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In this talk

@ Realization of symmetric groups as reflection groups
@ Some examples of symmetric functions
@ Relations between symmetric functions
@ Unique factorization of Schur functions

@ Applications to representation theory (if time permits)
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A few facts from Linear algebra

@ V — a finite dimensional vector space

@ 3 —abasis of V

@ T :V — V be an endomorphism of V

@ The action of T is completely determined by its action on B

@ T(B)is abasis of V if and only if T —is invertible
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Reflection groups

@ Fix n € N throughout
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Reflection groups

@ Fix n € N throughout

@ Denote (, ) by the standard inner product on R”
e & = (R",(, )) Euclidean space

@ Given0# ac V,at =H, = {B € &|(B,a) =0}
@ Define s, : &, — Epby
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Reflection groups

@ Fix n € N throughout

@ Denote (, ) by the standard inner product on R”
e & = (R",(, )) Euclidean space

@ Given0# ac V,at =H, = {B € &|(B,a) =0}
@ Define s, : &, — Epby

2(8, @)

(@, a)

Sa(f) = 0 -

a

@ s, is the reflection with respect to «
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@ s,(a) =—«a
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@ s,(B)=p for BeHy
10 0 O
0 1 0 O
@ [s,J=1|: + .. ¢ ¢ | withrespectto B(H.)U {a}
00 1 0
00 0 -1
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°Sa(ﬁ =p for g eH,
10 .--- 0 O
o1 .- 0 O
@ [s,J=1|: + .. ¢ ¢ | withrespectto B(H.)U {a}
00 -1 0
00 - 0 —1

@ A subgroup of GL(&,) generated by finitely many
reflections is called reflection group.
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Symmetric group

@ B ={ey, - ,en} —the standard basis of &,
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Symmetric group

@ B={ey, - ,en} —the standard basis of &,
@ Given o € Sp, define o : B — Bby o(g)) = ¢,
@ Extend o linearly to &,, explicitly

n n
g (Z A/E,‘) = Z /\,'EU(,')
i=1 i=1
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Symmetric group

@ B={ey, - ,en} —the standard basis of &,
@ Given o € Sp, define o : B — Bby o(g)) = ¢,
@ Extend o linearly to &,, explicitly

n n
g (Z A/E,‘) = Z /\,'EU(,')
i=1 i=1
@ This gives an action of S, on &p:

p: Sn — GL(gn)
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Symmetric group

@ B={ey, - ,en} —the standard basis of &,
@ Given o € Sp, define o : B — Bby o(g)) = ¢,
@ Extend o linearly to &,, explicitly

n n
g (Z A/E,‘) = Z /\,'EU(,')
i=1 i=1
@ This gives an action of S, on &p:
p: Sn — GL(gn)

@ p s faithful ( one to one map)

R. Venkatesh Unique Factorization of Symmetric functions



Sy as a reflection group

o Let)\:)\151+"'+)\n€n€Rn
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Sy as a reflection group

o Let)\:)\151+"'+)\n€n€Rn
@ Since (g —¢j, \) = A\j — A, we have
HE;*EI' = {(A'Ia a)‘n) eR": )\i = >\/}
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Sy as a reflection group

o Let)\:)\151+"'+)\n€n€Rn
@ Since (g —¢j, \) = A\j — A, we have
HE;*EI' = {(A'Ia a)‘n) eR": )\i = >\/}

@ Denote s by the reflection with respect to ¢; — ¢;
Sj(A) = A= (A = Aj)(ei — €))
= \&q +"'+)‘j5i+"‘+)\i5j+“‘+)\n5n
= p(ij)(A)
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Sy as a reflection group

o Let)\:)\151+"'+)\n€n€Rn
@ Since (g —¢j, \) = A\j — A, we have
HE;*EI' = {(A'Ia a)‘n) eR": )\i = >\/}

@ Denote s by the reflection with respect to ¢; — ¢;

Sj(A) = A= (A = Aj)(ei — €))
= \&q +"'+)‘j5i+"‘+)\i5j+“‘+)\n5n
= piijy(N)

@ thus s; = p(; ;) and we know that Sy is generated by (7, /)
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Vieta’s Formulas

n
@ X"+ a X"+ +ap g X+an=[[(X—x)
i=1
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Vieta’s Formulas

n
@ X"+ a X"+ +ap g X+an=[[(X—x)
i=1

n
(X—X,‘):Xn— <EX,‘> X1 +"'—|—(—1)nX1'~-Xn
i=1

n
(*]

i=1
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Vieta’s Formulas

n
@ X"+ a X"+ +ap g X+an=[[(X—x)
i=1

n n
o [[(X—x;)=X"— (Zx,-) X" (1) xp
i=1 i=1

@ ap=(—1)" > Xi, - Xip,
1<iy<-<im<n
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Vieta’s Formulas

n

@ X"+ a X"+ +ap g X+an=[[(X—x)
i=1

n n
o [[(X—x;)=X"— (Z x,-) X" (1) xp
i=1 i=1
@ ap=(—1)" > Xi, - Xip,
1<ij < <im<n
@ Elementary Symmetric Polynomials:

em(X17"'aXn): Z XI1XI
1<ii<---<im<n

m
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Vieta’s Formulas

n

@ X"+ a X"+ +ap g X+an=[[(X—x)
i=1

n n
o [[(X—x;)=X"— (Z x,-) X" (1) xp
i=1 i=1
@ ap=(—1)" > Xi, - Xip,
1<ij < <im<n
@ Elementary Symmetric Polynomials:

em(X17"'aXn): Z XI1XIm
1<ii<---<im<n

@ e =1, ex(Xq, X2, X3) = X1Xo + X2X3 + X1X3
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More Examples

@ Powe sums: pm(X1, -+, Xn) = X"+ -+ X', meZ;
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@ Powe sums: pm(X1, -+, Xn) = X"+ -+ X', meZ;

@ Complete homogeneous symmetric polynomial of degree
k in nvariables is the sum of all monomials of total degree
k in those n variables

@ hi(xt,-+,Xn) = 2. Xy + Xy
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More Examples

@ Powe sums: pm(X1, -+, Xn) = X"+ -+ X', meZ;

@ Complete homogeneous symmetric polynomial of degree
k in nvariables is the sum of all monomials of total degree
k in those n variables

@ hi(xt,-+,Xn) = 2. Xy + Xy
1<ih<-<ik<n

® Mp(X1, X2, X3) = X2 + X2 + X5 + X1 X2 + XoX3 + X1 X3
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Relations between symmetric functions
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Relations between symmetric functions

r=0
e € -+ k-1 €
1 e - ko €1
0 1 - ex3 €2
o hy = det(er—itj)i<ij<k = : :
0 O €4 €
0 O 1 e
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Relations between symmetric functions

r=0

€& € -+ k1 E
1 e - ko €1
0 1 - &3 €2

@ hy = det(e1_,-+j)1§,-,j§k =
o o0 --- €1 ()
o o0 --- 1 ey

@ Here we have used the convention that ej(xy,--- , xp) = 0 if

i<OQori>n
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Relations between symmetric functions

@ By symmetry between e and h, we get

hi hy - iy by

T hy o P2 By

0 1 - hk3 hko
ex =det(hi_jij)<ijen=1{. . . : :

0 0 hy  h

0 0 1 hy
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Relations between symmetric functions

o (k!)ek =

R. Venkatesh

Pk—1 Pk
Pk—2  Pk-1
Pk—3 Pk-2

P1 P2

1 P
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Relations between symmetric functions

P P2 - Pk—1 Pk
k—1 pi - Pk2 Pk—1
0 k-2 - _ _
° (kKhexk=| . . _ pk. ’ pk. :
0 0 pi P2
0 0 1 P1
P1 P2 o Pk—1 Pk
—(k—=1) p1 o Pr—2 Pk
0 —(k-2) --- _ _
s A B
0 0 pi P2
0 0 - -1 p
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Relations between symmetric functions

€& €6 -+ 6k €k

1 e -+ Ek_o2 (k — 1)ek_1

0 1 - eks (k—2)ex2
® Pk = ) .

0 o - €1 26

0 0 - 1 e
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Relations between symmetric functions

€& €6 -+ 6k €k
1 e - eo (k - 1)ek_1
0 1 - exs3 (k—2)exo2
@ Pk =|. . . .
0 o - €1 26
0 0 - 1 e
hy hy - hx_4 h
1 h - B2 (k—1)hk_q
o (1ytp= |0 1 s (B
0 O hy 2ho
0 O 1 hy
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More Examples

n
(] Set P+ = ZZ+€/.
i=1
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More Examples

n
o Set P+ = ZZ+€/.
i=1
@ Given = myeq + -+ + Mpep € P, set x® = x{M - - x"

R. Venkatesh actorization of Symmetric functions



More Examples

n
o Set P+ = ZZ+€/.
i=1
@ Given = myeq + -+ + Mpep € P, set x® = x{M - - x"

@ Given a € PT, define e(a) = > x°«
oc€Sh
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More Examples

n
o Set P+ = ZZ+€/.
i=1
@ Given = myeq + -+ + Mpep € P, set x® = x{M - - x"

@ Given a € PT, define e(a) = > x°«
oc€Sh

@ e(1,0,--- ,0):(n—1)!znjx,-
i=1
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More Examples

n
o Set P+ = ZZ+€/.
i=1
@ Given = myeq + -+ + Mpep € P, set x® = x{M - - x"

@ Given a € PT, define e(a) = > x°«

oc€Sh
n
@ e(1,0,---,0)=(n—=1)> X
i=1
@ e(1,---,1)=(n)xqy---Xxpn

R. Venkatesh Unique Factorization of Symmetric functions



More Examples

@ Set PT = iz.i_z?,'.
iz
@ Given = myeq + -+ + Mpep € P, set x® = x{M - - x"
@ Given a € PT, define e(a) = > x°«
; oc€Sh
° e(1,0,---,0):(n—1)!_2x,-
° e(1,-~-,1):(n!)x1---xln_1

@ Write explicitly e(1,1,0,---,0) and e(1,1,1,0,---,0), etc
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Algebra of Symmetric functions in n—variables

e C[P"] = { S anx®: |supp{aa}| < oo}

aePt
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Algebra of Symmetric functions in n—variables

e C[P"] = { S anx®: |supp{aa}| < oo}

aePt
@ > ax®+ > bux“= > (@ + ba)x“
acePt+ aePt aePt
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Algebra of Symmetric functions in n—variables

e C[P"] = { S anx®: |supp{aa}| < oo}

aePt
@ > ax®+ > bux“= > (@ + ba)x“
acePt+ aePt aePt

@ xxP =xtB o, 8 e Pt
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Algebra of Symmetric functions in n—variables

e C[P"] = { S anx®: |supp{aa}| < oo}

aePt
@ > ax®+ > bux®= > (@ + by)x“
acPt aePt aeP+t

@ xxP =xtB o, 8 e Pt

@ Note that C[P*] = C[xq,--- , Xp]
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Algebra of Symmetric functions in n—variables

e C[P"] = { S anx®: |supp{aa}| < oo}

acPt
@ ) X+ Y bax®= ) (@ + ba)x”
acP+ acP+ aeP+t
@ xxP =xtB o, 8 e Pt
@ Note that C[P*] = C[xq,- - , X

@ Given o € S, define a( 3 aaxa> = Y ax7(®

aePt aePt
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Algebra of Symmetric functions in n—variables

e C[P"] = { S anx®: |supp{aa}| < oo}

acPt
@ ) X+ Y bax®= ) (@ + ba)x”
acP+ acP+ aeP+t
@ xxP =xtB o, 8 e Pt
@ Note that C[P*] = C[xq,- - , X

@ Given o € S, define a( 3 aaxa> = Y ax7(®

aePt aePt

@ The algebra of symmetric functions in n—variables:

C[P*]% = { Z aux®: o ( Z aaxa> - Z au X, o € Sn}

aePt a€ePt aePt
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e {e(a):ac P*/S,} form a basis for C[P*]%
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@ {e(a): ac P*/S,} form a basis for C[P+]
o Let 3 a,x* e C[P]5.

aePt
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@ {e(a): ac P*/S,} form a basis for C[P+]
o Let 3 a,x* e C[P]5.

aePt
oo X axt|= 3 axo@
aePt aeP+t
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@ {e(a): ac P*/S,} form a basis for C[P+]
o Let 3 a,x* e C[P]5.

acPt

oo X axt|= 3 axo@
a€ePt a€ePt

Qo | D ax“|= > a.x®
a€ePt a€ePt
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@ {e(a): a € Pt/S,} form a basis for C[P*]%
@ Let 3 a,x® e C[Pt]5.
acPt
(* Boa Z aaxa = Z aaXU(O‘)
aePt aePt
0o Y awx*| = Y awx®
acP* aePt
@ wegeta, =ay,forallae Prando € S,
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@ {e(a): ac P*/S,} form a basis for C[P*]
@ Let 3 a,x® e C[Pt]5.
acPt
(* Boa Z aaxa = Z aaXU(O‘)
a€ePt a€ePt
0o Y awx*| = Y awx®
a€ePt a€ePt
@ wegeta, =ay,forallae Prando € S,
@ by grouping the corresponding terms, we get

Yoanx®= > a.| > x| = > ase(a)

acPt acePt /Sy o€Sy aePt /Sy
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{e(a) : o € P*/Sp} form a basis for C[P*]
Let > a.x* € C[P*]5n.

aePt

a< > aaxa> — Y gl

acPt acPt

a( > aaxa> = > aux®

acPt acPt

we get a, = a,, foralla e Pt ando € S,

by grouping the corresponding terms, we get

Yoanx®= > a.| > x| = > ase(a)

aePt aePt/S, 0ESh acPt /Sy
o {e(a): a € PT/S,}is linearly independent
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Discriminant interms of coefficients

@ Fundamental theorem of symmetric functions: Any
symmetric polynomial can be expressed as a polynomial in
the elementary symmetric polynomials on those variables.
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Discriminant interms of coefficients

@ Fundamental theorem of symmetric functions: Any
symmetric polynomial can be expressed as a polynomial in

the elementary symmetric polynomials on those variables.
n
@ Recall X"+ a1 X" ' - - +a,_1X+a,=[[(X—x)

i=1
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Discriminant interms of coefficients

@ Fundamental theorem of symmetric functions: Any
symmetric polynomial can be expressed as a polynomial in

the elementary symmetric polynomials on those variables.
n
@ Recall X"+ a1 X" ' - - +a,_1X+a,=[[(X—x)

i=1
o C[P+]Sn = (C[e1,. .. ’en] where e = ei(XAI’. .. aXn)
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Discriminant interms of coefficients

@ Fundamental theorem of symmetric functions: Any
symmetric polynomial can be expressed as a polynomial in

the elementary symmetric polynomials on those variables.
n
@ Recall X"+ a1 X" ' - - +a,_1X+a,=[[(X—x)

i=1

o C[P+]Sn = (C[e1,. .. ’en] where e = ei(XAI’. .. aXn)
@ Discriminant A = (—1)""=1/2 T](x; — x))
i
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Discriminant interms of coefficients

@ Fundamental theorem of symmetric functions: Any
symmetric polynomial can be expressed as a polynomial in

the elementary symmetric polynomials on those variables.
n
@ Recall X"+ a1 X" ' - - +a,_1X+a,=[[(X—x)

i=1

o C[P+]Sn = (C[e1,. .. ’en] where e = ei(XAI’. .. aXn)
@ Discriminant A = (—1)""=1/2 T](x; — x))
i

@ If n=2, we have

A= (X1 — X2)2 = (Xi2 + X22' — 2X1X2)

=(xy + X2)2 —4dX1Xo = a? —4da

R. Venkatesh Unique Factorization of Symmetric functions



@ if n =3, we have
A= 2235 — 4a — 4alas — 2735 + 18araxa3
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@ if n= 3, we have
A= 2235 — 4a — 4alas — 2735 + 18araxa3

@ The discriminant of a general quartic has 16 terms, that of
a quintic has 59 terms, that of a 6th degree polynomial has
246

R. Venkatesh Unique Factorization of Symmetric functions



@ if n= 3, we have
A= 2235 — 4a — 4alas — 2735 + 18araxa3

@ The discriminant of a general quartic has 16 terms, that of
a quintic has 59 terms, that of a 6th degree polynomial has
246

@ the number of terms in A increases exponentially with
respect to the degree
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@ if n= 3, we have
A= 2235 — 4a — 4alas — 2735 + 18araxa3

@ The discriminant of a general quartic has 16 terms, that of
a quintic has 59 terms, that of a 6th degree polynomial has
246

@ the number of terms in A increases exponentially with
respect to the degree

@ there exist a polynomial in n—variables such that
A =p(ay,az, - ,an)
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Schur Functions

@ \ = Mg+ -+ \pep € PT is called partition if
M 2> 2> A
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Schur Functions

@ \ = Mg+ -+ \pep € PT is called partition if
M 2> 2> A

@ Gien a partition ), define a(\) = > (deto) x°*
O’GSn
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Schur Functions

@ \ = Mg+ -+ \pep € PT is called partition if
A= > A
@ Gien a partition ), define a(\) = > (deto) x°*
O’GSn
@ i=(n—1)e1+(n—-2)ea+---+ep_1=(n—1,n-2,--- ,1,0)
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Schur Functions

@ \ = Mg+ -+ \pep € PT is called partition if
M 2> 2> A

@ Gien a partition ), define a(\) = > (deto) x°*
O’GSn

@ i=(n—1)e1+(n—-2)ea+---+ep_1=(n—1,n-2,--- ,1,0)

@ Vandermonde determinant:

n—1 n—-2
X X e xy 1
n—1 n—2
X, X, X 1
2 2 2
. = [1(xi — X))
: i<j
xP—1 x12 Xn 1
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Schur Functions

@ Leibniz formula:

a1 a2 - A
a1 dzp -+ dzp n
) ) J= 2 san(o) I aiei
. O'ESn I:1
am1 dm2 - @amn
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Schur Functions

@ Leibniz formula:

a1 a2 - A
a1 dzp -+ dzp n
: . = > sgn(o) [] @i
o€Sy i=1
am1 dm2 - @amn
@ using Leibniz formula, we get
_ _ Ap_1+1
X1)\1+n 1 X1>\2+I7 2 . X1 n—1i+ X1>\n
— Ap_141
X2)\1+n 1 X2>\2+f7 2 . X2n 1+ Xz)\n
alA+9) = )
— Ap_q—+1
Xr)7\1+n 1 XI%I\2+I7 2 . Xnn 1+ Xr>7\n
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Schur Functions

@ Given a partition A, the Schur Function defined to be

Sx(X1,--+ Xn) = (A +9)/a(d)
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Schur Functions

@ Given a partition A, the Schur Function defined to be

Sx(X1,--+ Xn) = (A +9)/a(d)

Theorem (C.S. Rajan, S. Viswanath, —)

Suppose Sy, - -+ Sy, = Sy, *++ Sy, then p = q and the multi set

{M,--- Ao} isequal to {p1,--- , uq}. In particular, there exists
a permutation o € Sp such that sy, = s,_,.
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Thank you




