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What is in this talk for me?

• The group theory content is easy/elementary and is from a first
course in algebra.

• The algorithms are straightforward based on simple techniques
taught in a first algorithms course.

• What’s new is probably the cocktail of group theory +
algorithms.

• Teachers: Experimenting with similar cocktails in other courses
like linear algebra can be interesting.



What is in this talk for me?

• The group theory content is easy/elementary and is from a first
course in algebra.

• The algorithms are straightforward based on simple techniques
taught in a first algorithms course.

• What’s new is probably the cocktail of group theory +
algorithms.

• Teachers: Experimenting with similar cocktails in other courses
like linear algebra can be interesting.



What is in this talk for me?

• The group theory content is easy/elementary and is from a first
course in algebra.

• The algorithms are straightforward based on simple techniques
taught in a first algorithms course.

• What’s new is probably the cocktail of group theory +
algorithms.

• Teachers: Experimenting with similar cocktails in other courses
like linear algebra can be interesting.



What is in this talk for me?

• The group theory content is easy/elementary and is from a first
course in algebra.

• The algorithms are straightforward based on simple techniques
taught in a first algorithms course.

• What’s new is probably the cocktail of group theory +
algorithms.

• Teachers: Experimenting with similar cocktails in other courses
like linear algebra can be interesting.



Permutation Groups: Definitions

• Let Sn denote the group of all permutations on n elements, say
{1, 2, . . . , n}. It is a group under permutation composition and has
n! many elements.

• A subgroup G of Sn, denoted G ≤ Sn, is a permutation group.

• We can “describe” a permutation group G by listing down all its
elements. A more compact description is to give a generating set
for it.

• The permutation group 〈S〉, generated by a subset S ⊆ Sn of
permutations, is the smallest subgroup of Sn containing S .
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Permutation Groups: Definitions Contd.

• Every finite group G has a generating set of size log2 |G |.
Because

〈g1〉 < 〈g1, g2〉 < . . . < 〈g1, g2, . . . , gk〉 = G .

Each new generating element at least doubles the group size by
Lagrange’s theorem. Thus, k ≤ log2 |G |.

So, giving a generating set for G is a succinct representation as it
as algorithmic input.
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Permutation Groups: Definitions Contd.

• For a permutation π ∈ Sn, the image of a point i ∈ [n] is
denoted by iπ.

• For a permutation π ∈ Sn, a point i ∈ [n] is a fixed point if
iπ = i . Let fix(π) denote the number of points fixed by π.

• A permutation group G ≤ Sn partitions the domain [n] into
orbits: i and j are in the same orbit precisely when ig = j for some
g ∈ G .

• The group G is called transitive if there is exactly one orbit.
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Permutation Group Algorithmics

• Each permutation π in Sn can be represented as an n-tuple
(1π, 2π, . . . , nπ) (or an array of n integers).

• Given π ∈ Sn and a point i ∈ [n] we can “compute” iπ in “one
step” by looking up the i th entry of the array representing π. We
can consider this a “unit cost” operation.

• Given two permutations π, ψ ∈ Sn we can compute their product
πψ by computing (iπ)ψ for each i . This operation costs n.

• What is an efficient algorithm on permutation groups?
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Permutation Group Algorithmics Contd.

• Elements and subgroups of Sn require encoding size n and
n2 log n respectively.

• Roughly speaking, for algorithm dealing with permutation groups
in Sn:

Polynomial in n many operations = Efficient.

Exponential in n operations = Inefficient.
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Computing Orbits Efficiently

• Given G ≤ Sn by a generating set S , we can compute the orbit
of any point i in (n|S |)O(1) time.

Input: S = {g1, g2, . . . , gk} generators for G ;
O := {i};
while O changes do
O := O ∪ {igj | i ∈ S , 1 ≤ j ≤ k};
endwhile

• The loop runs for at most n steps. In the loop the number of
operations is bounded by O(nk). Thus, O(n2k) operations in all.
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The Membership Testing Problem

• Given as input π ∈ Sn and a subgroup G = 〈S〉 ≤ Sn test if π is
in G . Express π in terms of the generators.

• Writing π as a product of generators may be exponentially long!

Example Consider the cyclic group G = 〈g〉, where g is a
permutation of order 2O(

√
n log n) (by choosing g to be a product of

cycles of prime length for different primes).

We need to have a more compact way of expressing π ∈ G in
terms of its generators.
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Membership Testing Contd.

Elements of G are gb where b is t = O(
√

n log n) bits. We
compute gb by repeated squaring and multiplying the appropriate
powers g2i . Let b =

∑t−1
i=0 bi2

i .

The following straight-line program computes gb:

x0 := g ;
for i := 1 to t − 1 do
xi := x2

i−1;
xt := 1;
for i := 1 to t − 1 do
xt+i := xt+i−1 · xbi

i ;
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Srtaight-Line Programs

Let π ∈ G = 〈g1, g2, . . . , gk〉 ≤ Sn. A straight-line program for π
consists of the following:

• The first k lines of the program has xi := gi , 1 ≤ i ≤ k as
instructions, where g1, g2, . . . , gk are the generators of G .

• Each subsequent line is an instruction of the form:

xi := xjxk

Where j < i and k < i .

• Nice Fact If π ∈ 〈g1, g2, . . . , gk〉 ≤ Sn then it has a straight-line
program of length polynomial in n and k, and the membership
testing algorithm will find in poly(n) time.
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Strong Generating Sets

For G ≤ Sn let G[i ] denote its subgroup that pointwise stabilizes
{1, 2, . . . , i}.

• Consider the tower of stabilizers subgroups in G :

{id} = G[n−1] < G[n−2] < . . . < G[1] < G[0] = G .

Consider the right coset representative sets Ti for G[i ] in
G[i−1], 1 ≤ i ≤ n− 1. Their union forms a strong generating set for
G .

• “Strong” because every π ∈ G can be expressed uniquely as a
“short” product π = πn−1πn−2 . . . π1, where πi ∈ Ti .
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Back to Membership Testing

• Given a strong generating set for G ≤ Sn, membership testing is
easy and efficient. Let π ∈ Sn:

π ∈ G ⇐⇒ π ∈ G[1]π1 for π1 ∈ T1.

We can find π1 ∈ T1 easily and the problem reduces to checking if
ππ−11 is in G[1].

• How do we find a strong generating set for G ?
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Finding a Strong Generating Set
• Given G = 〈S〉, finding T1 is easy. We can compute the orbit O
of 1, and for each j ∈ O keep track of a π1 ∈ G such that 1π1 = j .
How do we find T2?

Schreier’s Lemma Let G = 〈A〉 and H ≤ G of finite index with
R as the set of right coset representatives. Then H is generated by
the set B = {r1ar−12 ∈ H | a ∈ A, r1, r2 ∈ R}.

Proof
We know G = HR.

And we have RA ⊆ BR

Which implies RAA ⊆ BRA ⊆ BBR.

Repeating, we get R〈A〉 ⊆ 〈B〉R.

Hence G = 〈B〉R.

Since 〈B〉 ≤ H it follows that 〈B〉 = H.
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Finding a Strong Generating Set

Difficulty Applying Schreier’s lemma, the number of generators
for G[1] can be n|A|. For G[2] it can grow to n2|A| and so on...

Solution: a “reduce” step Given G = 〈g1, g2, . . . , gk〉, we can
efficiently find a generating set of size O(n2).

for i = 1 to n do

while there are generators x , y fixing 1, 2, . . . , i − 1
such that ix = iy do

replace the pair x , y with the pair x , yx−1.

end-while

end-for
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How many generators are needed?

• Exercise Given G = 〈S〉 ≤ Sn as input we can efficiently
compute a generating set of size at most n − 1.

Hint:

For each g ∈ S , let ig ∈ [n] be the smallest point moved by g .

Consider the graph XS on vertex set {1, 2, . . . , n} and edge set
{(ig , i

g
g ) | g ∈ S}.

As long as XS has cycles, we can apply a modified reduce step to
shrink the size of S .

• McIver-Neumann Every subgroup of Sn has a generating set of
size at most n/2. Proof uses CFSG. No efficient algorithm is
known for it.
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Finding a Strong Generating Set

Theorem (Schreier-Sims)

Let G < Sn be input by some generating set. In polynomial time
we can compute a strong generating set ∪Ti with the following
properties:

1 Every element π ∈ G can be expressed uniquely as a product
π = π1π2 . . . πn−1 with πi ∈ Ti ,

2 Membership in G of a given permutation can be tested in
polynomial time.

3 |G | can be computed in polynomial time.
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Running Time Analysis

Suppose G = 〈S〉 is the input group.

• Initial reduce operation if |S | > n2. For i = 1, 2, . . . , n − 1 we
compute ig for |S | many g . After that at most |S |n many
replacements of x , y by x , yx−1.

• In Schreier’s lemma: computing orbit of i takes n2|S | ≤ n4

operations, which also gives transversal R for G[i ] in G[i−1].

• |R| · |S | = n3 operations for computing generating set of G[i ].
Applying reduce operation costs |S |n ≤ n4 operations.

Overall costs is n4 · n plus O(|S |n) operations. Each operation
costs O(n). Thus, O(n6 + |S |n2) is the time.
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Orbit Counting Lemma

i ∈ [n] is a fixpoint of g ∈ G if ig = i .

fix(g) = number of fixpoints of g .

orb(G ) = number of orbits of G .

Lemma (Orbit Counting Lemma)

Let G ≤ Sn and orb(G ) denote the number of orbits of G . Then

orb(G ) =
1

|G |
∑
g∈G

fix(g) = Eg∈G [fix(g)].

Proof Define 0-1 matrix: Mg ,i = 1 iff ig = i . Equate row-wise
and column-wise sums using |O(i)| = |G |/|Gi |.
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Fixpoint free elements in G

Theorem (Jordan’s Theorem)

If G ≤ Sn is transitive then the group G has fixpoint free elements.

Proof G has a single orbit and fix(g) = n for the identity. Since
the expectation is 1 there are g such that fix(g) = 0.

Problem: Given G = 〈g1, g2, . . . , gk〉 transitive, can we find a
fixpoint free element in polynomial time?
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Cameron-Cohen’s Theorem

Theorem (CC92)

If G ≤ Sn is transitive then the group G has at least |G |/n many
fixpoint elements.

Proof

Let A denote the set of fixpoint free elements in G .

|G | =
∑
g∈G

fix(g) =
∑
g∈G1

fix(g) +
∑

g∈G\G1

fix(g)

|G | ≥ |G |/n + |G1|+ |G \ (A ∪ G1)|

Which yields

|A| ≥ |G |/n.
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A Randomized Algorithm

Let G = 〈S〉 be a permutation group given as input by generating
set S .

• We first compute a strong generating set T for G .

• Using T we can sample π ∈ G uniformly at random, and check if
π is fixpoint free.

Analysis Probability that we do not find a fixpoint free element
in, say, n2 trials is bounded by (1− 1/n)n

2 ≈ e−n.
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Deterministic Algorithm

• Let move(g) = n − fix(g). Orbit counting lemma restated:

Eg∈G [move(g)] =
1

|G |
∑
g∈G

move(g) = n − orb(G ).

For G transitive we have Eg∈G [move(g)] = n − 1.

Since G1 has at least two orbits,

Eg∈G1 [move(g)] ≤ n − 2.

Let G = ]π∈RG1π.

Eg∈G [move(g)] = Eπ∈REg∈G1π[move(g)].

• Thus, for some coset G1π of G1 in G we must have
Eg∈G1π[move(g)] > n − 1.
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Deterministic Algorithm Contd.

• For each coset representative π ∈ R we explain how to efficiently
compute Eg∈G1π[move(g)]. Revisit the proof of the orbit counting
lemma:
Recall Mgπ,i = 1 iff igπ = i .

• Number of 1’s in the i th column is |{g ∈ G1 | igπ = i}|.

• This number is zero if i and iπ
−1

are in different G1-orbits, and is
|G1,i | otherwise.

Thus, using the Schreir-Sims algorithm we can compute all column
sums efficiently, and hence also the above expectation in
polynomial time.
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Method of Conditional Probabilities

G

G1π1 . . . G1πi

G1,2τ1 . . . G1,2τ`

G1πk

• At the d th level of the tree compute the coset G1,...,dσ that
maximizes Eg∈G1,...,dσ[move(g)].
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Remarks and related questions

• Method of conditional probabilities – Erdös-Selfridge, Spencer,
Raghavan.

• Fixpoint free element checking in general permutation groups
G = 〈S〉 ≤ Sn is NP-complete.

• Fein-Kantor-Schacher: Every transitive permutation group
G ≤ Sn for n ≥ 2 has a fixpoint free element of prime power order.
Is there an efficient algorithm for finding one?

• Isaacs-Kantor-Spaltenstein: For G ≤ Sn and prime p dividing
|G |, there are at least |G |/n many elements whose order is divisible
by p. Deterministic algorithm?
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Bases for Permutation Groups

• Let G ≤ Sn be a permutation group. A subset of points B ⊆ [n]
is called a base for G if the subgroup GB of G that fixes every
point of G is the identity.

• This generalizes bases for vector spaces and has proven
computationally useful. There is a library of nearly linear-time
algorithms for small base groups due to Akos Seress and others.

• Finding minimum bases of permutation groups is NP-hard [Blaha
1992] even for cyclic groups and groups with bounded orbit size.
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Approximating minimum bases

• If G = 〈S〉 ≤ Sn has minimum base size b then |G | ≤ nb.

Proof If {1, 2, . . . , b} is a minimum size base then
|G[i−1]|/|G[i ]| ≤ n and |G[b]| = 1.

• An irredundant base B = {α1, α2, . . . , αd} is such that no αi is
fixed by the pointwise stabilizer of all earlier points. Hence
|G | ≥ 2d .

• Thus, any irredudant base is of size d ≤ b log n.
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A Better Approximation Algorithm

• Having picked {α1, α2, . . . , αi}, pick αi+1 from an orbit of
largest size in the pointwise stabilizer of {α1, α2, . . . , αi}.

Claim This yields a base of size (log log n + O(1))b.

If H ≤ G then H has an orbit of size at least |H|1/b. Fixing a point
in it makes |Hα| ≤ |H|1/b.

• Thus, by picking b log log n points |G shrinks as

|G |(1−1/b)b log log n ≈ eb. Pick O(b) more points irredundantly.
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Other Finite Groups

• Let G ≤ GLn(Fq), where q is a prime power and Fq is the finite
field of size q.

• Membership testing is likely to be hard.

• Given a, b ∈ F×q , checking if ax = b(modp) is considered a
computationally hard problem. Finding x is the so-called discrete
log problem.

• We cannot embed F×q in Sn for small n if q− 1 has “large” prime
factors.
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Other Finite Groups Contd.

Suppose G = 〈g1, g2, . . . , gk〉 where we assume no structure about
G . What can we compute efficiently? Randomness helps.
• Random subproducts of g1, g2, . . . , gk are elements of the form

g ε11 g ε22 . . . g εkk , εi ∈R {0, 1}.



Testing Commutativity

Input G = 〈g1, g2, . . . , gk〉.

• Check if gigj = gjgi for all pairs i , j . This is an O(k2) test, and
the best possible deterministic test.

A randomized test
Let x = g ε11 g ε22 . . . g εkk and y = gµ11 gµ22 . . . gµkk be two independent
subproducts.
Accept iff xy = yx .
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Testing Commutativity Contd.

• Claim If H < G is a proper subgroup then

Prob[g ε11 g ε22 . . . g εkk 6∈ H] ≥ 1/2.

Prob[xy = yx ] ≤ Prob[x ∈ Z (G )] + Prob[y ∈ C (x) ∧ x 6∈ Z (G )]

≤ p + (1− p)/2

= (1 + p)/2

≤ 3/4

Curious Fact If G is nonabelian then

Probx ,y∈G [xy = yx ] ≤ 5/8.
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Erdös-Rényi Sequences

• Random subproducts come from an Erdös-Rényi paper titled
“Probabilistic methods in group theory”.

A random subproduct g e1
1 g e2

2 . . . g ek
k is ε-uniform in G if for all

x ∈ G

(1− ε)/|G | ≤ Prob[g e1
1 g e2

2 . . . g ek
k = x ≤ (1 + ε)/|G |.

If k ≥ 2 log |G |+ 2 log(1/ε) + log(1/δ) and g1, g2, . . . , gk are
randomly picked, then g e1

1 g e2
2 . . . g ek

k is ε-uniform in G with
probability 1− δ.
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Straight-line programs for G

• G = 〈g1, g2, . . . , gk〉.

Define the cube C = {g e1
1 . . . g ek

k | ei ∈ {0, 1}} and C−1 be the
inverses of the elements in C .

If G = C−1C , we have short st-line programs for all of G .

Otherwise, there is a generator gj such that

C−1Cgj 6⊂ C−1C .

Include an element gk+1 ∈ C−1Cgj \C−1C to extend the sequence.
As Cgk+1 ∩ C = ∅ we have doubled the size of the cube.
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Short straight-line programs

In ` ≤ log |G | steps we obtain elements gk+1, gk+2, . . . , gk+` ∈ G
such that for the cube

C` = {g e1
1 . . . g

ek+`

k+` | ei ∈ {0, 1}}.

we have
G = C−1` C`.

Each g ∈ G has a straight-line program of length

log |G |∑
i=0

(2(k + i) + 1) + 2(k + log |G |) = O((k + log |G |) log |G |)

in terms of the original generators.
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THANKS!


