NOTES ON BILINEAR FORMS

PARAMESWARAN SANKARAN

These notes are intended as a supplement to the talk given by the author at the IMSc Outreach Programme Enriching Collegiate Education-2015.

Symmetric bilinear product

A symmetric bilinear product on a (finite dimensional) real vector space V is a mapping $\langle .,. \rangle : V \times V \to \mathbb{R}$, $(u,v) \mapsto \langle u,v \rangle$ which is \mathbb{R} -linear in each variable u,v and is symmetric, that is, $\langle u,v \rangle = \langle v,u \rangle$. We say that $\langle .,. \rangle$ is non-degenerate if $\langle u,v \rangle = 0$ for all $v \in V$ implies that u = 0. We say that $\langle .,. \rangle$ is positive definite if $\langle u,u \rangle > 0$ if $u \neq 0$. A positive definite symmetric bilinear product on V is also known as an inner product. An inner product is evidently non-degenerate.

Fix an ordered basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of V. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Writing any $x \in V$ as $x = \sum_{1 \leq j \leq n} x_j v_j$, we may identify x with the column vector $(x_1, \ldots, x_n)^t$. We obtain a symmetric bilinear product on V defined as $\langle x, y \rangle_A := x^t A y$. Note that $\langle v_i, v_j \rangle_A = a_{ij}$ where $A = (a_{ij})$.

Conversely if $\langle .,. \rangle : V \times V \to \mathbb{R}$ is any symmetric bilinear product on V, then $\langle .,. \rangle = \langle .,. \rangle_A$ where $A = (\langle v_i, v_j \rangle)$. The matrix A is called the matrix of $\langle .,. \rangle$ with respect to \mathcal{B} .

If A is non-singular, then $\langle ., . \rangle_A$ is non-degenerate. Indeed for a non-zero element x in V, there exists z in V such that $x^tz \neq 0$ —in fact, we can choose z to be a standard column vector. Since A is non-singular, there exists y such that z = Ay. Then $\langle x, y \rangle = x^tAy = x^tz \neq 0$. Conversely, if $\langle ., . \rangle$ is non-degenerate, then its matrix with respect to any basis of V is non-singular.

If v'_1, \ldots, v'_n is another ordered basis \mathcal{B}' for V and if $P = (p_{ij})$ is the change of basis matrix from \mathcal{B} to \mathcal{B}' so that $v'_j = \sum p_{ij}v_i$, then $\sum x_iv_i = x = \sum x'_jv'_j = \sum x'_jp_{ij}v_i$ and so $(x_i) = P(x'_j)$. Let A and A' be the matrix of the same symmetric bilinear product $\langle ., . \rangle$ with respect to \mathcal{B} and \mathcal{B}' respectively, so that $x^tAy = \langle x, y \rangle = (x')^tA'y'$. Thus $(x')^tA'y' = x^tAy = (x')^tP^tAPy'$ for all column vectors $x', y' \in \mathbb{R}^n$. It follows that $A' = P^tAP$; equivalently $A = (P^{-1})^tA'P^{-1}$.

Let $\langle .,. \rangle$ be a fixed symmetric bilinear product on V. For $u,v \in V$ we say that u is perpendicular (or orthogonal) to v (written $u \perp v$) if $\langle u,v \rangle = 0$. For W a subset of V

we denote by W^{\perp} the subset $\{v \in V \mid v \perp w \ \forall w \in W\}$ of V. Evidently W^{\perp} is a vector subspace of V. When W is a subspace, we have $\dim W^{\perp} \geq \dim V - \dim W$. The null space of $\langle ., . \rangle$ is the space V^{\perp} of all vectors v that are orthogonal to the whole of V. The bilinear product $\langle ., . \rangle$ defines a non-degenerate symmetric bilinear product on V/N where N is the null space of $\langle ., . \rangle$.

If $W \subset V$ is a vector subspace then the restriction of $\langle ., . \rangle$ to $W \times W$ is a symmetric bilinear product on W. This bilinear product on W is non-singular if and only if $W \cap W^{\perp} = 0$. In turn $W \cap W^{\perp} = 0$ if and only if $V = W \oplus W^{\perp}$ (internal direct sum).

Let $V = \mathbb{R}^2$ (regarded as column vectors) and let $\langle x, y \rangle = x_1 y_2 + x_2 y_1$. Then $\langle e_1, e_1 \rangle = 0 = \langle e_2, e_2 \rangle$. Nevertheless, the bilinear product is non-degenerate. Indeed, the matrix of the bilinear product with respect to the basis e_1, e_2 is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Since it is invertible, it follows that $\langle ., . \rangle$ is non-degenerate. Note that $\langle e_1 - e_2, e_1 - e_2 \rangle < 0$.

A basis $\mathcal{B} = u_1, \ldots, u_n$ of V is called orthogonal if $u_i \perp u_j$ for $i \neq j$. Note that the matrix of $\langle ., . \rangle$ with respect to an orthogonal basis is diagonal. There always exists an orthogonal basis \mathcal{B} for any symmetric bilinear product. If it is non-degenerate, one may replace each $v \in \mathcal{B}$ by $v/\sqrt{|\langle v, v \rangle|}$ to obtain, possibly after a rearrangement of the basis elements, an ordered basis with respect to which the matrix of the bilinear product has the form $\begin{pmatrix} I_r & 0 \\ 0 & -I_s \end{pmatrix}$, where I_r denotes the identity matrix of order r. The number r is an invariant of the bilinear product. It equals the dimension of V if and only if the bilinear product is positive definite.

If $W \subset V$ is a subspace such that the bilinear product is non-degenerate on W (so that $V = W \oplus W^{\perp}$ as observed above), then we have the **orthogonal projection** $p: V \to W$ defined by $p|_{W^{\perp}} = 0$, $p|_{W} = \text{identity}$. If $\{w_1, \ldots, w_k\}$ is an orthogonal basis for W, then, for any $v \in V$, $p(v) = \sum_{1 \le j \le k} \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} w_j$. Indeed $v \mapsto \sum_{1 \le j \le k} \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} w_j$ defines a linear map of V to W that vanishes on W^{\perp} and is identity on W.

HERMITIAN PRODUCT

Let V be a (finite dimensional) complex vector space. A Hermitian product $\langle .,. \rangle$: $V \times V \to \mathbb{C}$ is a sesquilinear map—conjugate linear in the first argument and complex linear in the second—such that $\langle u,v \rangle = \overline{\langle v,u \rangle}$. It is called non-degenerate if $\langle u,v \rangle = 0$ for all $v \in V$ implies u = 0. It is called positive definite if $\langle u,u \rangle > 0$ for $u \neq 0$ (note that $\langle u,u \rangle$ is real since $\langle u,u \rangle = \overline{\langle u,u \rangle}$). A positive definite Hermitian product is also called an inner product. A Hermitian inner product is evidently non-degenerate.

As in the case of symmetric bilinear product on real vector spaces, one has the notion of the matrix of a Hermitian product (with respect to an ordered \mathbb{C} -basis for V). The matrix A of a Hermitian product is Hermitian, that is, $A^* = A$ where $A^* := \bar{A}^t$. If A, A'

are two matrices of the same Hermitian product with respect to two ordered bases $\mathcal{B}, \mathcal{B}'$ and if P is the change of basis matrix from \mathcal{B} to \mathcal{B}' , then $A' = P^*AP$.

Let $\langle .,. \rangle$ be a Hermitian inner product on a (finite dimensional) complex vector space V. Suppose that $T:V\to V$ is a \mathbb{C} -linear transformation. We obtain a linear transformation $T^*:V\to V$, where T^*v for v in V is defined by $\langle T^*v,w\rangle=\langle v,Tw\rangle$ for all $v,w\in V$. Note that $(ST)^*=T^*S^*$ for any two linear transformations S,T of V and that $T\mapsto T^*$ is an involution, that is, $(T^*)^*=T$ for all T.

We say that T is normal if $TT^* = T^*T$, equivalently $\langle Tv, Tw \rangle = \langle T^*v, T^*w \rangle$ for all $v, w \in V$. We say that T is Hermitian if $T = T^*$, equivalently, $\langle Tv, w \rangle = \langle v, Tw \rangle$. We say that T is unitary if $TT^* = T^*T = I$, the identity transformation, equivalently $\langle Tv, Tw \rangle = \langle v, w \rangle$ for all $v, w \in V$.

These notions carry over to elements of $M_n(\mathbb{C})$ where A^* is defined as \bar{A}^t . Thus A is Hermitian if $A^* = A$, unitary if $AA^* = A^*A = I$, and normal if $AA^* = A^*A$. Note that a real $n \times n$ matrix is Hermitian if and only if it is symmetric and is unitary if and only if it is orthogonal (that is $AA^t = A^tA = I$).

The two versions—in terms of linear transformation and matrices—are related by considering the matrix of a transformation with respect to an ordered basis \mathcal{B} of V with respect to which the matrix of the Hermitian inner product is the identity.

The following are some basic properties of Hermitian matrices.

- The eigenvalues of a Hermitian (or a real symmetric) transformation are all real. Proof. Suppose that A is Hermitian and v is an eigenvector corresponding to an eigenvalue λ of A. Then $\bar{\lambda}\langle v,v\rangle=\langle \lambda v,v\rangle=\langle \lambda v,v\rangle=\langle v,Av\rangle=\lambda\langle v,v\rangle$. But $\langle v,v\rangle\neq 0$ since $v\neq 0$, by positive definiteness of $\langle .,.\rangle$. Hence $\bar{\lambda}=\lambda$.
- The eigenvalues of a unitary matrix are of absolute value 1. Proof. Let $Av = \lambda v$ with $v \neq 0$ and A being unitary. Then $\langle v, v \rangle = \langle Av, Av \rangle = \langle \lambda v, \lambda v \rangle = \bar{\lambda} \lambda \langle v, v \rangle$. Cancelling $\langle v, v \rangle$ we obtain that $||\lambda||^2 = \bar{\lambda} \lambda = 1$.

Theorem (Spectral theorem for normal matrices) Let T be a normal matrix in $M_n(\mathbb{C})$. Then there exists a $n \times n$ unitary matrix P such that P^*TP is diagonal. \square

Reference

Chapter 8 of M. Artin, Algebra, 2nd ed., Pearson, New Delhi (2011).

4

PROBLEMS

- (1) Find an orthogonal basis of \mathbb{R}^2 for the symmetric bilinear given by the matrix (a) $\binom{2\ 1}{3}$, (b) $\binom{1\ 2}{2\ 0}$.
- (2) Find the orthogonal projection of the vector $(2,3,4)^t \in \mathbb{R}^3$ onto the xy-plane where the symmetric bilinear product is given by the matrix $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$.
- (3) Prove that the maximum of entries of a positive definite matrix A is attained on the diagonal.
- (4) Suppose that A is a complex $n \times n$ matrix such that x^*Ax is real for all $x \in \mathbb{C}^n$. Is A Hermitian?
- (5) Let $\langle .,. \rangle$ be a non-zero symmetric bilinear product on a real vector space or a Hermitian product on a complex vector space V. Show that there exists a vector v such that $\langle v,v\rangle \neq 0$. Show that $V=U\oplus U^{\perp}$ where U is the vector subspace of V spanned by v.
- (6) Let $\langle .,. \rangle$ be a positive definite Hermitian product on a complex vector space V. Define bilinear maps $(.,.),[.,.]:V\times V\to\mathbb{R}$ (where V is regarded as a real vector space) as the real and imaginary parts of $\langle .,. \rangle$ so that $\langle u,v \rangle = (u,v) + \sqrt{-1}[u,v]$. Show that (.,.) is a positive definite symmetric bilinear product on V and that [.,] is skew symmetric, i.e., [u,v]=-[v,u].
- (7) On the vector space $M_n(\mathbb{R})$ define $\langle A, B \rangle$ as $tr(A^t.B)$. Show that this is a positive definite symmetric bilinear product.
- (8) Let $W_1, W_2 \subset V$ and let $\langle ., . \rangle$ be a symmetric bilinear product. Show that (a) $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$, (b) $W \subset W^{\perp \perp}$. When does equality hold in (b)?
- (9) Suppose that $\langle .,. \rangle$ is non-degenerate symmetric bilinear product on V. Show that $\dim W \leq (1/2) \dim V$ if $W \subset W^{\perp}$.
- (10) If A, B are symmetric $n \times n$ real matrices which commute, show that there exists a matrix P such that both P^tAP and P^tBP are diagonal. Find two 2×2 symmetric matrices A and B such that AB is not symmetric. (Comment: The product of two commuting symmetric matrices is symmetric.)

5

HINTS/SOLUTIONS TO PROBLEMS

- (1) (a) Take, for example, $e_1 = (0,1)^t$ to be the first basis vector (this wouldn't have been a good choice if $\langle e_1, e_1 \rangle$ were 0 but that is not the case). Let the second be $ae_1 + be_2$. We want $\langle ae_1 + be_2, e_1 \rangle = 2a + b = 0$. Thus, we can take the second vector to be $(1, -2)^t$. (b) Proceeding as in (a), we get $e_1 = (0, 1)^t$, $(-2, 1)^t$.
- (2) We could directly apply the formula in the notes provided we have an orthogonal basis for the xy-plane. To find such a basis, we could take $w_1 = e_1 = (1,0,0)^t$ to be the first basis vector. Let $w_2 = ae_1 + be_2$ be the second, where $e_2 = (0,1,0)^t$. We want $\langle w_2, w_1 \rangle = \langle ae_1 + be_2, w_1 \rangle = 0$, so we get a + b = 0. Thus we can take $w_2 = e_1 e_2$. Letting $v = (1,2,3)^t$, we have

$$p(v) = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 = \frac{3}{1} w_1 + \frac{-5}{1} w_2 = 3e_1 - 5(e_1 - e_2) = (-2, 5, 0)^t$$

- (3) In fact, for a symmetric positive definite real matrix $A = (a_{ij})$, the maximum cannot be attained at a non-diagonal element. To see this, just observe that $\langle e_i e_j, e_i e_j \rangle = a_{ii} + a_{jj} 2a_{ij}$, for $i \neq j$. Thus if the maximum were attained at a_{ij} , we would get a contradiction: $\langle e_i e_j, e_i e_j \rangle \leq 0$.
- (4) Put $A = A_1 + iA_2$. The imaginary part of $(x_1 ix_2)^t (A_1 + iA_2)(x_1 + ix_2)$ is

$$-x_2^t A_1 x_1 + x_1^t A_1 x_2 + x_1^t A_2 x_1 + x_2^t A_2 x_2$$

Putting $x_2 = 0$, we get $x_1^t A_2 x_1 = 0$ for all x_1 , which means A_2 is skew-symmetric. But now we also have $x_1^t A_1 x_2 - x_2^t A_1 x_1 = 0$. But $x_1^t A_1 x_2 - x_2^t A_1 x_1 = x_1^t A_1 x_2 - x_1^t A_1^t x_2 = x_1^t (A_1 - A_1^t) x_2$. So $x_1^t (A_1 - A_1^t) x_2 = 0$ for all x_1, x_2 . So $A_1 - A_1^t = 0$; in other words, A_1 is symmetric. Thus A is Hermitian.

- (5) Since $\langle .,. \rangle$ is non-zero, there exists $u_1,u_2 \in V$ such that $\langle u_1,u_2 \rangle =: \lambda \neq 0$. In case V is a complex vector space, replacing u_2 by $\bar{\lambda}u_2$ if necessary, we may (and do) assume, $\langle u_1,u_2 \rangle$ is real. Thus $\langle u_2,u_1 \rangle = \langle u_1,u_2 \rangle$. If $\langle u_i,u_i \rangle \neq 0$ for some $i \leq 2$, take $v=u_i$. If $\langle u_i,u_i \rangle = 0$ for i=1,2, set $v=u_1+u_2$. Then $\langle v,v \rangle = 2\langle u_1,u_2 \rangle \neq 0$. Since U is the one-dimensional vector space spanned by v, if $U \cap U^{\perp} \neq 0$, then $v \perp v$ and so $\langle v,v \rangle = 0$, contrary to our choice of v. So we must have $U \cap U^{\perp} = 0$. This implies that $V=U \oplus U^{\perp}$.
- (6) Fix notation as in the solution above of (4). That A_2 is skew-symmetric and A_1 is symmetric follows from (4). The real part of $(x_1 ix_2)^t (A_1 + iA_2)(x_1 + ix_2)$ is

$$x_1^t A_1 x_1 - x_1^t A_2 x_2 + x_2^t A_2 x_1 + x_2^t A_1 x_2$$

Putting $x_2 = 0$, we get $x_1^t A_2 x_1 \ge 0$ for all x_1 with equality only if $x_1 = 0$, which means that A_1 is positive definite.

(7) Writing $A = (a_1, ..., a_n)$ where a_i is the i^{th} column of A, we see that trace $(A^t A) = a_1^t a_1 + \cdots + a_n^t a_n \ge 0$ with equality holding only if each $a_i = 0$ (in other words,

- only if A = 0). This proves that the form $\langle A, B \rangle = \text{trace}(B^t A)$ is positive definite. It is evidently symmetric.
- (8) (a) and (b) follow readily from the definitions. To see when equality holds in (b), first observe the following: for any subspace W of V, we have (1) $\dim W^{\perp} = \dim V \dim W + \dim(W \cap V^{\perp})$ and (2) $W^{\perp} \supseteq V^{\perp}$. Now, using these, we get $\dim W^{\perp \perp} = \dim W + \dim V^{\perp} \dim(W \cap V^{\perp})$. Thus for $W^{\perp \perp}$ to equal W, it is necessary and sufficient that $V^{\perp} = W \cap V^{\perp}$, or equivalently $V^{\perp} \subseteq W$. Two cases where this condition holds are: $V^{\perp} = 0$ (the form is non-degenerate); W = V.
- (9) This follows from the equality $\dim W^{\perp} = \dim V \dim W$ when the form is non-degenerate (see the solution to the previous item).
- (10) In fact, we can find an orthogonal matrix P with the desired property. By using the spectral theorem for real symmetric matrices once, we may assume that A is diagonal. Then B is block diagonal symmetric: the block sizes are the multiplicities of the entries of A. Now we apply the spectral theorem to each block of B. Since each corresponding block of A is a scalar matrix, A will not be disturbed when we diagonalize B.

For the second part: If $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, then $AB = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$.