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Plan of Talk

Permutation groups: background and some basic algorithms.

Fixed point-free elements of a permutation group. Existence
and computation.

Computing small bases for permutation groups.

Random subproducts in groups.
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What is in this talk for me?

e The group theory content is easy/elementary and is from a first
course in algebra.

e The algorithms are straightforward based on simple techniques
taught in a first algorithms course.

e What's new is probably the cocktail of group theory +
algorithms.

e Teachers: Experimenting with similar cocktails in other courses
like linear algebra can be interesting.
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e Let S, denote the group of all permutations on n elements, say
{1,2,...,n}. It is a group under permutation composition and has
n! many elements.

e A subgroup G of S, denoted G < S, is a permutation group.
e We can "describe” a permutation group G by listing down all its
elements. A more compact description is to give a generating set

for it.

e The permutation group (S), generated by a subset S C S, of
permutations, is the smallest subgroup of S, containing S.
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e Every finite group G has a generating set of size log, |G]|.
Because

(g1) < (g1,&) <...<(g1,8,---,8) = G.

Each new generating element at least doubles the group size by
Lagrange's theorem. Thus, k < log, |G|.

So, giving a generating set for G is a succinct representation as it
as algorithmic input.
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e For a permutation 7 € S, the image of a point i € [n] is
denoted by i™.

e For a permutation m € S,,, a point i € [n] is a fixed point if
i™ =i. Let fix(7m) denote the number of points fixed by .

e A permutation group G < S, partitions the domain [n] into
orbits: i and j are in the same orbit precisely when /& = j for some

g€ G.

e The group G is called transitive if there is exactly one orbit.
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Permutation Group Algorithmics

e Each permutation 7 in S, can be represented as an n-tuple
(17,27, ..., n™) (or an array of n integers).

e Given m € S, and a point i/ € [n] we can “compute” /™ in “one
step” by looking up the it" entry of the array representing m. We
can consider this a “unit cost” operation.

e Given two permutations m,1 € S, we can compute their product
7y by computing (i™)¥ for each i. This operation costs n.

e What is an efficient algorithm on permutation groups?
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Permutation Group Algorithmics Contd.

e Elements and subgroups of S, require encoding size n and
n? log n respectively.

e Roughly speaking, for algorithm dealing with permutation groups
in S,

Polynomial in n many operations = Efficient.

Exponential in n operations = Inefficient.
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Computing Orbits Efficiently

e Given G < S, by a generating set S, we can compute the orbit
of any point i in (n|S[)°™) time.

Input: S ={g1,4,...,8«} generators for G;
O :={i};

while O changes do
O=0uU{i&|ieS1<j<k};

endwhile

e The loop runs for at most n steps. In the loop the number of
operations is bounded by O(nk). Thus, O(n?k) operations in all.
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The Membership Testing Problem

e Given as input m € S,, and a subgroup G = (S) < S, test if 7 is
in G. Express 7 in terms of the generators.

e Writing m as a product of generators may be exponentially long!
Example Consider the cyclic group G = (g), where g is a
permutation of order 20(vnlogn) (by choosing g to be a product of

cycles of prime length for different primes).

We need to have a more compact way of expressing m € G in
terms of its generators.
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Membership Testing Contd.

Elements of G are g where b is t = O(y/nlog n) bits. We
compute gb by repeated squaring and multiplying the appropriate
powers g2 . Let b = Zf;é b;2'.

The following straight-line program computes g?:

X0 *= &
fori:=1tot—1do
X; = x,-271;

xt = 1;

fori:=1tot—1do
. b;.
Xt4i = Xe4i—1 " X; 5
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Srtaight-Line Programs

Let m € G = (g1,82,.--,8k) < Sp. A straight-line program for =
consists of the following:

e The first k lines of the program has x; := g;,1 <i < k as
instructions, where g1, go, ..., gk are the generators of G.

e Each subsequent line is an instruction of the form:
Xi = XjXk
Where j < i and k <.

e Nice Fact If 7 € (g1,82,...,8k) < S then it has a straight-line
program of length polynomial in n and k, and the membership
testing algorithm will find in poly(n) time.
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Strong Generating Sets

For G < S, let GJ;) denote its subgroup that pointwise stabilizes
{1,2,...,i}.

e Consider the tower of stabilizers subgroups in G:

{id} = G[n—l] < G[n—2] <...< G[l] < G[o] = G.

Consider the right coset representative sets T; for G;) in
Gli—1),1 <i < n—1. Their union forms a strong generating set for

e “Strong” because every m € G can be expressed uniquely as a
“short” product m = m,_1my_o ... 71, Where w; € T;.
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Back to Membership Testing

e Given a strong generating set for G < S,,, membership testing is
easy and efficient. Let m € Sp;:

TeEG < 7€ G[1]7T1 for m € T;.

We can find w1 € Ty easily and the problem reduces to checking if
7r7r1_1 is in Gy

e How do we find a strong generating set for G7
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Finding a Strong Generating Set

e Given G = (S), finding T is easy. We can compute the orbit O
of 1, and for each j € O keep track of a m; € G such that 1™ = j,
How do we find 757

Schreier’'s Lemma Let G = (A) and H < G of finite index with
R as the set of right coset representatives. Then H is generated by
the set B={nar, ' € H|a€ A r,nc R}.

Proof

We know G = HR.

And we have RA C BR

Which implies RAA C BRA C BBR.
Repeating, we get R(A) C (B)R.
Hence G = (B)R.

Since (B) < H it follows that (B) = H.
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Finding a Strong Generating Set

Difficulty Applying Schreier's lemma, the number of generators
for Gy can be n|A|. For Gy it can grow to n?|A| and so on...

Solution: a “reduce” step Given G = (g1, 82,...,8k), We can
efficiently find a generating set of size O(n?).

fori=1to ndo

while there are generators x, y fixing 1,2,...,i —1

such that * = /¥ do
replace the pair x, y with the pair x, yx 1.
end-while

end-for
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properties:
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T =mTo...Th—1 Withm; € T;,
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Running Time Analysis

Suppose G = (S) is the input group.

e Initial reduce operation if |S| > n?. Fori=1,2,...,n—1 we
compute /& for |S| many g. After that at most |S|n many

replacements of x, y by x, yx 1.

e In Schreier's lemma: computing orbit of i takes n?|S| < n*
operations, which also gives transversal R for G in Gjj_qj.

e |R| - |S| = n® operations for computing generating set of Gjip-
Applying reduce operation costs |S|n < n* operations.

Overall costs is n* - n plus O(|S|n) operations. Each operation
costs O(n). Thus, O(n® + |S|n?) is the time.
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Orbit Counting Lemma

i € [n] is a fixpoint of g € G if (8 = i.
fix(g) = number of fixpoints of g.
orb(G) = number of orbits of G.

Lemma (Orbit Counting Lemma)
Let G < S, and orb(G) denote the number of orbits of G. Then

orb(G) = % > fix(g) = Egeclfix(g)].
geai

Proof Define 0-1 matrix: Mg ; = 1 iff /8 = i. Equate row-wise
and column-wise sums using |O(i)| = |G|/|Gil.
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Fixpoint free elements in G

Theorem (Jordan’s Theorem)

If G < S, is transitive then the group G has fixpoint free elements.

Proof G has a single orbit and fix(g) = n for the identity. Since
the expectation is 1 there are g such that fix(g) = 0.

Problem: Given G = (g1, 8, ...,8k) transitive, can we find a
fixpoint free element in polynomial time?
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Cameron-Cohen’s Theorem

Theorem (CC92)

If G < S, is transitive then the group G has at least |G|/n many
fixpoint elements.

Proof

Let A denote the set of fixpoint free elements in G.

Gl = ) fix(g) =D fix(g)+ > fix(g)
geG geGy geG\Gy
|G| > [G|/n+|Gi[+[G\ (AU G1)

Which yields

Al = [G]/n.
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A Randomized Algorithm

Let G = (S) be a permutation group given as input by generating
set S.

e We first compute a strong generating set T for G.

e Using T we can sample m € G uniformly at random, and check if
m is fixpoint free.

Analysis Probability that we do not find a fixpoint free element
in, say, n? trials is bounded by (1 — 1/n)”2 ~e "
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Deterministic Algorithm

e Let move(g) = n — fix(g). Orbit counting lemma restated:
Egeg[move(g ]G\ Z move(g) = n — orb(G).
geG

For G transitive we have Egcg[move(g)] = n — 1.

Since Gj has at least two orbits,
Egeg [move(g)] < n—2.

Let G = WcrGir.

Egec[move(g)] = ExcrEgec n[move(g)].

e Thus, for some coset Gy of G; in G we must have
Egeg ~[move(g)] > n—1.
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Deterministic Algorithm Contd.

e For each coset representative m € R we explain how to efficiently
compute Ege g, -[move(g)]. Revisit the proof of the orbit counting
lemma:

Recall Mg, ; = 1 iff 87 = |.

e Number of 1's in the it column is |{g € G | 8™ = i}|.

e This number is zero if i and i™ " are in different Gi-orbits, and is
|G1,i| otherwise.

Thus, using the Schreir-Sims algorithm we can compute all column
sums efficiently, and hence also the above expectation in
polynomial time.
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Method of Conditional Probabilities

Gim ... Gi7} Gk
G1727'1 e G1727'g

e At the dt™" level of the tree compute the coset Gi,.. 4o that
maximizes Egeg,

,,,,,
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Approximating minimum bases

e If G =(S) < S, has minimum base size b then |G| < nP.

Proof If {1,2,..., b} is a minimum size base then
|Gji—1jl/1Gpig| < nand |G| = 1.

e An irredundant base B = {a1,a, ..., a4} is such that no «; is
fixed by the pointwise stabilizer of all earlier points. Hence

|G| > 2¢.

e Thus, any irredudant base is of size d < blogn.
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A Better Approximation Algorithm

e Having picked {a1,an,...,a;}, pick ;11 from an orbit of
largest size in the pointwise stabilizer of {a1, ag, ..., a;}.

Claim This yields a base of size (loglogn+ O(1))b.

If H < G then H has an orbit of size at least |H|"/?. Fixing a point
in it makes |H,| < |H|'/®.

e Thus, by picking bloglog n points |G shrinks as
|G|(1=1/b)"FE 8" . b Pick O(b) more points irredundantly.
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Other Finite Groups

o Let G < GL,(FFy), where q is a prime power and Fy is the finite
field of size q.

e Membership testing is likely to be hard.
e Given a,b € F, checking if 2 = b(modp) is considered a
computationally hard problem. Finding x is the so-called discrete

log problem.

e We cannot embed F in S, for small n if g — 1 has “large” prime
factors.



References/further reading

e Peter J Cameron “Permutation Groups’, LMS Student Texts 45,
Cambridge Univ Press.

e Eugene M Luks “Permutation groups and polynomial-time
computation”, in Groups and Computation, DIMACS series in
Discrete Mathematics and Theoretical Computer Science 11
(1993), 139-175. Available online.

e Laszlo Babai “Local expansion of vertex-transitive graphs and
random generation in finite groups” .



Other Finite Groups Contd.

Suppose G = (g1, 82, ..,8k) Where we assume no structure about
G. What can we compute efficiently? Randomness helps.
e Random subproducts of g1, g, ..., gk are elements of the form

gr'gy ... gk ei €r {0,1}.
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Testing Commutativity

Input G = (gl,g2,---,gk>-

e Check if gigj = gjg; for all pairs i,j. This is an O(k?) test, and
the best possible deterministic test.

A randomized test

Let x = g;'g5> ... g* and y = g{" g} ... g/* be two independent
subproducts.

Accept iff xy = yx.
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Testing Commutativity Contd.

e Claim If H < G is a proper subgroup then

Problgi'gy? ... g & H] > 1/2.

Prob[xy = yx] < Prob[x € Z(G)] + Prob[y € C(x) A x & Z(G)]

<p+(1-p)/2
=(1+p)/2
<3/4

Curious Fact If G is nonabelian then

Proby yeg[xy = yx] <5/8.
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Erdos-Rényi Sequences

e Random subproducts come from an Erdos-Rényi paper titled
“Probabilistic methods in group theory”.

A random subproduct gi*gs? ... gi* is e-uniform in G if for all
xeG

(1—¢)/|G| < Problg'gy” ... g = x < (1+¢)/|G|.

If k> 2log |G|+ 2log(1/e) + log(1/0) and g1, 8>, -, 8k are
randomly picked, then gi'gs? ... g;* is e-uniform in G with
probability 1 — §.
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Straight-line programs for G

oG = <g1,g2a"'7gk>-

Define the cube C = {g;*...g* | e; € {0,1}} and C~! be the
inverses of the elements in C.

If G = C~1C, we have short st-line programs for all of G.

Otherwise, there is a generator g; such that
C'cg¢ CclC.

Include an element gx41 € C*Ing\ C~1C to extend the sequence.
As Cgii1 N C = () we have doubled the size of the cube.
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Short straight-line programs

In ¢ <log|G]| steps we obtain elements gx+1, 8k+2,---,8k+e € G
such that for the cube

Co=A{g.. g | ei €{0,1}}.

we have
G=C1G.

Each g € G has a straight-line program of length

log |G|
Z 2k+1)+1)+2(k+log|G|) = O((k + log |G|) log | G|)
i=0

in terms of the original generators.



THANKS!



