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First problem sheet

Coxeter groups:

1. To practice with Coxeter groups, we play with some embeddings and foldings.

a) Let {s, t, u} be the simple reflections inside the Coxeter group of type A3. Show that the
subgroup generated by (su) and t is a Coxeter group of type B2 = I2(4), with simple
reflections {su, t}, by checking the braid relation. This implies that B2 embeds inside A3

as the invariants under a certain automorphism σ, induced by a diagram automorphism.

b) Let {s, t, u, v} be the simple reflections inside the Coxeter group of type A4. Show that
the subgroup generated by (su) and (tv) is a Coxeter group of type H2 = I2(5), with
simple reflections {su, tv}. However, this subgroup is not the invariants of any diagram
automorphism.

c) Embed the Coxeter group of type I2(m) inside the Coxeter group of type Am−1 for m ≥ 3,
using products of distinct simple reflections.

d) Embed H3 inside D6. Embed H4 inside E8. Generalize this.

e) Look at star-shaped Coxeter groups: A2, A3, D4, D̃4, and so forth. Consider the subgroup
generated by the hub and by the product of the spokes. What subgroups do you get?

2. Now we do the previous exercise “in reverse.” Let (W,S) be a Coxeter group, and fix s ∈ S.
Consider the set Γs of elements of W which have a unique reduced expression, and which have
s in their right descent set. Γs has the structure of a labeled graph, where each element w ∈ Γs
is labeled by the (unique!) element t ∈ S in its left descent set, and where w, v are connected
by an edge if and only if w = uv for some u ∈ S.

a) Let {s, t} be the simple reflections in type B2. Compute that Γs is A3, with the labelings
corresponding to the embedding of B2 inside A3 from Q1.

b) Do the same for I2(m) and Am−1.

c) Let (W,S) be the Coxeter group of type H4. For s ∈ S, compute the labeled graph Γs.

d) Repeat the exercise for I2(∞). What labeled graph do you obtain?

(If you know about such things, Γs is the W -graph of the left cell containing s. See Lusztig
“Some examples of square integrable functions on a p-adic group”.)

3. Coxeter systems (W,S) are equipped with a standard length function `, but can also be
equipped with non-standard length functions, sometimes called weights. A weight L is a map
W → Z satisfying L(uv) = L(u) + L(v) whenever `(uv) = `(u) + `(v). Deduce the following
elementary facts.

a) A weight function L is determined by the weights L(s) of the simple reflections. Moreover,
L(s) = L(t) whenever mst is odd.

b) Suppose one has an embedding of Coxeter groups ι : (W,S) ↪→ (W ′, S′) as in Q1, where
each simple reflection s ∈ S is sent to a product Πt of commuting simple reflections t ∈ S′.
This equips (W,S) with a weight L, given by L(s) = `(ι(s)). For each possible value of
mst, what are the possible values of the ratio of L(s) to L(t)? It will help to remind
oneself of the classification of finite Coxeter groups.



4. (*) Given an element w ∈W , its rex graph Γ̃ is a graph constructed as follows:

• Vertices are reduced expressions for w.

• An edge connects two rexes if they differ by a single application of a braid relation. Label
the edge with the number mst associated to this braid relation.

Now, draw the following rex graphs.

a) Every element in type A3 (most of them are uninteresting).

b) The longest element of every finite rank 3 Coxeter group: A3, B3, H3 (the hardest),
A1 × I2(m), A1 ×A1 ×A1.

5. Let (W,S) have rank n. The Coxeter complex is a simplicial complex constructed as follows:

• There is an (n − 1)-simplex labeled by w for each w ∈ W . The n faces of this (n − 1)-
simplex are labeled by the simple reflections s.

• Whenever w = sv, glue the simplices w and v along the face s. (Technically, one should
fix the orientations when gluing faces. If `(w) = `(v) + 1 then glue the outward face of s
in v to the inward face of s in w.)

Now, draw the Coxeter complex for the following Coxeter groups: I2(m) for m finite, I2(∞),
A3 (the barycentric subdivision of a tetrahedron), B3, Ã2, B̃2.

6. Continuing Q5: The dual Coxeter complex is a CW complex obtained by dualizing the
Coxeter complex. In other words, there is a 0-cell for each simplex, a 1-cell connecting 0-cells
if the simplices meet in a (codimension 1) face, a 2-cell glued along 1-cells if the faces all meet
in a codimension 2 face, etc. Show that the dual Coxeter complex can be constructed directly
as follows:

• There is a 0-cell for each w ∈W . Said another way, there is a 0-cell for each coset of the
trivial subgroup.

• There is a 1-cell for each pair {w,ws} with s a simple reflection. Said another way, there
is a 1-cell for each coset of each rank 1 parabolic subgroup.

• There is a 2-cell for each coset of each finite rank 2 parabolic subgroup.

• . . .

• There is a k-cell for each coset of each finite rank k parabolic subgroup.

• However, if the rank of W is n, then the process ends at k = n− 1.

Also, draw the dual Coxeter complex for the same list of Coxeter groups.

Remark. In fact, one can also construct the completed dual Coxeter complex by also including
the step k = n. This makes no difference when W is infinite, but glues in a single n-cell
when W is finite. The resulting complex is contractible. This is shown in Ronan, “Lectures on
buildings.”

Hecke algebras:

7. (*) Let (W,S) be a dihedral Coxeter group. That is

W = 〈s, t | s2 = t2 = (st)mst = e〉

where e ∈ W is the identity, and mst ∈ {2, 3, 4, . . . ,∞}. Given 0 ≤ m ≤ mst write st(m) for
the product stst . . . where m terms appear and similarly for ts(m). For example st(0) = e,
ts(1) = t, st(2) = st, ts(3) = tst etc.



a) Give explict descriptions of all elements of W , and hence describe the Bruhat order on
W explicitly.

b) For 1 ≤ m < mst find an explicit formula for the products

HsHst(m), HsHts(m), HtHts(m) and HtHst(m)

in terms of the Kazhdan-Lusztig basis. (Hint: Calculate the first few cases and then use
induction. Use caution with small m.)

c) Conclude that hx,y = v`(y)−`(x) for all x ≤ y ∈W .

d) When mst is finite, one has Hst(mst) = Hts(mst), which gives an algebraic relation between
Hs and Ht. This is the analog of the braid relation for the Kazhdan-Lusztig presentation
of H. Write down this equation for mst ≤ 6. Can you find a reasonable formula for the
coefficients?

8. (*) Let W = S4, the symmetric group on {1, 2, 3, 4}. Then W has the structure of a Coxeter
group with S = {s1, s2, s3} where si denotes the transposition (i, i+ 1).

a) Compute reduced expressions for all elements of W .

b) Calculate the Kazhdan-Lusztig basis {Hx | x ∈ W}. How many non-trivial Kazhdan-
Lusztig polynomials are there?

9. (*) Let W be a Weyl group of type D4 with generating reflections s, t, u, v such that s, u, v
all commute. Let w = suvtsuv.

a) Use the defect formula to write the element Hw in terms of the standard basis.

b) Write the element Hw in terms of the Kazhdan-Lusztig basis.

c) Hence compute the Kazhdan-Lusztig polynomial hsuv,suvtsuv.

10. (*) Some miscellaneous exercises from lecture.

a) Compute H−1s , and show that Hs is self-dual. Confirm that H2
s = Hs(v + v−1).

b) Compute H−1st in terms of the standard basis. Given w ∈W , for which y ∈W can there
be a non-zero coefficient of Hy in the expression for H−1w ? In the expression for Hw? In
the expression for ω(Hw)?

c) Prove the uniqueness of the KL basis.

d) Find a formula for HwHs.

e) Extrapolate the construction from lecture into a proof of the existence of the KL basis.

f) Prove the Deodhar formula.

11. Let (W,S,L) be a Coxeter system with a weight function. The Hecke algebra with unequal
parameters H(W,S,L) is the Z[v±1]-algebra generated by Hs, s ∈ S, subject to the usual braid
relation and a new quadratic relation:

(Hs + vL(s))(Hs − v−L(s)) = 0.

Most features of the standard Hecke algebra extend to the Hecke algebra with unequal para-
meters, especially when the weight function is positive (i.e. L(s) > 0 for all s ∈ S).



a) Compute H−1s . Find the correct definition for a self-dual element Hs.

b) Find a formula for HwHs.

c) When L is positive, prove the existence and the uniqueness of the KL basis. What extra
complication is required in the inductive construction?

d) Modify the Deodhar formula.

12. Continuing Q11: Let {s, t} be the generators of a Coxeter group of type B, with mst = 4,
and let L(s) = 1 and L(t) = 2. Let H denote the Hecke algebra with unequal parameters.
Compute the KL basis. Note that some KL polynomials have negative coefficients! This does
not happen for usual Hecke algebras, as we will prove in this workshop.

13. Continuing Q11: When one Coxeter group (W,S,L) embeds inside another (W ′, S′, `) as
the invariants under a diagram automorphism, one might expect there to be a corresponding
relationship between their Hecke algebras (with unequal parameters). However, the relation-
ship is quite subtle. We quickly explore this when (W ′, S′) is A×n1 , and σ is the diagram
automorphism which permutes the copies of A1 cyclically. Therefore, (W,S,L) has type A1,
and L(s) = n.

a) Compute the self-dual generator of H(W ′, S′, `)σ, and its square.

b) Compute the self-dual generator of H(W,S,L), and its square.

c) When n = p is prime, show that these algebras are isomorphic modulo p.

14. Some more questions from lecture, dealing with the standard trace and standard pairing.

a) Compute ε(HxHy). When is it non-zero?

b) Show that ε(ab) = ε(ba).

c) Show that the standard basis is orthonormal for the standard pairing.

d) Show that the KL basis is graded orthonormal for the standard pairing.

15. (*) Let w = s1 . . . sm denote an expression. We write x ≤ w if there exists a subexpression
e of w with x = we (for example {x ∈ W | x ≤ w} = {x ∈ W | x ≤ w} if w is reduced).
Given two subexpressions e, e′ of w let x0, x1, . . . and x′0, x

′
1, . . . be their Bruhat strolls (e.g.

xi := se11 . . . seii ). We define the path dominance order on subexpressions by saying that e ≤ e′

if xi ≤ x′i for 1 ≤ i ≤ `(w). Show that for any x ≤ w there is a unique subexpression e of w, the
canonical subexpression, which is uniquely characterised by the following equivalent conditions:

a) e ≤ e′ for any subexpression e′ of w with we′ = x (i.e. e is the unique minimal element
in the path dominance order).

b) e has no D’s in its UD labelling.

c) e is of maximal defect amongst all subexpressions e′ of w with we′ = x.

(If you know about Bott-Samelson resolutions: What geometric fact does the existence of e
correspond to?)


