Chennai Lectures January 2014

Fifth problem sheet

Duality and invariant forms

1. Given an *R*-bimodule *B*, its dual $\mathbb{D}B$ is defined to be $\operatorname{Hom}_{(-,R)}(B,R)$, the right *R*-module maps. Clearly $\mathbb{D}^2 = \mathbb{1}$ on any bimodule which is free as a right *R*-module.

- a) Show that $\operatorname{Hom}_{(R,R)}^{0}(B,\mathbb{D}B)$ is isomorphic to the space of invariant forms on B. If a map $B \to \mathbb{D}B$ is an isomorphism, what does this say about the corresponding invariant form?
- b) What is $\mathbb{D}B_s$? What about $\mathbb{D}BS(\underline{w})$?
- c) Show (by definition) that $\mathbb{D}B_w \cong B_w$ for all $w \in W$, and therefore there exists a nondegenerate invariant form on B_w .
- d) If the Soergel conjecture holds, show that any non-zero invariant form on B_w is nondegenerate. Show that the global intersection form on $BS(\underline{w})$ for a reduced expression restricts to a nonzero form on B_w .

Lefschetz linear algebra

2. This question explores a combinatorial description of the cohomology ring of the Grassmannian Gr(3, 6). Let H^{\bullet} denote the following graded vector space. It has a basis given by partitions λ which fit in a 3×3 square. The original degree of λ is twice the number of boxes in λ ; then we renormalize the degrees so that H^{\bullet} is centered around degree 0. There is a pairing on H^{\bullet} which satisfies $\langle \lambda, \mu \rangle = 0$ unless one can glue λ and the 180 degree rotation of μ into a 3×3 square, in which case $\langle \lambda, \mu \rangle = 1$.

- a) Let L denote the operator of degree 2 which sends λ to the sum of all ways to add a box. Show that L is a Lefschetz operator.
- b) Show that L has (hL). (What is the least amount of work one needs to do to check this?)
- c) Show that L has (HR).

3. Let $H = \bigoplus H^i$ be a finite dimensional graded \mathbb{R} -vector space and $L : H^{\bullet} \to H^{\bullet+2}$ an operator of degree 2. Show that H admits a representation of $\mathfrak{sl}_2(\mathbb{R}) = \mathbb{R}f \oplus \mathbb{R}h \oplus \mathbb{R}e$ with e = L and hx = mx for all $x \in H^m$ if and only if L satisfies the hard Lefschetz theorem (i.e. $L^m : H^{-m} \to H^m$ is an isomorphism for all $m \ge 0$).

4. Suppose that $H = \oplus H^i$ and $W = \oplus W^j$ are finite dimensional graded real vector spaces with forms $\langle -, - \rangle$ and Lefschetz operators L_H and L_W . Suppose that $H^{\text{odd}} = 0$ or $H^{\text{even}} = 0$, that L satisfies the hard Lefschetz theorem on H and that

$$\underline{\dim}W := \sum \dim W^i v^i = (v + v^{-1})\underline{\dim}H.$$

Show that W satisfies (HR) if and only if the signature of the Lefschetz form $(-, -)_{L_W}^{-i}$ on W^{-i} is equal to the dimension of the primitive subspace $P_{L_H}^{-i+1} \subset H^{-i+1}$ (by convention $P_{L_H}^1 = 0$).

5. Let $\sigma: V^{\bullet} \to W^{\bullet}$ be a map of degree +1, commuting with certain Lefschetz operators on either side, and satisfying $(v, v')_{L_V}^{-i} = (\sigma v, \sigma v')_{L_W}^{-i+1}$. Suppose that σ is injective from negative degrees. Find some reasonable conditions (similar to those coming from the weak Lefschetz theorem) which would imply that σ maps $P_{L_V}^{-i}$ to $P_{L_W}^{-i+1}$ for i > 0.

6. Let $\phi: V^{\bullet} \to W^{\bullet}$ be a map of degree d, commuting with certain Lefschetz operators on either side, and suppose that V has (hL). When d < 0, show that the restriction of \langle , \rangle_W to the image of V is identically zero. What happens if d > 0?

7. Consider the two inclusion maps $i_1, i_2: B_s \to B_s B_s$, where i_1 has degree -1 and i_2 has degree +1 (i_2 is not canonical, but choose the one from class). Show that the intersection form on $B_s B_s$ restricts to zero on the image of i_1 , but does not restrict to zero on the image of i_2 .

Lefschetz calculations in Soergel bimodules

8. Consider $(B_s B_s)$, with the Lefschetz operator

$$L_{a,b} := (a\rho \cdot -) \operatorname{id}_{B_s} + \operatorname{id}_{B_s}(b\rho \cdot -)$$

for some $a, b \in \mathbb{R}$. For which a, b does the hard Lefschetz property hold? For which a, b do the Hodge-Riemann bilinear relations hold? For which a, b does (HR) hold with the opposite signatures?

9. In this exercise we prove an "easy" case of hard Lefschetz. Assume that B_x is a Soergel bimodule such that hard Lefschetz holds on $\overline{B_x}$. Consider the operator

$$L_{\zeta} := (\rho \cdot -) \operatorname{id}_{B_s} + \operatorname{id}_{B_x}(\zeta \rho \cdot -)$$

on $B_x B_s$. It induces a Lefschetz operator L_{ζ} on $\overline{B_x B_s}$. (You can equip B_x with an invariant form if you wish, but it won't be important for this exercise.)

- a) Let $s \in S$ be such that xs < s. Show that $B_x B_s = B_x(1) \oplus B_x(-1)$. (You should be able to give an abstract argument, but in part b) the following fact is useful (see "Singular Soergel bimodules"): there exists an (R, R^s) -bimodule $B_{\overline{x}}$ such that $B_{\overline{x}} \otimes_{R^s} R \cong B_x$.)
- b) Rewrite the Lefschetz operator L_z on $B_x B_s$ using a fixed choice of isomorphism $B_x B_s = B_x(1) \oplus B_x(-1)$. Conclude that in the right quotient $\overline{B_x B_s}$, L_{ζ} has the form

$$\begin{pmatrix} \rho \cdot - & 0 \\ \zeta \gamma & \rho \cdot - \end{pmatrix}.$$

for some non-zero scalar γ . (As above, $\rho \cdot -$ denotes the degree two endomorphism of left multiplication by ρ .)

c) Conclude that L_{ζ} satisfies hard Lefschetz on $\overline{B_x B_s}$ if and only if $\zeta \neq 0$.

10. In this lecture series, we have been assuming that $a_{s,t} = -2\cos\frac{\pi}{m_{st}}$, or in other words, that $a_{s,t} = -(q+q^{-1})$ where $q = e^{\pm\frac{\pi i}{m}}$ is a primitive 2m-th root of unity. In previous exercises, we have seen that one can set q to be other primitive 2m-th roots of unity and still obtain an action of W. What positivity considerations will fail if q is set to one of these other roots of unity? For example, what if m = 53 and $q = e^{\frac{3\pi i}{53}}$? (Hint: Consider Exercise 10(c) from the Fourth Problem Sheet.)