Chennai Lectures January 2014

Second problem sheet

Frobenius extensions

1. Let $H \subset G$ be an inclusion of finite groups. Then $\mathbb{R}[H] \subset \mathbb{R}[G]$ is a Frobenius extension. Compute the units and counits of adjunction. What is ∂^2 ? Can this extension be graded in an interesting way?

2. Look up the definition of a Frobenius algebra object in a monoidal category. Show that when $A \subset B$ is a Frobenius extension, then $B \otimes_A B$ is a Frobenius algebra object in the category of *B*-bimodules.

Chevalley's Theorem

3. Suppose that W is a finite group acting faithfully on a euclidean vector space V of dimension n. Let R be the coordinate ring of V, and R^W the invariant subring. Chevalley's theorem states that when W is generated by reflections, then R^W is generated by n algebraically independent homogeneous polynomials, known as a "basic set" of invariants. The basic set itself is not unique, but the multiset of degrees of the polynomials in the basic set is determined by the group W.

- a) (Type A) Find a basic set for the symmetric group S_n acting on its standard *n*-dimensional representation. Recall that this action is generated by the reflections which flip x_i with x_j for two standard basis elements, and keep the rest of the basis fixed.
- b) (Type B) Find a basic set for the signed symmetric group SS_n acting on its standard *n*dimensional representation. Recall that this action is generated by the reflections above, as well as the reflection which sends x_i to $-x_i$ and keeps the rest of the basis fixed.
- c) (Type D) Find a basic set for the even signed symmetric group ESS_n acting on its standard *n*-dimensional representation. Recall that this action is generated by the symmetric group and by the reflection which sends x_i to $-x_j$ and x_j to $-x_i$, and keeps the rest of the basis fixed.
- 4. Some "counterexamples" to the Chevalley theorem:
 - a) Find an example where W is not generated by reflections, and R^W is **not** a polynomial ring, i.e. it is not generated by algebraically independent elements.
 - b) Find an example where W is infinite, and R^W is a polynomial ring, but with n-1 generators rather than n.
- **5.** Let us examine the set of degrees $\{d_i\}$.
 - a) Show that the trace of w on the symmetric tensor $S^k V$ is given by the coefficient of t^k in

$$\frac{1}{\det(1-tw)}.$$

b) Show that the dimension of the invariant subspace V^W is given by the trace of

$$\frac{1}{|W|} \sum_{w \in W} w.$$

c) By computing the dimension of each graded piece of \mathbb{R}^W , show that

$$\frac{1}{|W|} \sum_{w \in W} \frac{1}{\det(1 - tw)} = \prod_{i=1}^{n} \frac{1}{1 - t^{d_i}}.$$

- d) Recall that an element of W is a reflection if all but one eigenvalue is 1, and the remaining eigenvalue is -1. Let N denote the number of reflections in W (also the number of positive roots). Show that $\prod d_i = |W|$ and $\sum (d_i 1) = N$.
- e) Verify that the basic sets you found in Q3 have the correct degrees. What must the degrees of a finite dihedral group be?

Dihedral groups

6. (*) Suppose that W is a dihedral group, with $S = \{s, t\}$ and $m = m_{s,t}$. Instead of writing $a_{s,t} = -2\cos(\frac{\pi}{m})$, let us just write $a_{s,t} = -(q+q^{-1})$. After all, when $q = e^{\frac{\pi}{m_{s,t}}}$, the two formula agree. This will allow us to write formulae which work simultaneously for all dihedral groups, using quantum numbers.

a) Consider the quantum number

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \ldots + q^{3-n} + q^{1-n}.$$

One has [1] = 1 and [0] = 0. Find a formula for [2][n] in terms of quantum numbers. Does this remind you of any formulas in previous exercises?

- b) The statement that q^2 is a primitive *m*-th root of unity is equivalent to what statement about quantum numbers? The statement that *q* is a primitive 2m-th root of unity is equivalent to what statement about quantum numbers? What about when *q* is a primitive *m*-th root of unity for *m* odd? Compare [m - k] and [k]. Compare [m + k] and [m - k].
- c) Compute the matrix for the action of $(st)^k$ on the 2-dimensional space spanned by α_s and α_t , in terms of quantum numbers. When does (st) have finite order m? When m = 2k+1 is the order of (st), what is $(st)^k(\alpha_s)$?
- d) Assume that q is a primitive 2m-th root of unity. The positive roots for the dihedral group are the elements in the W-orbit of the simple roots $\{\alpha_s, \alpha_t\}$, which have the form $a\alpha_s + b\alpha_t$ for $a, b \ge 0$. Find a simple enumeration of these roots as linear combinations of α_s and α_t .

7. (*) Continuing Q6: Now we investigate the invariant subring \mathbb{R}^W , in the case when m is finite.

- a) Find a formula for a quadratic polynomial $z \in R$ for which s(z) = t(z) = z.
- b) (Extra credit): Show that ∂_s and ∂_t satisfy the braid relations.
- c) Let \mathbb{L} be the product of the positive roots. Show that $s(\mathbb{L}) = t(\mathbb{L}) = -\mathbb{L}$.
- d) Assume $m \leq 3$ and let w_0 be the longest element. What is $\partial_{w_0}(\mathbb{L})$? Care to generalize?
- e) Suppose that m = 2. Find dual bases $\{a_i\}$ and $\{b_i\}$ for R over $R^{s,t}$, under the pairing $(f,g) \mapsto \partial_{w_0}(fg)$. Show that $\sum a_i b_i = \mathbb{L}$.
- f) Find a polynomial Z of degree m which is invariant. In fact, $R^W = \mathbb{R}[z, Z]$. Hint: Look at the roots of the dihedral group with twice the size.

- 8. Continuing Q7: (These exercises are more computational.)
 - a) Show that $R^{s,t} = \mathbb{R}[z, Z]$.
 - b) Suppose that m = 3. Find dual bases for R over $R^{s,t}$. Show that $\sum a_i b_i = \mathbb{L}$.
 - c) Suppose that m = 3. Find dual bases for R^s over $R^{s,t}$, under the pairing using $\partial_s \partial_t$. Show that $\sum a_i b_i = \frac{\mathbb{L}}{\alpha_s}$.

Generalizing the reflection representation

9. We will now use the term "Cartan matrix" to refer to any matrix indexed by S, satisfying $a_{s,s} = 2$ and $a_{s,t} = 0 \iff a_{t,s} = 0$, with coefficients in a base ring k (not necessarily integers). A Cartan matrix need not be symmetric, or even symmetrizable (i.e. conjugate by a diagonal matrix to a symmetric matrix).

- a) Given a Cartan matrix, one can still construct a vector space \mathfrak{h}^* with involutions $s \in S$ acting upon it. Show that (st) has order m if and only if $a_{s,t}a_{t,s}$ is algebraically equivalent to $[2]^2$ for q a primitive 2m-th root of unity.
- b) Show that any Cartan matrix admitting a representation of a Weyl group, and satisfying $a_{s,t} = 0 \iff a_{t,s} = 0$, is symmetrizable.
- c) Show that the following matrix admits a representation of the affine Weyl group \tilde{A}_4 , for any $q \in \mathbb{C}^*$. When is it symmetrizable? When is it conjugate, by a diagonal matrix, to a representation defined over \mathbb{R} ?

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & -q^{-1} \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -q \\ -q & 0 & 0 & -q^{-1} & 2 \end{pmatrix}$$

Bott-Samelson bimodules

10. (*) Exercises from class:

- a) Verify all the statements made in lecture about the Demazure operator ∂_s .
- b) Why is $BS(\underline{w})$ free as a right *R*-module?
- c) Verify that $fc_s = c_s f$.
- d) (Hardest) When $m_{st} = 3$, verify that $B_s B_t B_s \cong B_s \oplus (R \otimes_{R^{s,t}} R(3))$.

11. Construct a map $B_s \otimes_R B_t \to B_{s,t}$ sending $1 \otimes 1 \otimes 1 \mapsto 1 \otimes 1$, when m = 2. Why is there no such map when m > 2?

12. (*) Practice with the Soergel Hom formula:

- a) Compute the size of the Hom space $\text{Hom}(B_s, B_t)$. Find a generating set of morphisms, and indicate how these morphisms factor.
- b) Compute the size of the Hom space $\text{Hom}(B_s, B_s B_t B_s)$, assuming $m_{st} > 2$. Find a generating set of morphisms, and indicate how these morphisms factor.
- c) Compose a morphism of minimal degree $B_s \to B_s B_s$ with one of minimal degree $B_s B_s \to B_s$. What is the resulting map? Show this by a general argument, and then by direct computation.