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@ Mutually Unbiased Bases: an introduction
o Existence and Constructions :

» Generators of the Weyl-Heisenberg group in prime dimensions

s maximal sets of MUBs prime-powered dimensions: partitions of unitary
operator basis

@ Applications: Quantum State Tomography and Quantum Cryptography

@ Maximal sets in other composite dimensions?
Unextendible sets of MUBs
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Mutually Unbiased Bases

o Let H? be a finite-dimensional Hilbert space!.
State space of any finite quantum system.

o Definition:- Two orthonormal bases A = {|ao), |a1), ..., |aa—1)} and
B = {|bo), |b1), ..., |ba_1)} in H? are mutually unbiased if

| (ailb;) | = Vi, j=0,1,....,d—1.

1
\/37

LComplex inner product space, which is complete.
p p!
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Mutually Unbiased Bases

o Let H? be a finite-dimensional Hilbert space!.
State space of any finite quantum system.

o Definition:- Two orthonormal bases A = {|ao), |a1), ..., |aa—1)} and
B = {|bo), |b1), ..., |ba_1)} in H? are mutually unbiased if

| (ailb;) | = Vi, j=0,1,...,d—1.

1
\/37

o Complementary Observables: If a physical system is prepared in an
eigenstate of basis A (say |a;)), and measured in basis B, the probability of
outcome j is:

pillas) = |Gglasl? = 2. Vi

All outcomes are equally probable!

LComplex inner product space, which is complete.

Prabha Mandayam (CMI) IMSc July’14 1 July 2014



Mutually Unbiased Bases : Examples

o Pauli matrices X, Z on C?:

Eigenbases of Z, X :
Bz ={0), )} By ={|+) =12 |- = ooy
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Mutually Unbiased Bases : Examples

o Pauli matrices X, Z on C?:

Eigenbases of Z, X :
Bz ={0), )} By ={|+) =12 |- = ooy

o A set of k mutually unbiased bases (MUBs): a set of orthonormal bases
{By,Ba,..., By} in HY, where every pair of bases in the set is mutually
unbiased.
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Mutually Unbiased Bases : Examples

o Pauli matrices X, Z on C?:

Eigenbases of Z, X :
Bz ={0), )} By ={|+) =12 |- = ooy

o A set of k mutually unbiased bases (MUBs): a set of orthonormal bases
{By,Ba,..., By} in HY, where every pair of bases in the set is mutually
unbiased.

@ A third MUB in C2: eigenbasis of Y’

YZ((; gi),syz{'°>j§'1>,'0>;;'”}
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MUBs : Existence and Constructions
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A pair of mutually unbiased bases

@ There exist a pair of MUBs in C?, for any dimension d.
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A pair of mutually unbiased bases

@ There exist a pair of MUBs in C?, for any dimension d.

@ Choose any reference basis — {|0),|1),...,|d — 1)} — Computational Basis

o Discrete quantum Fourier transform:

d—
z : 712Tr]k/d
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A pair of mutually unbiased bases

@ There exist a pair of MUBs in C?, for any dimension d.

@ Choose any reference basis — {|0),|1),...,|d — 1)} — Computational Basis

o Discrete quantum Fourier transform:
- 4=
) = —= S e
et

o The bases {|0),[1),...,|d — 1)} and {|0), |1),...,|d — 1)} are mutually

unbiased: 1
(k) = —=e 2R/ ik =0,1,...,d—1.
Vd

Prabha Mandayam (CMI) IMSc July’14 1 July 2014 6/ 29



A pair of mutually unbiased bases

@ There exist a pair of MUBs in C?, for any dimension d.

@ Choose any reference basis — {|0),|1),...,|d — 1)} — Computational Basis

o Discrete quantum Fourier transform:
- 4=
) = —= S e
et

o The bases {|0),[1),...,|d — 1)} and {|0), |1),...,|d — 1)} are mutually

unbiased: 1
(k) = —=e 2R/ ik =0,1,...,d—1.
Vd

@ Define the cyclic operators:
X|5) = |(j + 1)mod d); Z|j) = e2™/4|j), with (X)? = (2)? =1L

Eigenbases of X and Z are mutually unbiased!
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MUBESs in prime dimensions using X and Z

@ Three MUBs in C? : eigenbases of {X, Z, X Z}. (Generalized Pauli
operators)
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@ Three MUBs in C? : eigenbases of {X, Z, X Z}. (Generalized Pauli
operators)

@ Can we construct more MUBs in C? using higher products (X)™(Z)"?
Yes, when d is prime!
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MUBESs in prime dimensions using X and Z

@ Three MUBs in C? : eigenbases of {X, Z, X Z}. (Generalized Pauli
operators)

@ Can we construct more MUBs in C? using higher products (X)™(Z)"?
Yes, when d is prime!

o Lemma 1: Let B = {|by), |b1),...,|ba—1)} be a basis in C?. If there exists a
unitary operator

Ve VIbi) = Bilbi1ymodd)s 1Bil =1,

then, the eigenbasis of V' is mutually unbiased with the basis B.
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MUBESs in prime dimensions using X and Z

@ Three MUBs in C? : eigenbases of {X, Z, X Z}. (Generalized Pauli
operators)

@ Can we construct more MUBs in C? using higher products (X)™(Z)"?
Yes, when d is prime!

o Lemma 1: Let B = {|by), |b1),...,|ba—1)} be a basis in C?. If there exists a
unitary operator

Ve VIbi) = Bilbi1ymodd)s 1Bil =1,

then, the eigenbasis of V' is mutually unbiased with the basis B.
@ Proof: Let V|v;) = Ajlvg), i =0,1,...,d—1. (|\| = 1)

[(vilbs)] = [{vilV]bj)| = [{vilb(j11)modd)]s ¥ i, J-
= [(vilbo)] = [(wilb1)| = ... = [{vilba—1)l, Vi.
1 L. .
= [(vilbj)]* = 70 i O lwilbp)P =1, i)
j

Prabha Mandayam (CMI) IMSc July’14 1 July 2014



(d+ 1) MUBs in prime dimensions

o Consider the operators {X, Z,XZ,X(Z)?,...,X(Z)%'} over C%.
They are unitary and cyclic, i.e., (X(Z2)F)d =Tfor 0 <k <d— 1.
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o Consider the operators {X, Z,XZ,X(Z)?,...,X(Z)%'} over C%.
They are unitary and cyclic, i.e., (X(Z2)F)d =Tfor 0 <k <d— 1.

X(Z)’“Ij> = (ei%j/d)k“j + 1)modd).
o If W)ik)%t =0,1,...,d — 1 denote eigenstates of X'(Z)¥, for prime d,

k 27 — k
X(2) |y = (e dyrth-l g0y,
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(d+ 1) MUBs in prime dimensions

o Consider the operators {X, Z,XZ,X(Z)?,...,X(Z)%'} over C%.
They are unitary and cyclic, i.e., (X(Z2)F)d =Tfor 0 <k <d— 1.

X(Z)’“Iﬁ = (ei%j/d)k“j + 1)modd).
o If W)ik)%t =0,1,...,d — 1 denote eigenstates of X'(Z)¥, for prime d,

k 27 — k
X(2) |y = (e dyrth-l g0y,

@ Lemma 2 : When d is prime, the eigenvectors of X'(Z)* are cyclically
shifted under the action of X(Z)!, forall [ # k (0 <1,k <d—1).
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(d+ 1) MUBs in prime dimensions

o Consider the operators {X, Z,XZ,X(Z)?,...,X(Z)%'} over C%.
They are unitary and cyclic, i.e., (X(Z2)F)d =Tfor 0 <k <d— 1.

X(Z)’“Iﬁ = (ei%j/d)ﬂ(j + 1)modd).
o If W)ik)%t =0,1,...,d — 1 denote eigenstates of X'(Z)¥, for prime d,

k 27 — k
X(2) |y = (e dyrth-l g0y,

@ Lemma 2 : When d is prime, the eigenvectors of X'(Z)* are cyclically
shifted under the action of X(Z)!, forall [ # k (0 <1,k <d—1).

@ From Lemmas 1 & 2: For any prime d, the set of bases comprising
eigenvectors of {X, Z, XZ, X(2)2,...,X(Z)4 1} is a set of d + 1 MUBs in
ce.
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d+ 1 MUBs in prime dimensions: Examples

@ In C2 : the eigenbases of X, Z, X Z. Identical to the Pauli eigenbases!
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d+ 1 MUBs in prime dimensions: Examples

@ In C2 : the eigenbases of X, Z, X Z. Identical to the Pauli eigenbases!

@ In C? : the eigenbases of {X, X, X Z, X Z%} form a set of 4 MUBs.

2

100 00 1 00 w 0 0 w
o1o0f, {100,100 of,[1 0 o],
00 1 01 0 0 w 0 0 w? 0
2mi/3

where w = ¢
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d+ 1 MUBs in prime dimensions: Examples

@ In C2 : the eigenbases of X, Z, X Z. Identical to the Pauli eigenbases!

@ In C? : the eigenbases of {X, X, X Z, X Z%} form a set of 4 MUBs.

2

1 0 0 0 0 1 0 0 w 0 0 w

oto|,ltoo], {10 o], [1 o0 o,

0 0 1 0 1 0 0 w 0 0 w2 0
where w = 27/3,

@ Composite dimensions: d = pq (p,q > 1)

o The operators {X'(Z)*} have shorter periods. Eg. (27)4 =1.
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d+ 1 MUBs in prime dimensions: Examples

@ In C2 : the eigenbases of X, Z, X Z. Identical to the Pauli eigenbases!

@ In C? : the eigenbases of {X, X, X Z, X Z%} form a set of 4 MUBs.

100 00 1 0 0 w? 0 0 w
o1o0f, {100,100 of,[1 0 o],
00 1 01 0 0 w 0 0 w? 0

where w = 27/3,

@ Composite dimensions: d = pq (p,q > 1)
o The operators {X'(Z)*} have shorter periods. Eg. (27)4 =1.

o Cyclic shift property no longer holds.

@ Numerical evidence shows, we obtain no more than 3 MUBs using this
approach: the eigenbases of {X, Z, X Z}.
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MUBs : Role in Quantum Information Processing
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Identifying an unknown quantum state

@ MUBs form a minimal and optimal set of orthogonal measurements for
quantum state tomography.
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Identifying an unknown quantum state

@ MUBs form a minimal and optimal set of orthogonal measurements for
quantum state tomography.

o To specify a general density matrix p € C%: need d* — 1 real parameters.

o Measurement in one orthonormal basis B = {|13), ..., ¢} _,)} yields only
d — 1 independent probabilities:

p(ilB), o= trp|y! Yl ] = (W!|plel), i =0,...,d— 1.
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Identifying an unknown quantum state

@ MUBs form a minimal and optimal set of orthogonal measurements for
quantum state tomography.

o To specify a general density matrix p € C%: need d* — 1 real parameters.

o Measurement in one orthonormal basis B = {|13), ..., ¢} _,)} yields only
d — 1 independent probabilities:

p(ilB), o= trp|y! Yl ] = (W!|plel), i =0,...,d— 1.

= Need d + 1 distinct basis sets to obtain d> — 1 independent probabilities.
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Identifying an unknown quantum state

@ MUBs form a minimal and optimal set of orthogonal measurements for
quantum state tomography.

o To specify a general density matrix p € C%: need d* — 1 real parameters.

o Measurement in one orthonormal basis B = {|13), ..., ¢} _,)} yields only
d — 1 independent probabilities:

p(ilB), o= trp|y! Yl ] = (W!|plel), i =0,...,d— 1.

= Need d + 1 distinct basis sets to obtain d> — 1 independent probabilities.

@ Mutual unbiasedness implies that statistical errors are minimized when
measuring finite samples.
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Incompatibility and Complementarity - I

@ MUBs are the measurement bases that are most incompatible, as quantified
by entropic uncertainty relations.
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Incompatibility and Complementarity - I

@ MUBs are the measurement bases that are most incompatible, as quantified
by entropic uncertainty relations.

@ When measuring state |¢) € C? in the measurement basis 37, probability of
the i" outcome is

p(i | B7)15) = (0] |9)]*.
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Incompatibility and Complementarity - I

@ MUBs are the measurement bases that are most incompatible, as quantified
by entropic uncertainty relations.

@ When measuring state |¢) € C? in the measurement basis 37, probability of
the i" outcome is

p(i| B = 1] |9},

o Let H(B’||¢)) be the entropy of the distribution p(i| B7),4
An entropic uncertainty relation (EUR) for the set of bases {B*,..., Bt} is:

L L
— E H(B||¢)) > cpr ... e, V|o)
=1

~
<.
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Incompatibility and Complementarity - I

@ MUBs are the measurement bases that are most incompatible, as quantified
by entropic uncertainty relations.

@ When measuring state |¢) € C? in the measurement basis 37, probability of
the i" outcome is

p(i| B = 1] |9},

o Let H(B’||¢)) be the entropy of the distribution p(i| B7),4
An entropic uncertainty relation (EUR) for the set of bases {B*,..., Bt} is:

L L
— E H(B||¢)) > cpr ... e, V|o)
=1

~
<.

@ Lower bound cp1 e captures the mutual incompatibility of the set
{B,..., B}
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Incompatibility and Complementarity - 11

o Example : Massen and Uffink bound :-
For measurement bases A = {|a1), ..., |aq)} and B = {|b1), ..., [ba)} in C,

5 (H(AI9) + H(B[9))) > ~ log (A, B)

where ¢(A, B) := max | {(alb) |, ¥ |a) € A,|b) € B.

Prabha Mandayam (CMI) IMSc July’14 1 July 2014 13 / 29



Incompatibility and Complementarity - 11

o Example : Massen and Uffink bound :-
For measurement bases A = {|a1), ..., |aq)} and B = {|b1), ..., [ba)} in C,

(H(All)) + H(B||1))) = —log c(A, B)

N =

where ¢(A, B) := max | {(alb) |, ¥ |a) € A,|b) € B.

@ Maximum value of RHS is attained when | (a|b) | = %, Y|a), |b) : Strongest

possible uncertainty relation is satisfied when the bases are mutually
unbiased.

Prabha Mandayam (CMI) IMSc July’14 1 July 2014 13 / 29



Incompatibility and Complementarity - 11

o Example : Massen and Uffink bound :-
For measurement bases A = {|a1), ..., |aq)} and B = {|b1), ..., [ba)} in C,

(H(A[[¢)) + H(B||¢))) = —log ¢(A, B)

N =

where ¢(A, B) := max | {(alb) |, ¥ |a) € A,|b) € B.

@ Maximum value of RHS is attained when | (a|b) | = %, V|a), |b) : Strongest
possible uncertainty relation is satisfied when the bases are mutually
unbiased.

@ For measurements involving more than 2 bases, to obtain strong uncertainty
relations, the bases must be mutually unbiased -
MUBs are a necessary condition to achieve maximal incompatibility with
multiple bases.
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Incompatibility and Complementarity - 11

o Example : Massen and Uffink bound :-
For measurement bases A = {|a1), ..., |aq)} and B = {|b1), ..., [ba)} in C,

(H(A[[¢)) + H(B||¢))) = —log ¢(A, B)

N =

where ¢(A, B) := max | (a|b) |, V |a) € A, |b) € B.

@ Maximum value of RHS is attained when | (a|b) | = ﬁ, V|a), |b) : Strongest
possible uncertainty relation is satisfied when the bases are mutually
unbiased.

@ For measurements involving more than 2 bases, to obtain strong uncertainty
relations, the bases must be mutually unbiased -
MUBs are a necessary condition to achieve maximal incompatibility with
multiple bases.

@ Security of quantum cryptographic protocols relies on this property of MUBs.
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MUBs in Quantum Cryptography

@ Quantum Key Distribution —
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.
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MUBs in Quantum Cryptography

@ Quantum Key Distribution —
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.

@ Example of a protocol using states in C? (qubits):

o Key: n-bit string X = z1z2...2,, ; € {0,1}.
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MUBs in Quantum Cryptography

@ Quantum Key Distribution —
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.

@ Example of a protocol using states in C? (qubits):

o Key: n-bit string X = z1z2...2,, ; € {0,1}.

@ A encodes each bit z; in an eigenstate of one a pair of complementary bases,

{10), 1)} or {|+),|-)} in C*:
zi = |zs) or zp — (|2i) + |T4))/V2.

Then, sends the encoded state to B.
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MUBs in Quantum Cryptography

@ Quantum Key Distribution —
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.

@ Example of a protocol using states in C? (qubits):

o Key: n-bit string X = z1z2...2,, ; € {0,1}.
@ A encodes each bit z; in an eigenstate of one a pair of complementary bases,
{10),11)} or {|-+),|=)} in C*:

Then, sends the encoded state to B.

9 B has access to the basis information, E does not. By guessing randomly, E
can typically access only half the key.
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MUBs in Quantum Cryptography

@ Quantum Key Distribution —
The participants (A and B) want to generate a secret key about which an
eavesdropper (E) cannot obtain significant information.

@ Example of a protocol using states in C? (qubits):

o Key: n-bit string X = z1z2...2,, ; € {0,1}.
@ A encodes each bit z; in an eigenstate of one a pair of complementary bases,
{10),11)} or {|-+),|=)} in C*:

Then, sends the encoded state to B.
@ B has access to the basis information, E does not. By guessing randomly, E

can typically access only half the key.

@ Amount of information E has about the key is a measure of incompatibility of
the set of bases used by A.
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The case of prime-power dimensions
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The Weyl-Heisenberg Group

@ Weyl-Heisenberg group 7, : Finite non-abelian group generated by the
cyclic shift operator X and the phase operator Z. They satisfy the Weyl
commutation rule:

XZ=e?mlizy,
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The Weyl-Heisenberg Group

@ Weyl-Heisenberg group 7, : Finite non-abelian group generated by the
cyclic shift operator X and the phase operator Z. They satisfy the Weyl
commutation rule:

XZ =e?mdzx,

@ Each element of H4 can be uniquely represented ( upto a phase) as
Unpn=X)"(2)",0<m,n<d—1. Uy n and Uy, commute iff
mn’ —nm’ = 0modd.
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The Weyl-Heisenberg Group

@ Weyl-Heisenberg group 7, : Finite non-abelian group generated by the
cyclic shift operator X and the phase operator Z. They satisfy the Weyl
commutation rule:

XZ =e?mdzx,

@ Each element of H4 can be uniquely represented ( upto a phase) as
Unpn=X)"(2)",0<m,n<d—1. Uy n and Uy, commute iff
mn’ —nm’ = 0modd.

o H, is a group of unitary operators, closed under multiplication:

Um,nUm’,n’ = U(erm’)modd,(nJrn’)mod d-
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The Weyl-Heisenberg Group

@ Weyl-Heisenberg group 7, : Finite non-abelian group generated by the
cyclic shift operator X and the phase operator Z. They satisfy the Weyl
commutation rule:

XZ =e?mdzx,

@ Each element of H4 can be uniquely represented ( upto a phase) as
Unpn=X)"(2)",0<m,n<d—1. Uy n and Uy, commute iff
mn’ —nm’ = 0modd.

o H, is a group of unitary operators, closed under multiplication:

Um,nUm’,n’ = U(erm’)modd,(nJrn’)mod d-

@ The elements of H,4 are pairwise trace orthogonal:
tr[(X™Z™)(X™ Z™)] = S O -

The operators {Uy, ,} form a ON basis for the space of d x d complex
matrices My (C).
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Unitary Operator Basis and MUBs - I

@ There are at most d pairwise orthogonal commuting unitary matrices in
My(C).
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Unitary Operator Basis and MUBs - I

@ There are at most d pairwise orthogonal commuting unitary matrices in
My(C).

@ Let S be a set of d?> mutually orthogonal unitary operators acting on C¢
(unitary basis for the space of d x d matrices).
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Unitary Operator Basis and MUBs - I

@ There are at most d pairwise orthogonal commuting unitary matrices in
My(C).

@ Let S be a set of d?> mutually orthogonal unitary operators acting on C¢
(unitary basis for the space of d x d matrices).

@ Suppose there exists a partitioning of S\ {I} into Mutually Disjoint Maximal
Commuting Classes: {C1,Ca,...,Cr} where, C; C S\ {I} of size |C;| =d—1
are such that
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Unitary Operator Basis and MUBs - I

@ There are at most d pairwise orthogonal commuting unitary matrices in
My(C).

@ Let S be a set of d?> mutually orthogonal unitary operators acting on C¢
(unitary basis for the space of d x d matrices).

@ Suppose there exists a partitioning of S\ {I} into Mutually Disjoint Maximal
Commuting Classes: {C1,Ca,...,Cr} where, C; C S\ {I} of size |C;| =d—1
are such that

(a) the elements of C; commute for all 1 < j < L, and,

(b) C;NC =0 for all j # k.
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Unitary Operator Basis and MUBs - I

@ There are at most d pairwise orthogonal commuting unitary matrices in
My(C).

@ Let S be a set of d?> mutually orthogonal unitary operators acting on C¢
(unitary basis for the space of d x d matrices).

@ Suppose there exists a partitioning of S\ {I} into Mutually Disjoint Maximal
Commuting Classes: {C1,Ca,...,Cr} where, C; C S\ {I} of size |C;| =d—1
are such that

(a) the elements of C; commute for all 1 < j < L, and,

(b) C;NC =0 for all j # k.

@ Theorem 1: The common eigenbases of each of {C1,Cs,...,Cr} form a set
of L mutually unbiased bases.
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Proof of Theorem 1

@ Consider a maximal commuting class C; (1 <j <d+1):
Ci ={Uj0,Uj1,Uj2, ..., Uja1}, (Ujo=1)
Let B/ = {|1pf), i=0,1,...,d — 1} be the associated basis.
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Proof of Theorem 1

@ Consider a maximal commuting class C; (1 <j <d+1):
Ci ={U;0,Uj1,Uj2,...,Uja-1}, (Ujo=1)
Let B/ = {|¢/), i =0,1,...,d — 1} be the associated basis.

@ Orthogonality of the unitaries implies, for every pair j # k,

tr[U] Uk] = d 85000, YO < 5,6 <d—1.
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Proof of Theorem 1

@ Consider a maximal commuting class C; (1 <j <d+1):
Cj =1{Uj0,Uj1,Uja, -, Uja}s (Ujo=1)
Let B/ = {|¢/), i =0,1,...,d — 1} be the associated basis.
@ Orthogonality of the unitaries implies, for every pair j # k,
tr[U] Uk] = d 85000, YO < 5,6 <d—1.
Since Uj s = 32470 M®[9?) (97, this implies,

d—1d—1
STST NN @ )P = d 6,0 010, VO < st < d — 1.

=0 [=0
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Proof of Theorem 1

@ Consider a maximal commuting class C; (1 <j <d+1):
Cj =1{Uj0,Uj1,Uja, -, Uja}s (Ujo=1)
Let B/ = {|¢/), i =0,1,...,d — 1} be the associated basis.
@ Orthogonality of the unitaries implies, for every pair j # k,
tr[U] Uk] = d 85000, YO < 5,6 <d—1.
Since Uj s = 32470 M®[9?) (97, this implies,

d—1d—1
SOSCONEAS @I )P = 6,080, VO < s, < d - 1.
1=0 [=0

@ Inverting this system of equations, for every j # k,

(WP =5 vo<il<d
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Proof of Theorem 1

@ Consider a maximal commuting class C; (1 <j <d+1):
Ci ={U;0,Uj1,Uj2,...,Uja-1}, (Ujo=1)
Let B/ = {|¢/), i =0,1,...,d — 1} be the associated basis.
@ Orthogonality of the unitaries implies, for every pair j # k,
tr[U] Uk] = d 85000, YO < 5,6 <d—1.
Since Uj s = 32470 M®[9?) (97, this implies,
d—1d—1
SO NN @I = ds0 000, YO < st <d— 1.
i=0 1=0
@ Inverting this system of equations, for every j # k,

(WP =5 vo<il<d

{B',B2,...,BY} is thus a set of L. MUBs in C.
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Unitary Operator Bases and MUBs - II

@ Conversely, let {B',B2,...,BL} be a set of L MUBs in C%. Then, there
exists a set of L(d — 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.
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Unitary Operator Bases and MUBs - II

@ Conversely, let {B',B2,...,BL} be a set of L MUBs in C%. Then, there
exists a set of L(d — 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.

o Proof: Let B = {|¢3), |41, ..., |4 _,)}. Then,

j 1
()P =5, Vi#k YO<il<d—1.
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Unitary Operator Bases and MUBs - II

@ Conversely, let {B',B2,...,BL} be a set of L MUBs in C%. Then, there
exists a set of L(d — 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.

o Proof: Let B = {|¢3), |41, ..., |4 _,)}. Then,
1

(Wl = . YAk YO<il<d-1.
@ Construct the unitaries
d—1
Ujs =Y ™Vl VO<s<d—1,1<5 < L.
1=0

Clearly, Uj s and U;; commute for every j.
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Unitary Operator Bases and MUBs - II

@ Conversely, let {B',B2,...,BL} be a set of L MUBs in C%. Then, there
exists a set of L(d — 1) mutually orthogonal unitary operators that can be
partitioned into L mutually disjoint maximal commuting classes.

o Proof: Let B = {|¢3), |41, ..., |4 _,)}. Then,

j 1
()P =5, Vi#k YO<il<d—1.

@ Construct the unitaries
d—1
Uje =Y eyl (pl], vo<s<d—1,1<j < L.
1=0
Clearly, Uj s and U;; commute for every j.

@ These unitaries are indeed mutually orthogonal:

d—1
U U] = ) emtmsm/d|yligh )2
1,m=0
= (U Ujl =ddey , tr[U] Uka] = 0,5 #k, (s,t) # (0,0).
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Unitary operator basis and MUBs - III

@ Corollary : The cardinality of a set of MUBs in C% cannot be more than
d+1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) <d+1.
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Unitary operator basis and MUBs - III

@ Corollary : The cardinality of a set of MUBs in C% cannot be more than
d+1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) <d+1.

@ Example: In C* = C? ® C?, consider the unitary basis of Pauli operators
(Ui ® U, }, where, U; € {I, X, Y, Z}.
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Unitary operator basis and MUBs - III

@ Corollary : The cardinality of a set of MUBs in C% cannot be more than
d+1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) <d+1.

@ Example: In C* = C? ® C?, consider the unitary basis of Pauli operators
(Ui ® U, }, where, U; € {I, X, Y, Z}.

S = {YeoLIeY,Y®Y}
S = {YRZZ2X,X®Y}
S = {ZeLIeZ, ZeZ}
S = {XoLIleX,X® X}
S = {(X®Z,ZY,Y® X}

Common eigenbases of Sy, S, ..., S5 form a set of 5 MUBs in C*.
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Unitary operator basis and MUBs - III

@ Corollary : The cardinality of a set of MUBs in C% cannot be more than
d+1.
Let N(d) be the maximal number of MUBs in d-dimensions, then,
N(d) <d+1.

@ Example: In C* = C? ® C?, consider the unitary basis of Pauli operators
(Ui ® U, }, where, U; € {I, X, Y, Z}.

S = {YeoLIeY,Y®Y}
S = {YRZZ2X,X®Y}
S = {ZeLIl®Z,ZxZ}
S = {(XoLIgX,X®X}
S = {(X®Z,ZY,Y® X}

Common eigenbases of S, Sa, ..., S5 form a set of 5 MUBs in C*.

@ This partitioning is not unique!
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MUBESs in prime-power dimensions

@ In prime-power dimensions d = p™, explicit construction of N(d) =d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.
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MUBESs in prime-power dimensions

@ In prime-power dimensions d = p™, explicit construction of N(d) =d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.

@ Decompose the Hilbert space as C¢ = CP @ CP ... ® CP.
| ———

n times

Consider tensor products of X and Z acting on CP?.
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MUBESs in prime-power dimensions

@ In prime-power dimensions d = p™, explicit construction of N(d) =d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.

@ Decompose the Hilbert space as C¢ = CP @ CP ... ® CP.
| ———

. . n times
Consider tensor products of X and Z acting on CP?.

@ Unitary basis of operators: § = {U; @ U ® ... ® Uy}, where,
U = (X)k(2)4,0 < ki l; <p— 1.
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MUBESs in prime-power dimensions

@ In prime-power dimensions d = p™, explicit construction of N(d) =d+ 1
MUBs is known using the operators of the Weyl-Heisenberg group.

@ Decompose the Hilbert space as C¢ = CP @ CP ... ® CP.
| ———

. . n times
Consider tensor products of X and Z acting on CP?.

@ Unitary basis of operators: § = {U; @ U ® ... ® Uy}, where,
U = (X)k(2)4,0 < ki l; <p— 1.

@ Each operator is represented by a vector of length 2n over the finite field
Fpi (k'l, ceey kn|ll, NN ,ln)

Prabha Mandayam (CMI) IMSc July’14 1 July 2014



MUBESs in prime-power dimensions

@ In prime-power dimensions d = p™, explicit construction of N(d) =d + 1
MUBs is known using the operators of the Weyl-Heisenberg group.

@ Decompose the Hilbert space as C¢ = CP @ CP ... ® CP.
| ———

. . n times
Consider tensor products of X and Z acting on CP?.

@ Unitary basis of operators: § = {U; @ U ® ... ® Uy}, where,
U = (X)k(2)4,0 < ki l; <p— 1.

@ Each operator is represented by a vector of length 2n over the finite field
Fpi (k'l, ceey kn|ll, NN ,ln)

@ There exists a partitioning of S into d + 1 mutually disjoint maximal
commuting classes C;.
A partitioning of d? elements of the Weyl-Heisenberg group into d + 1
Abelian subgroups.
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Composite Dimensions: Unextendible MUBs
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MUBSs in composite dimensions

@ In composite dimensions, smaller sets of MUBs have been constructed.
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MUBSs in composite dimensions

@ In composite dimensions, smaller sets of MUBs have been constructed.

@ Using Mutually Orthogonal Latin Squares in square dimensions (d = s?), we
can obtain v/d + 1 MUBs.
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MUBSs in composite dimensions

@ In composite dimensions, smaller sets of MUBs have been constructed.

@ Using Mutually Orthogonal Latin Squares in square dimensions (d = s?), we
can obtain v/d + 1 MUBs.

o Lower bound on N(d) for any d = pi'p5?...pLm :

N(d) = min {N(py*), N(p3*), -, N(py")}
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MUBSs in composite dimensions

@ In composite dimensions, smaller sets of MUBs have been constructed.

@ Using Mutually Orthogonal Latin Squares in square dimensions (d = s?), we
can obtain v/d + 1 MUBs.

o Lower bound on N(d) for any d = pi'p5?...pLm :
N(d) = min {N(p1'), N(p3*), ..., N(py')}

Proof- Let L = min,, N(p'm). Choose L MUBs {BY™ B%m .. . BLm™} for
each CP=" . Then,

(B'e..oB™: . j=1,...,L}

is a set of L MUBs in C<.
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MUBSs in composite dimensions

@ In composite dimensions, smaller sets of MUBs have been constructed.

@ Using Mutually Orthogonal Latin Squares in square dimensions (d = s?), we
can obtain v/d + 1 MUBs.

o Lower bound on N(d) for any d = pi'p5?...pLm :
N(d) = min {N(p1'), N(p3*), ..., N(py')}

Proof- Let L = min,, N(p'm). Choose L MUBs {BY™ B%m .. . BLm™} for
each CP=" . Then,

(B'e..oB™: . j=1,...,L}
is a set of L MUBs in C<.

@ Simple consequence: N(d) > 3 for any d > 2. Eigenbases of {X,Z, XZ} .
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MUBSs in composite dimensions

@ In composite dimensions, smaller sets of MUBs have been constructed.

@ Using Mutually Orthogonal Latin Squares in square dimensions (d = s?), we
can obtain v/d + 1 MUBs.

o Lower bound on N(d) for any d = pi'p5?...pLm :
N(d) = min {N(p1'), N(p3*), ..., N(py')}

Proof- Let L = min,, N(p'm). Choose L MUBs {BY™ B%m .. . BLm™} for
each CP=" . Then,

(B'e..oB™: . j=1,...,L}
is a set of L MUBs in C.
@ Simple consequence: N(d) > 3 for any d > 2. Eigenbases of {X,Z, XZ} .

@ Question of whether a maximal set of MUBs exists in non-prime-power
dimensions still remains unresolved.
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Maximal set of MUBs in d = 67

@ Triples of MUBs have been constructed using:

o Abelian subgroups of the Weyl-Heisenberg group
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Maximal set of MUBs in d = 67

@ Triples of MUBs have been constructed using:

o Abelian subgroups of the Weyl-Heisenberg group

o Mutually unbiased Hadamard matrices
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Maximal set of MUBs in d = 67

@ Triples of MUBs have been constructed using:
o Abelian subgroups of the Weyl-Heisenberg group

o Mutually unbiased Hadamard matrices

o Complex Hadamard matrix H on C%: a rescaled d x d unitary matrix,

|Hij| = —=, 4,j=0,1,...,d—1, H'H=dI

1
Vd
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Maximal set of MUBs in d = 67

@ Triples of MUBs have been constructed using:
o Abelian subgroups of the Weyl-Heisenberg group

o Mutually unbiased Hadamard matrices

o Complex Hadamard matrix H on C%: a rescaled d x d unitary matrix,

|Hij| = —=, 4,j=0,1,...,d—1, H'H=dI

1
Vd

@ Two Hadamard matrices H1, Ho are mutually unbiased if HIHQ is also
Hadamard.
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Maximal set of MUBs in d = 67

@ Triples of MUBs have been constructed using:

o Abelian subgroups of the Weyl-Heisenberg group

o Mutually unbiased Hadamard matrices

o Complex Hadamard matrix H on C%: a rescaled d x d unitary matrix,

|Hij| = —=, 4,j=0,1,...,d—1, H'H=dI

1
Vd
@ Two Hadamard matrices H1, Ho are mutually unbiased if HIHQ is also

Hadamard.
A set of N Hadamard matrices < A set of N +1 MUBs!
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Maximal set of MUBs in d = 67

@ Triples of MUBs have been constructed using:
o Abelian subgroups of the Weyl-Heisenberg group

o Mutually unbiased Hadamard matrices

o Complex Hadamard matrix H on C%: a rescaled d x d unitary matrix,

|Hij| = —=, 4,j=0,1,...,d—1, H'H=dI

1
Vd
@ Two Hadamard matrices H1, Ho are mutually unbiased if HIHQ is also

Hadamard.
A set of N Hadamard matrices < A set of N + 1 MUBs!

@ All known triples of MUBs in d = 6 are unextendible to a maximal set!
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Unextendible Sets of MUBs

o Definition [Unextendibility]: A set of MUBs {81, B2, ...,B,,} in C%is
unextendible if there does not exist another basis in C¢ that is unbiased with
respect to {B;,j =1,...,m}.
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Unextendible Sets of MUBs

o Definition [Unextendibility]: A set of MUBs {81, B2, ...,B,,} in C%is
unextendible if there does not exist another basis in C¢ that is unbiased with
respect to {B;,j =1,...,m}.

@ Example: In d = 6, the eigenbases of X', Z and X' Z are an unextendible set
of 3 MUBs.
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Unextendible Sets of MUBs

o Definition [Unextendibility]: A set of MUBs {81, B2, ...,B,,} in C%is
unextendible if there does not exist another basis in C¢ that is unbiased with
respect to {B;,j =1,...,m}.

@ Example: In d = 6, the eigenbases of X', Z and X' Z are an unextendible set
of 3 MUBs.

= Cannot be extended to obtain a complete set of 7 MUBs in d = 6!
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Unextendible Sets of MUBs

o Definition [Unextendibility]: A set of MUBs {81, B2, ...,B,,} in C%is
unextendible if there does not exist another basis in C¢ that is unbiased with
respect to {B;,j =1,...,m}.

@ Example: In d = 6, the eigenbases of X', Z and X' Z are an unextendible set
of 3 MUBs.

= Cannot be extended to obtain a complete set of 7 MUBs in d = 6!

o Definition [Strongly Unextendiblity]: {81, Bs,..., B} is strongly
unextendible if there does not exist another vector that is unbiased with
respect to B;,j =1,...,m.

Eigenbases of X', Z and X'Z in d = 6 are strongly unextendible.
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Unextendible sets of Pauli Classes

o Definition [Unextendible Classes]: A set of L mutually disjoint maximal

commuting classes {C1,Ca,...,Cr} of Pauli operators in d = 2" is
unextendible if another maximal commuting class cannot be formed out of

the remaining operators in P, \ {TUL, C;}.
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Unextendible sets of Pauli Classes

o Definition [Unextendible Classes]: A set of L mutually disjoint maximal
.,Cr} of Pauli operators in d = 2" is
unextendible if another maximal commuting class cannot be formed out of
the remaining operators in P, \ {TUL, C;}.

commuting classes {C1,Ca, . .

@ Example: a set of 3 unextendible maximal commuting Pauli classes in d = 4.

G
Co
Cs

{YoVY,I®Y,Y ®1},
Yoz ZoX,X®Y)},
(X®LI® Z, X ® Z}

1 July 2014
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Unextendible sets of Pauli Classes

o Definition [Unextendible Classes]: A set of L mutually disjoint maximal
commuting classes {C1,Ca,...,Cr} of Pauli operators in d = 2" is
unextendible if another maximal commuting class cannot be formed out of
the remaining operators in P, \ {TUL, C;}.

@ Example: a set of 3 unextendible maximal commuting Pauli classes in d = 4.

G = {YeVYIeYY®I}
Co = {Y®Z,ZX, XY},
C; = {XeLIeZ X®Z}

Cannot find one more class of 3 commuting operators from the remaining 6
Pauli operators.
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Unextendible sets of Pauli Classes

o Definition [Unextendible Classes]: A set of L mutually disjoint maximal
commuting classes {C1,Ca,...,Cr} of Pauli operators in d = 2" is
unextendible if another maximal commuting class cannot be formed out of
the remaining operators in P, \ {TUL, C;}.

@ Example: a set of 3 unextendible maximal commuting Pauli classes in d = 4.

G = {YeVIeYYeI}
Co = {Y®Z,ZX, XY},
C; = {XeLIeZ X®Z}

Cannot find one more class of 3 commuting operators from the remaining 6
Pauli operators.

@ Weakly Unextendible Sets: The common eigenbases of an unextendible set
of Pauli classes form a weakly unextendible set of MUBs:
There does not exist another MUB that can be realized as a common
eigenbasis of a maximal commuting class Cr+1 C Py, \ {I}.
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Unextendible Sets in d = 2"

o Given any two maximal commuting Pauli classes C; and Cy in d = 4, there
always exists a third class C}, of commuting Paulis such that {C1,C2,C4}
constitute an unextendible set of three maximal commuting Pauli classes in
d=4.
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Unextendible Sets in d = 2"

o Given any two maximal commuting Pauli classes C; and Cy in d = 4, there
always exists a third class C}, of commuting Paulis such that {C1,C2,C4}
constitute an unextendible set of three maximal commuting Pauli classes in
d=4.

@ In d = 8, the number of maximal commuting Pauli classes in an unextendible
set is exactly 5. = A weakly unextendible set of 5 MUBs in d = 8.
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Unextendible Sets in d = 2"

o Given any two maximal commuting Pauli classes C; and Cy in d = 4, there
always exists a third class C}, of commuting Paulis such that {C1,C2,C4}

constitute an unextendible set of three maximal commuting Pauli classes in
d=4.

@ In d = 8, the number of maximal commuting Pauli classes in an unextendible
set is exactly 5. = A weakly unextendible set of 5 MUBs in d = 8.

@ Numerical evidence: Specific examples of unextendible sets of Pauli classes
in d = 4,8 lead to strongly unextendible MUBs.
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Unextendible Sets in d = 2"

o Given any two maximal commuting Pauli classes C; and Cy in d = 4, there
always exists a third class C}, of commuting Paulis such that {C1,C2,C4}
constitute an unextendible set of three maximal commuting Pauli classes in
d=4.

@ In d = 8, the number of maximal commuting Pauli classes in an unextendible
set is exactly 5. = A weakly unextendible set of 5 MUBs in d = 8.

@ Numerical evidence: Specific examples of unextendible sets of Pauli classes
in d = 4,8 lead to strongly unextendible MUBs.

@ In d = 2™: we conjecture the existence of unextendible sets of % + 1 maximal
commuting Pauli classes.
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