NOTES ON BILINEAR FORMS

PARAMESWARAN SANKARAN

These notes are intended as a supplement to the talk given by the author at the IMSc
Outreach Programme ENRICHING COLLEGIATE EDUCATION-2015.

SYMMETRIC BILINEAR PRODUCT

A symmetric bilinear product on a (finite dimensional) real vector space V is a map-
ping (.,.) : V. xV — R, (u,v) — (u,v) which is R-linear in each variable u,v and is
symmetric, that is, (u,v) = (v,u). We say that (.,.) is non-degenerate if (u,v) = 0 for
all v € V implies that u = 0. We say that (.,.) is positive definite if (u,u) > 0 if
u # 0. A positive definite symmetric bilinear product on V is also known as an inner

product. An inner product is evidently non-degenerate.

Fix an ordered basis B = {vy,...,v,} of V. Let A € M,,(R) be a symmetric matrix.
Writing any x € V as © = 219‘9 x;v;, we may identify x with the column vector
(1,...,2,)". We obtain a symmetric bilinear product on V defined as (z,y)4 := z'Ay.
Note that (v;,v;)a = a;; where A = (a;;).

Conversely if (.,.) : V x V — R is any symmetric bilinear product on V, then (.,.) =
(.,.)a where A = ((v;,v;)). The matrix A is called the matrix of (.,.) with respect to
B.

If A is non-singular, then (.,.)4 is non-degenerate. Indeed for a non-zero element x
in V, there exists z in V such that z'z # 0—in fact, we can choose z to be a standard
column vector. Since A is non-singular, there exists y such that z = Ay. Then (x,y) =
x'Ay = z'z # 0. Conversely, if (.,.) is non-degenerate, then its matrix with respect to

any basis of V' is non-singular.

If v},...,v] is another ordered basis B’ for V and if P = (p;;) is the change of basis
matrix from B to B’ so that v} = > pijvi, then Yz, =x = Zx;vz => 2pijvi and so
(z;) = P(2}). Let A and A’ be the matrix of the same symmetric bilinear product (., .)
with respect to B and B’ respectively, so that a' Ay = (x,y) = (/) A'y'. Thus (z')! Ay =
r'Ay = (2')'P'APy for all column vectors 2/,y € R™. It follows that A’ = P'AP;

equivalently A = (P~1)! AP~

Let (.,.) be a fixed symmetric bilinear product on V. For u,v € V we say that u is

perpendicular (or orthogonal) to v (written u L v) if (u,v) = 0. For W a subset of V/
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we denote by W+ the subset {v € V| v L w Vw € W} of V. Evidently W+ is a vector
subspace of V. When W is a subspace, we have dim W+ > dimV — dim W. The null
space of (.,.) is the space V1 of all vectors v that are orthogonal to the whole of V. The
bilinear product (., .) defines a non-degenerate symmetric bilinear product on V/N where
N is the null space of (., .).

If W C V is a vector subspace then the restriction of (.,.) to W x W is a symmetric
bilinear product on W. This bilinear product on W is non-singular if and only if WNW+ =
0. In turn W N W+ =0 if and only if V =W & W+ (internal direct sum).

Let V = R? (regarded as column vectors) and let (x,y) = z1ys + Toy1. Then (e1,e;) =
0 = (eg,e2). Nevertheless, the bilinear product is non-degenerate. Indeed, the matrix
of the bilinear product with respect to the basis ey, ey is (9§). Since it is invertible, it

follows that (.,.) is non-degenerate. Note that (e; — es,e; — e3) < 0.

A basis B = uy,...,u, of V is called orthogonal if w; 1 u; for i # j. Note that the
matrix of (.,.) with respect to an orthogonal basis is diagonal. There always exists an
orthogonal basis B for any symmetric bilinear product. If it is non-degenerate, one may
replace each v € B by v/ \/m to obtain, possibly after a rearrangement of the basis
elements, an ordered basis with respect to which the matrix of the bilinear product has
the form (]d" _OIS ), where I, denotes the identity matrix of order r. The number r is an
invariant of the bilinear product. It equals the dimension of V' if and only if the bilinear

product is positive definite.

If W C V is a subspace such that the bilinear product is non-degenerate on W (so that
V =W @ W+ as observed above), then we have the orthogonal projectionp:V — W
defined by ply. =0, plw = identity If {wy,...,wx} is an orthogonal basis for W, then,
for any v € V, p(v) = 321, Avs) - Indeed v > i<i<k <<ij

(wj,wj) wj,wj)

map of V to W that vanishes on W+ and is identity on W.

w; defines a linear

HERMITIAN PRODUCT

Let V' be a (finite dimensional) complex vector space. A Hermitian product (.,.) :
V xV — Cis a sesquilinear map—conjugate linear in the first argument and complex
linear in the second—such that (u,v) = (v,u). It is called non-degenerate if (u,v) = 0
for all v € V implies u = 0. It is called positive definite if (u,u) > 0 for u # 0 (note
that (u,u) is real since (u,u) = (u,u)). A positive definite Hermitian product is also
called an inner product. A Hermitian inner product is evidently non-degenerate.

As in the case of symmetric bilinear product on real vector spaces, one has the notion
of the matrix of a Hermitian product (with respect to an ordered C-basis for V). The
matrix A of a Hermitian product is Hermitian, that is, A* = A where A* := A*. If A, A’
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are two matrices of the same Hermitian product with respect to two ordered bases B, B’
and if P is the change of basis matrix from B to B, then A’ = P*AP.

Let (.,.) be a Hermitian inner product on a (finite dimensional) complex vector space V.
Suppose that T : V — V is a C-linear transformation. We obtain a linear transformation
T* :V — V, where T*v for v in V is defined by (T*v,w) = (v, Tw) for all v,w € V. Note
that (ST)* = T*S* for any two linear transformations S, 7" of V' and that 7"+ T* is an
involution, that is, (7%)* =T for all T

We say that T is normal if TT* = T*T, equivalently (Tv, Tw) = (T*v, T*w) for all
v,w € V. We say that T is Hermitian if T = T*, equivalently, (Tv,w) = (v, Tw).
We say that T' is unitary if 77" = T*T = I, the identity transformation, equivalently
(Tv, Tw) = (v,w) for all v,w € V.

These notions carry over to elements of M,(C) where A* is defined as A’. Thus A is
Hermitian if A* = A, unitary if AA* = A*A = I, and normal if AA* = A*A. Note that
a real n X n matrix is Hermitian if and only if it is symmetric and is unitary if and only
if it is orthogonal (that is AA" = A'A =1).

The two versions—in terms of linear transformation and matrices—are related by con-
sidering the matrix of a transformation with respect to an ordered basis B of V with

respect to which the matrix of the Hermitian inner product is the identity.
The following are some basic properties of Hermitian matrices.

o The eigenvalues of a Hermitian (or a real symmetric) transformation are all real.
Proof. Suppose that A is Hermitian and v is an eigenvector corresponding to an eigenvalue
A of A. Then \(v,v) = (\v,v) = (Av,v) = (v, Av) = M v,v). But (v,v) # 0 since v # 0,
by positive definiteness of {.,.). Hence X = .

e The eigenvalues of a unitary matrix are of absolute value 1.

Proof. Let Av = \v with v # 0 and A being unitary. Then (v, v) = (Av, Av) = (Av, \v) =
M\(v,v). Cancelling (v,v) we obtain that [[A]|> = A\ = 1.

Theorem (Spectral theorem for normal matrices) Let T' be a normal matriz in M, (C).
Then there exists a n X n unitary matriz P such that P*T P 1is diagonal. []

REFERENCE

Chapter 8 of M. Artin, Algebra, 2nd ed., Pearson, New Delhi (2011).
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PROBLEMS

(1) Find an orthogonal basis of R? for the symmetric bilinear given by the matrix (a)
($3), (b) (33)-

(2) Find the orthogonal projection of the vector (2, 3,4)" € R? onto the zy-plane where

110
the symmetric bilinear product is given by the matrix |1 2 1
01 3

(3) Prove that the maximum of entries of a positive definite matrix A is attained on
the diagonal.

(4) Suppose that A is a complex n X n matrix such that z* Az is real for all x € C".
Is A Hermitian?

(5) Let (.,.) be a non-zero symmetric bilinear product on a real vector space or a
Hermitian product on a complex vector space V. Show that there exists a vector
v such that (v,v) # 0. Show that V = U @ U+ where U is the vector subspace of
V' spanned by v.

(6) Let (.,.) be a positive definite Hermitian product on a complex vector space V.
Define bilinear maps (.,.),[.,.] : V' x V — R (where V is regarded as a real vector
space) as the real and imaginary parts of {.,.) so that (u,v) = (u,v) +v/—1[u, v].
Show that (.,.) is a positive definite symmetric bilinear product on V" and that [., |
is skew symmetric, i.e., [u,v] = —[v, u].

(7) On the vector space M, (R) define (A, B) as tr(A".B). Show that this is a positive
definite symmetric bilinear product.

(8) Let Wy, Wy C V and let (.,.) be a symmetric bilinear product. Show that (a)
(W + W)t = Wi n Wi, (b) W € W+, When does equality hold in (b)?

(9) Suppose that (.,.) is non-degenerate symmetric bilinear product on V. Show that
dimW < (1/2)dimV if W Cc W+,

(10) If A, B are symmetric n x n real matrices which commute, show that there exists a
matrix P such that both PPAP and P!BP are diagonal. Find two 2 x 2 symmetric
matrices A and B such that AB is not symmetric. (Comment: The product of two

commuting symmetric matrices is symmetric.)
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HINTS/SOLUTIONS TO PROBLEMS

(1) (a) Take, for example, e; = (0,1)" to be the first basis vector (this wouldn’t have
been a good choice if (e, e;) were 0 but that is not the case). Let the second be
aei + bes. We want (ae; + bey, e1) = 2a + b = 0. Thus, we can take the second
vector to be (1, —2)". (b) Proceeding as in (a), we get e; = (0, 1), (—2,1)".

(2) We could directly apply the formula in the notes provided we have an orthogonal
basis for the xy-plane. To find such a basis, we could take w; = e; = (1,0,0)" to
be the first basis vector. Let wy = ae; + bey be the second, where e; = (0, 1,0)".
We want (ws, w1) = (ae; + bey, wy) = 0, so we get a +b = 0. Thus we can take
wy = e — ey. Letting v = (1,2,3)", we have

v, W v, w 3 —5
p(v) = (ium/jf)wl + <§u02,—w22>>w2 = Jwi+ we = 3er = 5(er —e2) = (=2,5, 0)'

(3) In fact, for a symmetric positive definite real matrix A = (a;;), the maximum
cannot be attained at a non-diagonal element. To see this, just observe that
(e; —ej,e; —e;) = ay + a;; — 2a;;, for ¢ # j. Thus if the maximum were attained
at a;;, we would get a contradiction: (e; —e;j,e; —e;) < 0.

(4) Put A = A; +iA,. The imaginary part of (1 — iz9)' (A + 1 As) (21 + iz2) is

t t t t
—x5 A1y + 2] A1xs + 27 Asmy + 15 A01s

Putting xo = 0, we get 2} Asxy = 0 for all 1, which means A, is skew-symmetric.
But now we also have 2t Ajzy — 2bAjxy = 0. But 2} Ajve — 2b Ay = 2} Ajag —
Tt Alxg = 2t (A; — AY)xg. So (A — AY)ag = 0 for all xq, x5. So A} — AL = 0; in
other words, A; is symmetric. Thus A is Hermitian.

(5) Since (.,.) is non-zero, there exists uj,uy € V such that (uy,us) =: A # 0. In case
V is a complex vector space, replacing uy by Aus if necessary, we may (and do)
assume, (uy,us) is real. Thus (us,u1) = (uy,ug). If (u;,u;) # 0 for some i < 2,
take v = u;. If (u;, u;) = 0 fori = 1,2, set v = uy+uy. Then (v, v) = 2(uy, us) # 0.

Since U is the one-dimensional vector space spanned by v, if U N U+ # 0, then
v L v and so (v,v) = 0, contrary to our choice of v. So we must have UNU* = 0.
This implies that V = U @ U*.

(6) Fix notation as in the solution above of (4).That A, is skew-symmetric and A; is

symmetric follows from (4). The real part of (z1 — ix9) (Ay + iAs)(x1 + i22) is

t t t t
lL‘lAlCL’l — IL‘IAQJZQ + [E2A21'1 + ZEQAlfL'Q

Putting 25 = 0, we get !t Ayz; > 0 for all 21 with equality only if z; = 0, which
means that A; is positive definite.

(7) Writing A = (ay, ..., a,) where a; is the i*" column of A, we see that trace(A’A) =
ata; + -+ 4 ala, > 0 with equality holding only if each a; = 0 (in other words,
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only if A = 0). This proves that the form (A, B) = trace(B'A) is positive definite.
It is evidently symmetric.

(a) and (b) follow readily from the definitions. To see when equality holds in (b),
first observe the following: for any subspace W of V, we have (1) dim W+ =
dimV — dim W + dim(W N V+) and (2) W+ 2 V4. Now, using these, we get
dim Wt = dim W + dim V+ — dim(W N V4). Thus for Wt to equal W, it is
necessary and sufficient that V- = W N VL, or equivalently V4 C W. Two cases
where this condition holds are: V+ = 0 (the form is non-degenerate); W = V.
This follows from the equality dim W+ = dim V' — dim W when the form is non-
degenerate (see the solution to the previous item).

In fact, we can find an orthogonal matrix P with the desired property. By using
the spectral theorem for real symmetric matrices once, we may assume that A is
diagonal. Then B is block diagonal symmetric: the block sizes are the multiplic-
ities of the entries of A. Now we apply the spectral theorem to each block of B.
Since each corresponding block of A is a scalar matrix, A will not be disturbed

when we diagonalize B.

For the second part: If A = (é g) and B = (i 1), then AB =



