H})$. The operator A is said to be self-adjoint if $A = A^*$.

Example 1.2 Let $W \subset \mathcal{H}$ be a subspace and W^{\perp} be its orthogonal complement. For $\chi \in \mathcal{H}$, write $\chi = \xi + \eta$ with $\xi \in W$ and $\eta \in W^{\perp}$. Define a map $P_W : \mathcal{H} \to \mathcal{H}$ by $P_W(\chi) = \xi$. Prove that

- 1. The map P_W is linear, $P_W = id$ on W and $P_W = 0$ on W^{\perp} ,
- 2. P_W is self-adjoint i.e. $P_W^* = P_W$,
- 3. P_W is an idempotent i.e. $P_W^2 = P_W$, and
- 4. The image of P_W is W.

Definition 1.3 An operator $P \in B(\mathcal{H})$ is called a projection if $P^2 = P = P^*$.

Exercise 1.5 Let $P \in B(\mathcal{H})$ be a projection. Let W = Im(P). Prove that

- 1. W = Ker(1 P) and $W^{\perp} = Ker(P)$,
- 2. $P|_W = id, P|_{W^{\perp}} = 0, and P = P_W.$

Proposition 1.4 The map

 $\{ subspaces of \mathcal{H} \} \ni W \to P_W \in \{ set of projections in B(\mathcal{H}) \}$

is a bijection.

Thus we think of projections and subspaces as one and the same.

Exercise 1.6 Let W and V be subspaces of \mathcal{H} and let P and Q be the corresponding projections. Prove that the following are equivalent.

- 1. W and V are orthogonal i.e. $\langle W, V \rangle = 0$.
- 2. PQ = 0.

Exercise 1.7 Let W_1, W_2, \dots, W_n be subspaces of \mathcal{H} and denote the corresponding projections by P_1, P_2, \dots, P_n . Prove that the following are equivalent.

- 1. $\oplus_{i=1}^{n} W_i = \mathcal{H}$ i.e. $W_1 + W_2 + \dots + W_n = \mathcal{H}$ and $\langle W_i, W_j \rangle = 0$.
- 2. $P_i P_j = 0$ and $\sum_{i=1}^n P_i = 1$.

Exercise 1.8 Let $W \subset \mathcal{H}$ be a subspace and denote the orthogonal projection onto W by P. Consider a self-adjoint operator $A \in B(\mathcal{H})$. Then the following are equivalent.

- The operator A leaves W invariant i.e. $AW \subset W$.
- PAP = AP.
- A commutes with P i.e. AP = PA.

Theorem 1.5 (Spectral theorem) Let $A \in B(\mathcal{H})$ be a self-adjoint operator. Then there exists an orthonormal basis $\{\xi_1, \xi_2, \dots, \xi_n\}$ and scalars $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ such that $A\xi_j = \lambda_j\xi_j$. (That is, the matrix of A is diagonal w.r.t. the orthonormal basis $\{\xi_1, \dots, \xi_n\}$.)

Proof. Let λ be an eigen value of A i.e. there exists a non-zero vector ξ such that $A\xi = \lambda \xi$. Then A leaves the one-dimensional subspace W := span $\{\xi\}$ invariant. Now apply Exercise 1.8 to conclude that A leaves W^{\perp} invariant. By induction, there exists an orthonormal basis $\{\xi_2, \xi_3, \dots, \xi_n\}$ of W^{\perp} and scalars $\lambda_2, \lambda_3, \dots, \lambda_n$ such that $A\xi_j = \lambda_j\xi_j$ for $j = 2, 3, \dots, n$. Now set $\xi_1 = \xi$ and $\lambda_1 = \lambda$. Since $W \oplus W^{\perp} = \mathcal{H}$, it follows that $\mathcal{B} := \{\xi_1, \xi_2, \dots, \xi_n\}$ is an orthonormal basis of \mathcal{H} and the matrix of A w.r.t. \mathcal{B} is diagonal. This completes the proof. \Box

Definition 1.6 Let $A \in B(\mathcal{H})$. Define

 $\sigma(A) := \{ \lambda \in \mathbb{C} : A - \lambda \text{ is not invertible} \}.$

The set $\sigma(A)$ is called the **spectrum** of A.

Exercise 1.9 Let $A \in B(\mathcal{H})$. Prove that the following are equivalent.

- 1. $\lambda \in \sigma(A)$.
- 2. There exists $\xi \in \mathcal{H}$ such that $\xi \neq 0$ and $A\xi = \lambda \xi$.

For $\lambda \in \sigma(A)$, let $\mathcal{H}_{\lambda} = \{\xi \in \mathcal{H} : A\xi = \lambda\xi\}.$

Exercise 1.10 Let $A \in B(\mathcal{H})$ and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be distinct elements of $\sigma(A)$. If $\xi_j \in \mathcal{H}_{\lambda_j}$ are non-zero vectors then prove that $\{\xi_1, \xi_2, \dots, \xi_n\}$ are linearly independent. Conclude that $\sigma(A)$ is finite.

The following exercise shows that $\sigma(A)$ is non-empty.

Exercise 1.11 Let $\xi \in \mathcal{H}$ be a non-zero vector. Consider the set of vectors $\{\xi, A\xi, A^2\xi, \dots, \}$. Since \mathcal{H} is finite dimensional, conclude that there exists a polynomial p with complex coefficients such that $p(A)\xi = 0$. Now factorise p as

$$p(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n).$$

Use induction to show that there exists i such that $\lambda_i \in \sigma(A)$.

Proposition 1.7 For $A \in B(\mathcal{H})$, $\sigma(A)$ is non-empty and finite.

Exercise 1.12 If the matrix of A w.r.t an orthonormal basis is $diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ what is $\sigma(A)$?

Exercise 1.13 If A is self-adjoint, prove that $\sigma(A) \subset \mathbb{R}$.

Hint: Diagonalise A and use the fact that the matrices for A and A^* are equal.

Exercise 1.14 Let A be self-adjoint and $\lambda, \mu \in \sigma(A)$. If $\lambda \neq \mu$ then \mathcal{H}_{λ} and \mathcal{H}_{μ} are orthogonal.

Hint: Let $\xi \in \mathcal{H}_{\lambda}$ and $\eta \in \mathcal{H}_{\mu}$ be given. Consider the inner product $\langle A\xi, \eta \rangle = \langle \xi, A\eta \rangle$. \Box

Theorem 1.8 (Spectral theorem - A reformulation) Let $A \in B(\mathcal{H})$ be self-adjoint. Then $\mathcal{H} = \bigoplus_{\lambda \in \sigma(A)} \mathcal{H}_{\lambda}$. Denote the orthogonal projection onto \mathcal{H}_{λ} by P_{λ} . We have

- 1. If $\lambda \neq \mu$ then $P_{\lambda}P_{\mu} = 0$,
- 2. $\sum_{\lambda \in \sigma(A)} P_{\lambda} = 1$, and 3. $A = \sum_{\lambda \in \sigma(A)} \lambda P_{\lambda}$.

Also note that for $\lambda \in \sigma(A)$,

$$P_{\lambda} = \prod_{\mu \in \sigma(A) - \{\lambda\}} \frac{(A - \mu)}{(\lambda - \mu)}.$$

Proposition 1.9 (Simultaneous diagonalisation) Let $A, B \in B(\mathcal{H})$ be self-adjoint such that AB = BA. Then there exists an orthonormal basis $\mathcal{B} := \{\xi_1, \xi_2, \dots, \xi_n\}$ such that the matrices of A and B w.r.t. \mathcal{B} are diagonal.

Proof. Write $\mathcal{H} = \bigoplus_{\lambda \in \sigma(A)} \mathcal{H}_{\lambda}$. Since A and B commute, B leaves $\mathcal{H}_{\lambda} = ker(A - \lambda)$ invariant. Now diagonalise B on each \mathcal{H}_{λ} and complete the proof. \Box . **Exercise 1.15** Extend Exercise 1.9 to any finite (or even infinite) number of self-adjoint operators.

Definition 1.10 Let $A \in B(\mathcal{H})$. The operator A is called **normal** if $A^*A = AA^*$.

Theorem 1.11 (Spectral theorem for normal operators) Let A be a normal operator on \mathcal{H} . Then there exists an orthonormal basis $\{\xi_1, \xi_2, \dots, \xi_n\}$ and scalars $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ such that $A\xi_j = \lambda_j \xi_j$.

Proof. Let $B := \frac{A+A^*}{2}$ and $C := \frac{A-A^*}{2i}$. Note that B and C are self-adjoint and A = B + iC. Also observe that BC = CB. Now apply Proposition 1.9 to complete the proof.

2 Finite dimensional *-algebras

Definition 2.1 An algebra \mathcal{A} over \mathbb{C}

- 1. is a vector space over \mathbb{C} ,
- 2. has an associative multiplicative structure $m : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$. We write m(a, b) as ab for $a, b \in \mathcal{A}$. Associativity means (ab)c = a(bc).

Also the multiplication is compatible with the vector space structure. More precisely, we have

$$a(b+c) = ab + ac$$
$$(a+b)c = ac + bc$$
$$(\lambda a)b = \lambda(ab) = a(\lambda b)$$

We say \mathcal{A} is unital if there exists an element $e \in \mathcal{A}$ such that ae = ea = a. (If such an element exists then it is unique.) We call e the multiplicative identity of \mathcal{A} and denote it by 1.

Remark 2.2 An algebra \mathcal{A} is called **commutative** if ab = ba for $a, b \in \mathcal{A}$.

Definition 2.3 Let \mathcal{A} be an algebra. By a *-structure on \mathcal{A} , we mean a map $* : \mathcal{A} \to \mathcal{A}$, (we denote *a by a^*), satisfying the following.

- 1. * is an involution i.e. $(a^*)^* = a$.
- 2. * is antimultiplicative i.e. $(ab)^* = b^*a^*$.
- 3. * is conjugate linear i.e. $(a+b)^* = a^* + b^*$ and $(\lambda a)^* = \overline{\lambda} a^*$.

An algebra \mathcal{A} together with a *-structure is called a *-algebra.

Example 2.4 Let \mathcal{H} be a finite dimensional Hilbert space. Then $B(\mathcal{H})$ is a *-algebra.

Example 2.5 The matrix algebra $M_n(\mathbb{C})$ is a *-algebra. The multiplication is just the matrix multiplication. The *-structure is defined as follows:

If $A = (a_{ij})$ then $A^* = (\alpha_{ij})$ where $\alpha_{ij} = \overline{a_{ji}}$.

Exercise 2.1 Consider the set of $n \times n$ matrices. For $i, j = 1, 2, \dots, n$, let e_{ij} be the matrix whose $(i, j)^{th}$ entry is 1 and the rest of the entries are 0. Prove the following.

$$e_{ij}e_{kl} = \delta_{jk}e_{il}$$
$$e_{ij}^* = e_{ji}$$

Also show that $\{e_{ij}\}$ is a basis for $M_n(\mathbb{C})$. (Here $\delta_{kl} = 1$ if k = l and $\delta_{kl} = 0$ if $k \neq l$.)

Example 2.6 Let X be a non-empty set. Let $C(X) := \{f : X \to \mathbb{C}\}$. Then C(X) is a *-algebra. The multiplication is pointwise multiplication and the *-structure is the complex conjugation i.e.

$$(f.g)(x) = f(x)g(x)$$
$$f^*(x) = \overline{f(x)}$$

Prove that C(X) is finite dimensional if and only if X is finite. Exhibit a basis for C(X). Also note that C(X) is commutative.

Example 2.7 (Group algebras) Let G be a finite group. Let

$$C[G] := \{ f : G \to \mathbb{C} \}.$$

For $f, g \in C[G]$, let $f * g \in C[G]$ be defined by

$$(f * g)(s) := \sum_{t \in G} f(t)g(t^{-1}s).$$

The involution is defined as: For $f \in C[G]$, let

$$f^*(s) := \overline{f(s^{-1})}.$$

Then C[G] is *-algebra and is called the group algebra of G.

For $g \in G$, let $\delta_g \in C[G]$ be given by

$$\delta_g(h) := \begin{cases} 0 & if \quad g \neq h \\ 1 & if \quad g = h \end{cases}$$

Prove that $\delta_g^* = \delta_{g^{-1}}$ and $\delta_g * \delta_h = \delta_{gh}$. Also note that $\{\delta_g : g \in G\}$ forms a basis for C[G]. Thus $C[G] = \{\sum_{g \in G} a_g \delta_g : a_g \in \mathbb{C}\}.$

The multiplication on C[G] is inherited from the group multiplication and the involution is from the group inversion.

Exercise 2.2 Is C[G] unital ? If so, what is the multiplicative identity ?

Exercise 2.3 Prove that C[G] is commutative if and only if G is abelian.

3 Representation of *-algebras

Definition 3.1 Let \mathcal{A} be a *-algebra. A representation of \mathcal{A} on a Hilbert space \mathcal{H} is a map $\pi : \mathcal{A} \to B(\mathcal{H})$ such that

- The map π is linear,
- π preserves multiplication i.e. $\pi(ab) = \pi(a)\pi(b)$, and
- π preserves involution i.e. $\pi(a^*) = (\pi(a))^*$.

If \mathcal{A} is unital then π is called **unital** if $\pi(1) = 1$. The representation π is called **faithful** if π is injective.

Definition 3.2 Let (π_1, \mathcal{H}_1) and (π_2, \mathcal{H}_2) be representations of \mathcal{A} . We say they are **unitarily** equivalent if there exists a unitary operator $U : \mathcal{H}_1 \to \mathcal{H}_2$ such that $U\pi_1(a)U^* = \pi_2(a)$ for every $a \in \mathcal{A}$.

Regular representation of a group: Let G be a finite group and consider the group algebra C[G]. Consider the vector space

$$\ell^2(G) := \{ f : G \to \mathbb{C} \}.$$

For $\phi, \psi \in \ell^2(G)$, let $\langle \phi, \psi \rangle := \sum_{g \in G} \phi(g) \overline{\psi(g)}$. Show that \langle , \rangle is an inner product. For $g \in G$, let $\epsilon_g \in \ell^2(G)$ be defined by

$$\epsilon_g(h) := \begin{cases} 0 & if \quad g \neq h \\ 1 & if \quad g = h \end{cases}$$

Show that $\{\epsilon_g : g \in G\}$ is an orthonormal basis for $\ell^2(G)$.

For $g \in G$, let U_g be the unitary on $\ell^2(G)$ be defined by $U_g(\epsilon_h) = \epsilon_{gh}$. Observe that

$$U_g U_h = U_{gh}$$
$$U_g^* = U_{g^{-1}}$$

Now let $\pi: C[G] \to B(\ell^2(G))$ be defined by

$$\pi(\sum_{g\in G} a_g \delta_g) := \sum_{g\in G} a_g U_g.$$

Show that π is a faithful, unital *-representation and is called the regular representation of the group G.

GNS construction: For \mathcal{A} be a unital *-algebra. For $a \in \mathcal{A}$, let $L_a : \mathcal{A} \to \mathcal{A}$ be defined by $L_a(b) = ab$. Then for every $a \in \mathcal{A}$, L_a is linear. Denote the set of linear maps on \mathcal{A} by $\mathcal{L}(\mathcal{A})$.

Note that the map $\mathcal{A} \ni a \to L_a \in \mathcal{L}(\mathcal{A})$ is linear, multiplicative and unital. Assume that there exists an inner product structure on \mathcal{A} such that the above map is a *-representation. What does it mean ? Let \langle , \rangle be an inner product on \mathcal{A} such that $a \to L_a$ is a *-representation. Let $\tau : \mathcal{A} \to \mathbb{C}$ be defined by $\tau(a) := \langle L_a(1), 1 \rangle$.

Note that

$$< a, b > = < L_a(1), L_b(1) >$$

 $= < L_b^* L_a(1), 1 >$
 $= < L_{b^*a}(1), 1 >$
 $= \tau(b^*a)$

Thus the inner product is completely determined by the linear functional τ . We can turn this process around.

Definition 3.3 Let \mathcal{A} be a unital *-algebra and let $\tau : \mathcal{A} \to \mathbb{C}$ be a linear functional.

- 1. The functional τ is said to be **positive** if $\tau(a^*a) \ge 0$ for $a \in A$.
- 2. The functional τ is called **unital** if $\tau(1) = 1$.
- 3. The functional τ is called **faithful** if $\tau(a^*a) = 0$ then a = 0.

A positive, unital, linear functional on \mathcal{A} is called a **state**.

Let \mathcal{A} be a unital *-algebra and let τ be a faithful state on \mathcal{A} . Define an inner product on \mathcal{A} by

$$\langle a, b \rangle := \tau(b^*a).$$

Verify that \langle , \rangle is an inner product and $\mathcal{A} \ni a \to L_a \in \mathcal{L}(\mathcal{A})$ is a unital *-representation. The representation thus obtained is called the GNS representation associated to the state τ .

Example 3.4 Let G be a finite group. Consider the linear functional $\tau : C[G] \to \mathbb{C}$ defined by

$$\tau(\sum_{g\in G}a_gg):=a_e.$$

Verify that τ is a state and is faithful. Prove that the GNS representation associated to τ is unitarily equivalent to the regular representation.

Definition 3.5 (Direct sum of representations) Let (π_1, \mathcal{H}_1) and (π_2, \mathcal{H}_2) be two representations of \mathcal{A} . The direct sum is the representation $(\pi_1 \oplus \pi_2, \mathcal{H}_1 \oplus \mathcal{H}_2)$.

Let \mathcal{A} be a * algebra and (π, \mathcal{H}) be a representation. A subspace $W \subset \mathcal{H}$ is called an invariant subspace if for every $a \in \mathcal{A}$, $\pi(a)W \subset W$. If W is invariant then $(\pi|_W, W)$ is again a representation.

Exercise 3.1 Let (π, \mathcal{H}) be a representation of \mathcal{A} and $W \subset \mathcal{H}$ be a subspace. Denote the orthogonal projection onto W by P. Prove that the following are equivalent.

- 1. The subspace W is an invariant subspace.
- 2. For $a \in \mathcal{A}$, $\pi(a)P = P\pi(a)$.

Conclude that if W is invariant then W^{\perp} is invariant.

Exercise 3.2 Let (π, \mathcal{H}) be a representation of \mathcal{A} and $W \subset \mathcal{H}$ be an invariant subspace. Prove that (π, \mathcal{H}) is unitarily equivalent to $(\pi, W) \oplus (\pi, W^{\perp})$.

Definition 3.6 Let (π, \mathcal{H}) be a representation of \mathcal{A} . We say that π is *irreducible* if the only invariant subspaces are 0 and \mathcal{H} .

Example 3.7 Prove that the canonical representation of $M_n(\mathbb{C})$ on \mathbb{C}^n is irreducible.

Proposition 3.8 Let (π, \mathcal{H}) be a representation of \mathcal{A} . Prove that π is unitarily equivalent to a direct sum of irreducible representations.

Hint: Use Ex. 3.2.

4 Double commutant theorem

Let (π_1, \mathcal{H}_1) and (π_2, \mathcal{H}_2) be *-representations of \mathcal{A} . Define

$$\mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_2) := \{ T \in B(\mathcal{H}_1, \mathcal{H}_2) : T\pi_1(a) = \pi_2(a)T \text{ for } a \in \mathcal{A} \}.$$

Observe that if $T \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_2)$ then $T^* \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_2, \mathcal{H}_1)$. Also observe that if $T \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_2)$ and $S \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_2, \mathcal{H}_3)$ then $ST \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_3)$.

Exercise 4.1 If (π, \mathcal{H}) is a representation of \mathcal{A} , show that

$$\mathcal{L}_{\mathcal{A}}(\mathcal{H},\mathcal{H}) := \{ T \in B(\mathcal{H}) : \ T\pi(a) = \pi(a)T \ \text{for } a \in \mathcal{A} \}$$

is a unital *-algebra.

Definition 4.1 Let $S \subset B(\mathcal{H})$. Define its commutant, denoted S', by

$$\mathcal{S}' := \{T \in B(\mathcal{H}) : Ts = sT \text{ for } s \in \mathcal{S}\}.$$

Prove that \mathcal{S}' is a linear subspace of $B(\mathcal{H})$, contains the identity operator $1_{\mathcal{H}}$ and is closed under multiplication. Also show that if \mathcal{S} is *-closed then \mathcal{S}' is *-closed. Thus \mathcal{S}' is a *-algebra if \mathcal{S} is *-closed.

Note that for a representation (π, \mathcal{H}) of $\mathcal{A}, \mathcal{L}_{\mathcal{A}}(\mathcal{H}, \mathcal{H})$ is the commutant $\pi(\mathcal{A})'$.

Exercise 4.2 Let $(\pi_i, \mathcal{H}_i)_{i=1}^n$ be representations of \mathcal{A} . Consider the direct sum representation $(\pi := \bigoplus_{i=1}^n \pi_i, \mathcal{H} = \bigoplus_{i=1}^n \mathcal{H}_i)$ of \mathcal{A} . Show that $\mathcal{L}_{\mathcal{A}}(\mathcal{H}) = \{(x_{ij}) : x_{ij} \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_j, \mathcal{H}_i)\}.$

Lemma 4.2 Let \mathcal{A} be a unital *-algebra and $\pi : \mathcal{A} \to B(\mathcal{H})$ be a unital *-representation. Let $\pi_n := \underbrace{\pi \oplus \pi \oplus \cdots \pi}_{n \text{ times}}$. Then

1.
$$\pi_n(\mathcal{A})' = M_n(\pi(\mathcal{A})'), and$$

2. $\pi_n(\mathcal{A})'' = \left\{ \begin{pmatrix} x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} : x \in \pi(\mathcal{A})'') \right\}.$

Theorem 4.3 (von Neumann's double commutant theorem) Let \mathcal{A} be a unital *-algebra and let $\pi : \mathcal{A} \to B(\mathcal{H})$ be a unital *-representation. Then $\pi(\mathcal{A})'' = \pi(\mathcal{A})$. *Proof.* Clearly $\pi(\mathcal{A}) \subset \pi(\mathcal{A})''$. Let $x \in \pi(\mathcal{A})''$ be given.

Step 1: Let $\xi \in \mathcal{H}$ and $W := \{\pi(a)\xi : a \in \mathcal{A}\}$. Denote the orthogonal projection onto W by P. Since π is unital, $\xi \in W$ i.e. $P\xi = \xi$. Note that W is an invariant subspace for \mathcal{A} and hence $P \in \pi(\mathcal{A})'$. Now $Px\xi = xP\xi = x\xi$. Thus $x\xi \in W$.

Thus we have shown that for every $\xi \in \mathcal{H}$, there exists $a \in \mathcal{A}$ such that $x\xi = \pi(a)\xi$. Step 2: Let $\{\xi_1, \xi_2, \dots, \xi_n\}$ be an orthonormal basis. Let

$$\pi_n = \underbrace{\pi \oplus \pi \oplus \cdots \oplus \pi}_{\text{n times}},$$
$$\mathcal{H}_n = \underbrace{\mathcal{H} \oplus \mathcal{H} \oplus \cdots \oplus \mathcal{H}}_{\text{n times}},$$
$$\xi = \xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_n.$$

Apply Step 1 and Lemma 4.2 to show that there exists $a \in \pi(\mathcal{A})$ such that $x\xi_i = \pi(a)\xi_i$ for $i = 1, 2, \dots, n$. Thus $x \in \pi(\mathcal{A})$. This completes the proof.

Exercise 4.3 Let \mathcal{A} be a *-subalgebra of $\mathcal{B}(\mathcal{H})$. Show that \mathcal{A} is the linear span of projections in \mathcal{A} .

Hint: First observe that \mathcal{A} is the linear span of self-adjoint elements in \mathcal{A} . Now use spectral theorem (1.8).

Proposition 4.4 (Schur's lemma) Let (π, \mathcal{H}) be an irreducible representation of \mathcal{A} . Then $\pi(\mathcal{A})' = \mathbb{C}1_{\mathcal{H}}$.

Proof. It is enough to show that if $p \in \pi(A)'$ is a non-zero projection then p = 1. Now use Ex. 3.1 and use the fact that π is irreducible to conclude that p = 1.

Proposition 4.5 (Schur's lemma) Let (π_1, \mathcal{H}_1) and (π_2, \mathcal{H}_2) be irreducible representations of \mathcal{A} . If $\mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_2) \neq 0$ then π_1 and π_2 are unitarily equivalent.

Proof. Suppose that $\mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_2)$ be non-zero and let $T \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_2)$ be non-zero. Then $T^*T \neq 0$ and $T^*T \in \pi_1(A)'$. By Prop. 4.4, there exists $\lambda > 0$ (Justify!) such that $T^*T = \lambda$. Let $U = \frac{T}{\sqrt{\lambda}}$. Observe that $U \in \mathcal{L}_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}_2)$ and U is unitary. This completes the proof. \Box

5 Structure of finite dimensional C*-algebras

Definition 5.1 Let \mathcal{A} be a unital finite dimensional *-algebra. The algebra \mathcal{A} is called a C*algebra if there exists a faithful representation $\pi : \mathcal{A} \to B(\mathcal{H})$. **Exercise 5.1** Let \mathcal{A} be a finite dimensional C^* -algebra. Prove that there exists a unital faithful representation of \mathcal{A} .

Hint: Let $\pi : \mathcal{A} \to B(\mathcal{H})$ be a faithful representation and let $P = \pi(1)$. Note that P is a projection and Im(P) is invariant under π . Now complete the proof.

Exercise 5.2 Prove that all the *-algebras we have considered so far are in fact C^* -algebras.

Let $(A_i)_{i=1}^n$ be *-algebras. The direct sum

$$\oplus_{i=1}^{n} A_i := \{(a_1, a_2, \cdots, a_n) : a_i \in A_i\}$$

is a *-algebra with the multiplication and *-operation given by

$$(a_1, a_2, \cdots, a_n)(b_1, b_2, \cdots, b_n) = (a_1b_1, a_2b_2, \cdots, a_nb_n),$$

 $(a_1, a_2, \cdots, a_n)^* = (a_1^*, a_2^*, \cdots, a_n^*).$

Exercise 5.3 Show that if $(A_i)_{i=1}^n$ are C^* -algebras then the direct sum $\bigoplus_{i=1}^n A_i$ is a C^* -algebra.

Now we can state our main theorem.

Theorem 5.2 Let \mathcal{A} be a finite dimensional C^* -algebra. Then \mathcal{A} is isomorphic to a direct sum of matrix algebras i.e. there exists positive integers m_1, m_2, \cdots, m_r such that

$$\mathcal{A} \cong M_{m_1}(\mathbb{C}) \oplus M_{m_2}(\mathbb{C}) \oplus \cdots \oplus M_{m_r}(\mathbb{C}).$$

Moreover if

$$M_{m_1}(\mathbb{C}) \oplus M_{m_2}(\mathbb{C}) \oplus \cdots \oplus M_{m_r}(\mathbb{C}) \cong M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \cdots \oplus M_{n_s}(\mathbb{C})$$

then r = s and there exists a permutation σ of $\{1, 2, \dots, r\}$ such that $n_i = m_{\sigma(i)}$.

Proof. Let $\pi : \mathcal{A} \to B(\mathcal{H})$ be a unital faithful representation. Split π into irreducible representations. Convince yourself that there exists inequivalent (i.e. not unitarily equivalent) irreducible representations $\pi_1, \pi_2, \cdots, \pi_r$ and positive integers d_1, d_2, \cdots, d_r such that

$$\pi \cong \pi_1^{d_1} \oplus \pi_2^{d_2} \oplus \cdots \oplus \pi_r^{d_r}.$$

Now note that the unital representation $\rho := \pi_1 \oplus \pi_2 \oplus \cdots \oplus \pi_r$ is faithful. Let \mathcal{H}_i be the Hilbert space on which π_i acts and set $m_i := \dim(\mathcal{H}_i)$.

Now use Ex. 4.2 and Schur's lemma to conclude that

$$\rho(\mathcal{A})' = \left\{ \begin{pmatrix} \lambda_1 1_{\mathcal{H}_1} & 0 & \cdots & 0 \\ 0 & \lambda_2 1_{\mathcal{H}_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_r 1_{\mathcal{H}_r} \end{pmatrix} : \lambda_i \in \mathbb{C} \right\}.$$

Now show that

$$\rho(\mathcal{A})^{\prime\prime} = \left\{ \begin{pmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_r \end{pmatrix} : \quad x_i \in B(\mathcal{H}_i) \right\}.$$

Use Theorem 4.3 to conclude that

$$\mathcal{A} \cong \rho(\mathcal{A}) = \rho(\mathcal{A})'' \cong M_{m_1}(\mathbb{C}) \oplus M_{m_2}(\mathbb{C}) \oplus \cdots \oplus M_{m_r}(\mathbb{C})$$

Do the following exercises to show uniqueness.

Definition 5.3 Let \mathcal{A} be a *-algebra. The center of \mathcal{A} denoted $Z(\mathcal{A})$ is defined as

$$Z(\mathcal{A}) := \{ z \in \mathcal{A} : za = az \text{ for } a \in \mathcal{A} \}.$$

The center $Z(\mathcal{A})$ is a commutative C^* -algebra.

Definition 5.4 If $p \in A$ is a projection, the cutdown of A by p is the *-algebra pAp defined as

$$p\mathcal{A}p := \{pap : a \in \mathcal{A}\}$$

Exercise 5.4 Show that $Z(M_n(\mathbb{C})) = \mathbb{C}$.

Exercise 5.5 Show that $Z(A_1 \oplus A_2) = Z(A_1) \oplus Z(A_2)$.

Exercise 5.6 Let $\mathcal{A} = M_{m_1}(\mathbb{C}) \oplus M_{m_2}(\mathbb{C}) \oplus \cdots \oplus M_{m_r}(\mathbb{C})$. For $i = 1, 2, \cdots, r$, let

$$z_i = (0, 0, \cdots, \underbrace{1}_{i^{th} place}, \cdots, 0).$$

Note that z_i is a projection and $z_i \in Z(\mathcal{A})$. Prove that $\{z_i : i = 1, 2, \dots, r\}$ forms a basis for $Z(\mathcal{A})$. Also note that if $i \neq j$ then $z_i z_j = 0$. Prove that $r = \dim(Z(\mathcal{A}))$ and $m_i^2 = \dim(z_i \mathcal{A} z_i)$.

Let $\{e_i : i = 1, 2, \dots, r\}$ be a set of mutually orthogonal central projections. Assume that they form a basis for $Z(\mathcal{A})$. Prove that $\{e_i : i = 1, 2, \dots, r\} = \{z_i : i = 1, 2, \dots, r\}$.

The central projections $\{z_i\}_{i=1}^n$ are called the minimal central projections of \mathcal{A} .

Exercise 5.7 Complete the proof of Theorem 5.2.

References

[Sun97] V. S. Sunder, Functional analysis, 1997, Spectral theory.