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Can we measure everything? 

 “Not everything that 

can be counted counts, 

and not everything that 

counts can be 

counted.” 

Albert Einstein (1879-1955)

However, some understanding  

emerges through measurement. 



Here is a quote from an article in the 

New York Times: 

 “With the measurement system all but finalized, why are 

controversies over measurement still surfacing? Why are we still 

stymied when trying to measure intelligence, schools, welfare and 

happiness?”  -NY Times, October 2011. 

 The article goes on to say that there are two ways of 

measurement, one is “ontic” and the other “ontological.” 

 The ontic way is what we are all familiar with, measuring things 

according to a scale.  It is mathematical. 

 The ontological way is more philosophical and we understand 

through inquiry, reflection and meditation.   



The dangers of confusing the two 

methods 

 Here is what Wikipedia says about him.   

 He was an English Victorian progressive, polymath, 

psychologist, anthropologist, eugenicist, tropical 

explorer, geographer, inventor, meteorologist, proto-

geneticist, psychometrician, and statistician. He was 

knighted in 1909. 

Let us look at the case of  Francis Galton. 

F. Galton (1822-1911) 



The creation of eugenics 
 Inspired by Darwin’s 1859 theory of evolution, Galton proposed 

a theory of how to create a master race by measuring intelligence 

of races. 

 In 1869, his book “Hereditary Genius” posited that human 

intelligence was inherited directly and diluted by “poor” 

breeding.  

 “The natural ability of which this book treats is such as a modern 

European possesses in a much greater average share than men of 

the lower races.” 

 There is a straight line between Galton’s method of measuring 

intelligence to Hitler’s views of a master race.  Galton’s views 

also led to the horrible idea of IQ. 

 Thus, we must know what can be measured and what cannot. 



Everyday uses of measurement 

 By measuring time, we are able to co-ordinate our daily activities. 

 By measuring temperature, we can dress appropriately. 

 By measuring cost, we can shop for the best deal. 

 By measuring wind speeds and atmospheric currents, we can 

prepare for natural disasters.   

 By measuring distance, we can plan our travel accordingly. 

 All of these are “ontic” uses of measurement and all of them are 

invaluable in our daily life.  These measurements have and 

continue to have a profound effect on civilizations. 

 But they all need some basic knowledge of numbers.  



However, there are many things that 

can be measured the “ontic” way. 

 Many civilizations had a number system 

to count. 

 Where does our decimal number system 

come from? 

 India.   

 More precisely, the decimal system goes 

back more than 1500 years to central 

India. 

 In 7th century India, Brahmagupta wrote 

the first book that describes the rules of 

arithmetic using zero. 

This is by using numbers. 

A portion of  a dedication tablet in a rock-cut  

Vishnu temple in Gwalior built in 876 AD.  

The number 270 seen in the inscription  

features the oldest extant zero in India 



The number 270 



Gwalior 

 The rock inscription is part of the Vishnu temple is 

Gwalior. 

 The Chinese and Babylonian civilizations had a 

place value number system.  But it was the Indians 

that started to treat zero as a number. 

The origins of  “zero” have been traced 

back to early Hinduism , Buddhism and Jainism 

where the concept of  “nothingness” is  

equated with “nirvana” or the transcendental 

state. 



The Vishnu Temple 

 The defacement of the face probably occurred in 

the Mughal period (15th century). 



Some more numbers on the temple 

walls 
 



Some more … 



Evolution of our number system 

 Notice the similarity between the Gwalior system 

and our modern system of numerals. 



The migration of the number system 

 The familiar operations of numbers was developed by 

Brahmagupta around 600 CE.   

 The number system then went to the middle east through Arab 

traders in the 8th century. 

 Al-Khwarizmi wrote a book in 825 CE titled, “On the 

calculation with Hindu numerals”. 

 The modern word “algorithm” comes from Al-Khwarizmi’s 

name. 

 In 1202, Fibonacci took the number system from the Arabs and 

introduced in Europe but was not widely used until 1482, when 

printing came into vogue. 

 This event animated the development of modern mathematics. 



What is mathematics? 

 



Mathematics as the language of science 

 “Nature’s great book is written 

in the language of 

mathematics”. - Galileo 

Galileo (1564-1642) 

“Mathematics is the queen of  science and number theory 

is the queen of  mathematics.” – C.F. Gauss 

C.F. Gauss (1777-1855) 



The unreasonable effectiveness of 

mathematics 

 Mathematics is now being applied to 

diverse fields of learning never 

imagined with remarkable success. 

 In this talk, we will highlight some 

examples of this phenomenon. 

Eugene Wigner  

  (1902-1995) 



Three examples of measurement 

 We will discuss the 

mathematics 

behind: 

position importance 
shape 



Who am I? 

 This is the 
fundamental existential 
question and belongs 
in the realm of 
philosophy. 

 GPS is concerned with 
the question “Where 
am I?” not as a 
philosophical question 
but as question in 
geography.  What is my 
geographical position? 



The world without GPS 

 



The world with GPS 

 



GPS:  Satellites and Receivers 

 Each satellite 

sends signals 

indicating its 

position and 

time. 



Satellites and signals 

 Each satellite of the network sends a signal indicating 
its position and the time of the transmission of the 
signal. 

 Since signals travel at the speed of light, the receiver can 
determine the radial distance of the satellite from the 
receiver based on the time it took to receive the signal 
since each receiver also has a clock. 

 Many think that the receivers transmit information to 
the satellites, whereas in reality, it is the other way 
around. 

 The receiver then uses basic math to determine its 
position. 



Spheres 

 If the receiver is R units away from satellite A, then 
the receiver lies on a sphere of radius R centered at 
A. 

 A suitably positioned second satellite B can be used 
to determine another sphere, and the intersection of 
these two spheres determines a circle. 

 A third satellite can be used to narrow the position 
to two points, and finally, a fourth, not coplanar 
with the other three, can be used to pinpoint the 
position of the receiver. 



Satellites in orbit 

 This is an animation of 24 

GPS satellites with 4 

satellites in each of 6 

orbits.  It shows how 

many satellites are visible 

at any given time.  This 

ensures redundancy to 

ensure accuracy. 



The mathematics of GPS 

 The intersection of two 
spheres is either empty or a 
circle. 

 The circle will intersect a 
third sphere in at most two 
points. 

 This geometric fact is the 
basis of GPS since other 
factors can be used to 
eliminate one of the two 
points as being an 
irrelevant solution to the 
problem.  



Equations for spheres 

 Each satellite determines a radial distance to the 

receiver.  Using Euclidean co-ordinates, let us 

denote the position of the receiver by (x,y,z) (which 

is unknown) and the position of the first satellite by 

(a1, b1, c1) (which is known) and the radial distance 

by r1.  Then: 



A second satellite 

 A second satellite sends a signal to the receiver and 

determines another radial distance r2.  If the center 

of the second satellite is (a2 , b2 , c2 ) then the 

unknown co-ordinates (x,y,z) lie on the sphere: 

Similarly from a third satellite: 



Solving three equations in three unknowns 

 This is not a linear system.  However, if we subtract the third 
from the first and the second from the first, we get two linear 
equations.  Thus, our system is now of the form: 

The first two equations determine x and y in terms of  z via  

Cramer’s rule in linear algebra.  These are then plugged into the third 

giving us a quadratic equation in z.  This gives two solutions for x,y,z but only one  

of  these corresponds to a point on the surface of  the earth, which determines 

the position of  the receiver uniquely. 
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How Google works  

 Google has become 

indispensable that many don’t 

realize the non-trivial 

mathematics behinds its 

workings. 

 The essential idea comes from 

a theorem of Frobenius and 

Perron dealing with Markov 

chains. 

Georg Frobenius (1849-1917) 

O. Perron (1880-1975) 

A.A. Markov (1856-1922) 



 



 



 



 



From:  gomath.com/geometry/ellipse.php 

 



Metric mishap causes loss of Mars orbiter 

(Sept. 30, 1999) 

 



The limitations of Google! 

 



The web at a glance 

 

Query-independent 

PageRank Algorithm 



The web is a directed graph 

 The nodes or vertices are the web pages. 

 The edges are the links coming into the page 
and going out of the page. 

This graph has more than  
10 billion vertices and it is 
growing every second! 



The PageRank Algorithm 

 PageRank Axiom: 
A webpage is 
important if it is 
pointed to by other 
important pages. 

 The algorithm was 
patented in 2001. Sergey Brin and Larry Page 



Example 

 C has a higher 
rank than E, 
even though 
there are fewer 
links to C since 
the one link to C 
comes from an 
“important” 
page. 



 



Mathematical formulation 

 Let r(J) be the “rank” 
of page J.   

 Then r(K) satisfies 
the equation  r(K)=               
ΣJ→K r(J)/deg+(J),                                      
where deg+(J) is the 
outdegree of J. 

12 



Matrix multiplication 

Factoid: 

The word “matrix”  

comes from the  

Sanskrit word “matr”  

which is the root word  

for “mother”.  It was coined by 

Herman Grassman who was both a 

Sanskrit scholar and a mathematician.   

H. Grassman 

(1809-1877) 



The web and Markov chains 

 Let puv be the 
probability of reaching 
node u from node v. 

 For example, pAB=1/2 
and pAC=1/3 and 
pAE=0. 

Notice the columns add up to 1. 
Thus, (1 1 1 1 1)P=(1 1 1 1 1).  
Pt has eigenvalue 1 

P is called the transition matrix. 



Markov process 
 If a web user is on page C, where will she be 

after one click? After 2 clicks? … After n clicks? 

A.A. Markov (1856-1922) 

After n steps,  Pnp0. 



Eigenvalues and eigenvectors 

 A vector v is called an eigenvector of a matrix 

P if Pv = λv for some number λ. 

 The number λ is called an eigenvalue. 

 One can determine practically everything 

about P from the knowledge of its 

eigenvalues and eigenvectors. 

 The study of such objects is called linear 

algebra and this subject is more than 100 

years old. 



Eigenvalues and eigenvectors of P 

 Therefore, P and Pt have the same 
eigenvalues. 

 In particular, P also has an eigenvalue equal 
to 1. 



Theorem of Frobenius 

 All the eigenvalues of the 
transition matrix P have 
absolute value ≤ 1. 

 Moreover, there exists an 
eigenvector corresponding to 
the eigenvalue 1, having all 
non-negative entries. 

Georg Frobenius (1849-1917) 



Perron’s theorem 

 Theorem (Perron):  Let 
A be a square matrix 
with strictly positive 
entries.  Let λ* =      
max{ |λ|: λ is an 
eigenvalue of A}.  Then 
λ* is an eigenvalue of A 
of multiplicity 1 and 
there is an eigenvector 
with all its entries 
strictly positive.  
Moreover, |λ|< λ* for 
any other eigenvalue.    

O. Perron (1880-1975) 



Frobenius’s refinement 

 Call a matrix A irreducible if An has strictly 
positive entries for some n.   

 Theorem (Frobenius):  If A is an irreducible 
square matrix with non-negative entries, then 
λ* is again an eigenvalue of A with 
multiplicity 1.  Moreover, there is a 
corresponding eigenvector with all entries 
strictly positive.   

 



Why are these theorems important? 

 We assume the following concerning the matrix P: 

 (a)  P has exactly one eigenvalue with absolute value 
1 (which is necessarily =1); 

 (b)  The corresponding eigenspace has dimension 1; 

 (c)   P is diagonalizable; that is, its eigenvectors form 
a basis. 

 Under these hypothesis, there is a unique 
eigenvector v such that Pv = v, with non-negative 
entries and total sum equal to 1. 

 Frobenius’s theorem together with (a) implies all the 
other eigenvalues have absolute value strictly less 
than 1.   

 



Computing Pnp0. 

 Let v1, v2, …, v5 be a basis of eigenvectors of P, with 
v1 corresponding to the eigenvalue 1. 

 Write p0 = a1v1 + a2v2 + … + a5v5. 
 It is not hard to show that a1=1. 
 Indeed, p0= a1v1 + a2v2 + … + a5v5  

  Let J=(1,1,1,1,1).   
 Then 1 = J p0= a1 Jv1 + a2 Jv2 + … + a5 Jv5  
 Now Jv1=1, by construction.   
 For i≥2, J(Pvi) = (JP)vi  = Jvi.  But Pvi = λivi. 
 Hence λi  Jvi = Jvi.  Since λi  ≠1, we get Jvi =0. 
 Therefore a1=1. 

36 



Computing Pnp0 continued 

 Pnp0= Pnv1 + a2P
nv2 + … + a5P

nv5  

             = v1+ λ2
n a2v2+ … + λ5

n  a5v5. 

 Since the eigenvalues λ2, …, λ5 have absolute 
value strictly less than 1, we see that Pnp0→v1 
as n tends to infinity. 

 Moral:  It doesn’t matter what p0 is, the 
stationary vector for the Markov process is 
v1.

 

 



Returning to our example … 

 The vector (12, 16, 9, 1, 3) 
is an eigenvector of P 
with eigenvalue 1.  

 We can normalize it by 
dividing by 41 so that 
the sum of the 
components is 1. 

 But this suffices to give 
the ranking of the 
nodes:B, A, C, E, D. 



Improved PageRank 
 If a user visits F, then she is 

caught in a loop and it is not 
surprising that the stationary 
vector for the Markov process is 
(0,0,0,0,0, ½, ½ )t.   

 To get around this difficulty, the 
authors of the PageRank 
algorithm suggest adding to P a 
stochastic matrix Q that 
represents the “taste” of the surfer 
so that the final transition matrix 
is P’ =xP + (1-x)Q for some 0≤x≤1. 

 Note that P’ is again stochastic. 
 One can take Q=J/N where N is 

the number of vertices and J is the 
matrix consisting of all 1’s.   

 Brin and Page suggested x=.85 is 
optimal. 
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Radiosurgery and the mathematics of 

shapes  

 Radiosurgery is also called 

gamma-knife surgery in the 

literature. 



What is gamma-knife surgery? 

 It is a non-invasive medical 
procedure used to treat tumors, 
usually in the brain. 

 This is called radiosurgery since it 
uses radiation to perform the 
surgery. 

 201 Cobalt gamma ray beams are 
arrayed in a hemisphere and aimed 
through a collimator to a common 
focal point. 

 The patient’s head is positioned so 
that the tumor is the focal point. 



The minimax problem 

 Since the tumor maybe of irregular shape and spread over a 
region, the idea is to minimize the number of radiation 
treatments and maximize the portion of the area to be 
treated.   

 When the beams are focused with the help of a helmet, they 
produce focal regions of various sizes. 

 Each size of dose requires a different helmet and so the 
helmet needs to be changed when the dose radius needs to 
be changed.   

 Since each helmet weighs 500 pounds, it is important to 
minimize the number of helmet changes. 



The mathematics of shapes 

 Here is the target 
area on which the 
radiation is to be 
applied. 

 Since the helmets 
have varying 
degrees of focal 
regions, several 
helmets have to 
be used. 



Sphere packing problem 
 Since we have spheres of 

different sizes and not all 
of the affected region can 
be targeted, the problem 
can be formulated 
mathematically as follows: 



The skeleton of a region 

 Let |X-Y| denote the 
Euclidean distance 
between two points in 
the plane or in space. 



Two dimensional skeletons 
 We denote 

the skeleton 
of a region R 
by Σ(R). 



Simple skeletons 

 Given a region in R2 we 
want to determine its 
skeleton since the centers of 
the focal regions will be 
situated along the skeleton. 



Skeletons in R3 

 The gamma rays will 

be focused on 

selected points along 

the skeleton of the 

region. 



Three dimensional skeletons 

 Our earlier definition of a skeleton applies in higher 

dimensions as well, and in particular to R3.  However, here 

we can distinguish two portions of the skeleton.  



Some simple examples 

 While the region 

is the solid filled 

cone, only the 

boundary is 

shown as well as 

one maximal ball 

and its circle of 

tangency. 



Skeleton of a wedge 

 An infinite wedge 

consists of all 

points between two 

half-planes 

emanating from a 

common axis.  A 

maximal sphere is 

shown with its 

points of tangency. 



Skeleton of a parallelepiped 

 These examples are simple since the 
region is simple to describe.  In general, 
the problem of finding the skeleton of a 
general region is based on computer 
algorithms. 



The optimal surgery algorithm 

 Any dose in an optimal solution 

must be centered along the 

skeleton.  If we have four sizes 

of doses, a<b<c<d (say), then 

the initial does should be at an 

extreme point of the skeleton. 



The iterative procedure 

 After the first dose, the region has changed and we 

need to re-calculate the skeleton. 



Summary 
 GPS uses spherical geometry discovered 2000 

years ago.  It also uses relativity for accurate 

timing. 

 Google uses the theory of Markov chains 

discovered 200 years ago. 

 Gamma knife radio surgery uses differential 

geometry discovered about 150 years ago. 

 The mathematics used is “pure” mathematics and 

when it was discovered, it was motivated by 

“aesthetic” considerations. 

Where am I? 

What is “important”? 

What is a shape? 
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Thank you for your attention. 

 Have a                                  day! 


