Chennai Lectures January 2014

Fourth problem sheet

Light leaves and the local intersection form

1. Describe all light leaves maps from $ss \dots s$ (k times). Compute the local intersection form in each degree. Does it confirm your expectations?

2. Continue the setup of Exercise 9 from the first problem sheet (type D_4). Draw all the light leaves maps from *suvtsuv* with target *suv*. Compute the local intersection form in each degree. In which characteristics does one expect the behavior of the decomposition of BS(suvtsuv) to change?

3. Here we give a torsion example that surprised a few people last decade! Consider S_8 , a Weyl group of type A_7 . Let i = (i, i + 1) (we write *i* instead of s_i for reasons that should become clear).

a) Consider the reduced expression:

$$\underline{w} = 1357246352461357.$$

Show that $\mathbf{e} = 1111010110100000$ is the unique subexpression of defect zero with endpoint

$$w_I = 13435437.$$

(Note that w_I is the maximal element in the standard parabolic subgroup generated by $I = \{1, 3, 4, 5, 7\}$.) Draw the corresponding light leaf.

b) Hence calculate the local intersection form in degree zero of \underline{w} at w_I . (A lengthy computation, but a reasonable one.)

4. After localization to Q, the fraction field of R, the Bott-Samelson bimodule $B_s \otimes_R Q$ splits as a direct sum of Q_s and Q (when using localization we ignore the grading). Therefore, for any subsequence $\mathbf{e} \subset \underline{w}$, there is a summand $Q_{\mathbf{e}} \overset{\oplus}{\subset} BS(\underline{w}) \otimes_R Q$, a tensor product of either $Q_{\underline{w}_i}$ or Q depending on whether \mathbf{e}_i is 1 or 0. Obviously $Q_{\mathbf{e}} \cong Q_x$ when \mathbf{e} expresses the element x.

Use localization and the Bruhat path dominance order to prove that the images in \mathbb{BSBim} of the light leaves maps in $\mathbb{LL}_{w,x}$ are all linearly independent.

5. Show that the functor from \mathcal{D} to \mathbb{BSB} is an equivalence of categories, assuming that double leaves form a basis for morphisms in \mathcal{D} .

Global intersection forms and Bott-Samelson calculations

6. Recall that B_s has a basis as a right *R*-module given by $c_1 = c_{bot} = 1 \otimes 1$ and $c_s = \frac{\alpha_s}{2} \otimes 1 + 1 \otimes \frac{\alpha_s}{2}$. Let $f \in R$ be arbitrary. Compute fc_1 and fc_s in this basis. Now recall that $BS(\underline{w})$ has a basis given by $c_{\underline{\varepsilon}}$. For a linear polynomial f, express $fc_{\underline{\varepsilon}}$ in this basis.

7. For a Soergel bimodule B, let \overline{B} denote $B \otimes_R \mathbb{R}$ be the *right quotient*. For example, $BS(\underline{w})$ has a basis over \mathbb{R} given by 01-sequences. Just as $BS(\underline{w})$ has an intersection form valued in R, so too does $\overline{BS(\underline{w})}$ have an intersection form valued in \mathbb{R} .

The endomorphism i of $B_s B_s$ gives a degree 2 endomorphism L of the vector space $\overline{B_s B_s}$. What is $\langle c_{\text{bot}}, L^2(c_{\text{bot}}) \rangle$? What is $\langle L(c_{\text{bot}}), L(c_{\text{bot}}) \rangle$? Find an element b of degree zero which is perpendicular to $L(c_{\text{bot}})$. What is $\langle b, b \rangle$?

Now let L_0 be the degree 2 endomorphism of $\overline{B_s B_s}$ given by left multiplication by α_s . What is $L_0^2(c_{\text{bot}})$?

8. In the previous question we defined the intersection form on $\overline{BS(\underline{w})}$. Now we repeat some of the same calculations with $B_s B_t B_s$ when $m_{st} = 3$. Let $\rho \in \mathfrak{h}^*$ satisfy $\partial_s(\rho) = \partial_t(\rho) = 1$. Let L be the degree 2 endomorphism of $\overline{B_s B_t B_s}$ given by left multiplication by ρ . What is $L^3(c_{\text{bot}})$? What is $\langle c_{\text{bot}}, L^3(c_{\text{bot}}) \rangle$? Find a basis for $\overline{B_s B_t B_s}^{-1}$ (i.e. the elements in

What is $L^3(c_{\text{bot}})$? What is $\langle c_{\text{bot}}, L^3(c_{\text{bot}}) \rangle$? Find a basis for $B_s B_t B_s^{-1}$ (i.e. the elements in degree -1) in the kernel of L^2 . Are they orthogonal to $L^2(c_{\text{bot}})$ under the intersection form? Show that the form $(v, w) = \langle v, Lw \rangle$ on this orthogonal subspace of $\overline{B_s B_t B_s}^{-1}$ is negative definite.

Bonus problem: what does the picture look like when restricted to the summand $B_s \stackrel{\oplus}{\subset} B_s B_t B_s$? What does it look like when restricted to the summand $B_{sts} \stackrel{\oplus}{\subset} B_s B_t B_s$?

9. Fix a Soergel bimodule B and consider the two maps $\alpha, \beta: B \to BB_s = B \otimes_R B_s$ given by

$$\alpha(b) := bc_{id}$$
 and $\beta(b) := bc_s$.

Together, $\alpha(B)$ and $\beta(B)$ span BB_s . Show that β is a morphism of bimodules, whilst α is a morphism of left modules. Find a formula for $\alpha(br)$ for $b \in B$ and $r \in R$.

Suppose that B is equipped with an invariant form $\langle -, - \rangle_B$. Prove that there is a unique invariant form $\langle -, - \rangle_{BB_s}$ on BB_s , which we call the *induced form*, satisfying

$$\langle \alpha(b), \alpha(b') \rangle_{BB_s} = \partial_s(\langle b, b' \rangle_B) \tag{1}$$

$$\langle \alpha(b), \beta(b') \rangle_{BB_s} = \langle b, b' \rangle_B \text{ and } \langle \beta(b), \alpha(b') \rangle_{BB_s} = \langle b, b' \rangle_B$$
(2)

$$\langle \beta(b), \beta(b') \rangle_{BB_s} = \langle b, b' \rangle_B \alpha_s \tag{3}$$

for all $b, b' \in B$. Show that the intersection form on a Bott-Samelson bimodule agrees with the form induced many times from the canonical form on R.

Now consider $\overline{BB_s}$, with its induced form valued in \mathbb{R} . Calculate a matrix for this form in some basis. Prove that the induced form is non-degenerate whenever the original form on \overline{B} is non-degenerate.

10. In lectures we saw that for any expression \underline{w} , $BS(\underline{w})$ has a basis as a right *R*-module given by 01-sequences. It contains two canonical elements c_{bot} and c_{top} which project to elements of minimal and maximal degree in $\overline{BS(\underline{w})}$. In this exercise we find a recursive formula for

$$N_{\underline{w}}(f) := \langle f^{\ell(\underline{w})} c_{\text{bot}}, c_{\text{bot}} \rangle.$$

for any degree two element $f \in R$.

- a) Find a formula for $N_{\underline{w}}(f)$ in terms of $N_{\underline{w}'}(f)$, over all subexpressions \underline{w}' obtained by omitting a simple reflection from \underline{w} .
- b) Show that $N_{\underline{w}}(f) = 0$ unless \underline{w} is reduced. (*Hint:* It might help to use the light leaves description of $BS(\underline{w})$ or the decomposition of $BS(\underline{w})$ into indecomposable Soergel bimodules.) Use this to simplify your formula in part (a).
- c) Suppose that $\partial_s(f) > 0$ for all $s \in S$. Show that $N_{\underline{w}}(f) > 0$ for \underline{w} reduced. (First prove that sw > w if and only if $\partial_s(wf) > 0$.)

Krull-Schmidt categories

Recall that a *Krull-Schmidt category* is an additive category in which every object is isomorphic to a finite direct sum of indecomposable objects, and an object is indecomposable if and only if its endomorphism ring is local.

11. Some exercises to get used to Krull-Schmidt categories:

- a) Show that the Krull-Schmidt theorem holds in Krull-Schmidt categories: any object can be written as a direct sum of indecomposable objects, and this decomposition is unique up to permutation of the factors.
- b) (Idempotent lifting) Let A be an algebra and $\mathfrak{m} \subset A$ an ideal such that $\mathfrak{m}^2 = 0$. Show that given an idempotent $e \in A/\mathfrak{m}$ there exists an idempotent $\tilde{e} \in A$ such that $e = \tilde{e}$ in A/\mathfrak{m} . Now prove the same statement assuming only that A is complete with respect to the topology defined by \mathfrak{m} .
- c) Let $(\mathbb{O}, \mathfrak{m})$ be a complete local ring. Let \mathcal{C} be a Karoubian \mathbb{O} -linear additive category such that all hom spaces are finitely generated. Show that \mathcal{C} is Krull-Schmidt. (*Hint:* It might help to first consider the case when \mathbb{O} is a field.)
- d) Show that the category of graded modules over a polynomial ring is a Krull-Schmidt category. Conclude that the category of Soergel bimodules is Krull-Schmidt.
- e) (If you're up for it) Let X be an affine variety. When does the Krull-Schmidt theorem hold for vector bundles on X? (Answer: almost never.) Conclude that the Krull-Schmidt theorem fails for ungraded modules over a polynomial ring. (Optional: show that the Krull-Schmidt theorem holds for vector bundles on a projective algebraic variety.)

12. Let C be a Krull-Schmidt category over an algebraically closed field \Bbbk . Show that the multiplicity of B as summand of X is given by the rank of the form

$$\operatorname{Hom}(B, X) \times \operatorname{Hom}(X, B) \to \operatorname{End}(B)/\mathfrak{m}_B.$$

where \mathfrak{m}_B denotes the maximal ideal of $\operatorname{End}(B)$. What is the correct statement for general fields or local rings \Bbbk ?