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OUTLINE 

 

• The vargaprakçti equation X2 – D Y2 = K, and Brahmagupta’s 
bhāvanā process (c. 628 CE). 

• The cakravāla method of solution of Jayadeva (c. 10th cent) 
and Bhāskara (c.1150). 

• Bhāskara’s examples X2 – 61Y2 = 1, X2 – 67Y2 = 1. 
• Analysis of the cakravāla method by Krishnaswami 

Ayyangar. 
• History of the so called "Pell’s Equation" X2 - D Y2 = 1. 
• Solution of "Pell’s equation" by expansion of √D into a simple 

continued fraction (c. 18th cent). 
• Bhāskara semi-regular continued fraction expansion of √D 
• Optimality of the cakravāla method.  



VARGA PRAKèTI 

In Chapter XVIII of his Brāhmasphuña-siddhānta (c.628 CE), 

Brahmagupta considers the problem of solving for integral values of X, 

Y, the equation 

X2 – D Y2 = K,                             

given a non-square integer D > 0,  and an integer K. 

X is called the larger root (jyeùñha-mūla), Y is called the smaller root 

(kaniùñha-mūla), D is the prakçti, K is the kùepa. 

One motivation for this problem is that of finding rational approximations 
to square-root of D. If X, Y are integers such that X2 - D Y2 = 1, then,  

 

The Śulva-sūtra approximation (prior to 800 BCE): 

√2 ≈ 1+ 1/3 + 1/3.4 - 1/3.4.34 = 577/408           [(577)2 - 2 (408)2 = 1]



BRAHMAGUPTA’S BHĀVANĀ 

मलू ंि᳇धे᳥ वगार्द ्गणुकगणुािद᳥यतुिवहीनाᲬ। 
आ᳒वधो गणुकगणुः सहान्त्यघातने कृतमन्त्यम॥् 
वᮚवधकै्य ंᮧथम ंᮧक्षपेःक्षपेवधतलु्यः। 
ᮧक्षपेशोधकहृत ेमलू ेᮧक्षपेके रूप॥े 
 

If      X1
2 – D Y1

2 = K1   and    X2
2– D Y2

2 = K2   then 

(X1 X2  ±  D Y1Y2)2 – D (X1 Y2  ±  X2Y1)2   = K1 K2 

In particular given X2 -D Y2 = K, we get the rational solution 

[(X2 + D Y2)/K]2 - D [(2XY)/K]2  = 1 

Also, if one solution of the Equation X2- D Y2 = 1 is found, an infinite 

number of solutions can be found, via  

(X, Y)  (X2 + D Y2, 2XY) 



USE OF BHĀVANĀ WHEN K = -1, ±2, ±4 

The bhāvanā principle can be use to obtain a solution of the equation  

X2 – D Y2 = 1,                            

 if we have a solution of the equation  

          X1
2 – D Y1

2 = K,   for K = -1, ±2, ±4. 

 

 



BRAHMAGUPTA’S EXAMPLES 

रािशकलाशेषकृित ि᳇नवितगुिणता ं᯦यशीितगिुणता ंवा। 
सैकां ज्ञिदन ेवगᲈ कुवर्᳖ावत्सरा᳄णकः॥ 
To solve, X2 – D Y2 = 1, for D = 92, 83: 

102 - 92.12 = 8 

Doing the bhāvanā of the above with itself,                             
1922 - 92.202 = 64              [102 + 92.12 = 192 and 2.10.1 = 20] 

Dividing both sides by 64,   

 242 – 92.(5/2)2 = 1 

Doing the bhāvanā of the above with itself, 

        11512 – 92.1202 = 1         [242 + 92.(5/2)2 = 1151 and 2.24.(5/2)   = 120]         

Similarly, 

92 - 83.12 = -2 

 Doing the bhāvanā of the above with itself, 

     1642 – 83.182 = 4 and hence, 822 – 83.92 = 1.   



CAKRAVĀLA: THE CYCLIC METHOD  

The first known description of the Cakravāla or the Cyclic Method occurs 

in a work of Udayadivākara (c.1073), who cites the verses of Ācārya 

Jayadeva. 

In his Bījagaõita, Bhāskarācārya (c.1150) has given the following 

description of the cakravāla method: 

᮳स्वज्ये᳧पदक्षेपान् भाज्यᮧक्षेपभाजकान्। कृत्वा कल्प्यो गुणस्तᮢ तथा ᮧकृितत᳠यतुे॥ 
गुणवगᱷ ᮧकृत्योनेऽथवाल्पं शेषकं यथा। तᱫ ुक्षेपहृतं क्षेपो ᳞स्तः ᮧकृितत᳠युते॥ 
गुणलिब्धः पद ं᮳स्वं ततो ज्ये᳧मतोऽसकृत्। त्यक्त्वा पूवर्पदक्षेपां᳟ᮓवालिमद ंजगुः॥ 
चतु᳇ᱷकयुताववेमिभ᳖े भवतः पद।े चतुि᳇क्षपेमूलाभ्यां रूपक्षेपाथर्भावना॥ 

 



THE CAKRAVĀLA METHOD 

Given Xi, Yi, Ki such that   Xi 
2 – D Yi

2 = Ki 

First find Pi+1 as follows: 

(I) Use kuññaka process to solve (the linear indeterminate equation) 

(Yi Pi+1 + Xi)/ |Ki|  = Yi+1  

for integral Pi+1, Yi+1 

(II) Of the solutions of the above, choose Pi+1 >0, such that  

|(Pi+1
2 - D)| has the least value  

Then set 

Ki+1 = (Pi+1 
2 - D)/ Ki                    

Yi+1= (Yi Pi+1 + Xi)/ |Ki| 

Xi+1= (Xi Pi+1 + DYi)/ |Ki| 

These satisfy   Xi+1
2 - D Yi+1

2 = Ki+1 

Iterate the process till Ki+1 = ±1, ±2 or ±4, and then solve the equation 
using bhāvanā if necessary.  



THE CAKRAVĀLA METHOD 

In 1930, Krishnaswami Ayyangar showed that the cakravāla procedure 
always leads to a solution of the equation X2 –D Y2 = 1.  

He also showed that condition (I) is equivalent to the simpler condition 

    (I') Pi  +  Pi+1 is divisible by Ki 

Thus, we shall now use the cakravāla algorithm in the following form: 

To solve X2 – D Y2 = 1:  

Set X0 = 1, Y0 = 0, K0 = 1 and P0 = 0. 

Given Xi , Yi , Ki  such that   Xi 
2 - D Yi

2 = Ki 

First find   Pi+1 >0 so as to satisfy: 

(I')   Pi  +  Pi+1 is divisible by Ki 

(II) ⏐ Pi+1
2 -D ⏐ is minimum. 

 
 
 



THE CAKRAVĀLA METHOD 

 
Then set  

Ki+1 = (Pi+1 
2 – D)/Ki            

Yi+1= (Yi Pi+1 + Xi)/ |Ki| = ai Yi + εi Yi-1 

 Xi+1= (Xi Pi+1 + DYi)/ |Ki| = Pi+1Yi+1 - sign (Ki) Ki+1Yi = ai Xi + εi Xi-1 

These satisfy   Xi +1
2 – D Yi +1

2 = Ki +1
 

Iterate till Ki +1 =   ±1, ±2 or ±4, and then use bhāvanā if necessary.  

Note: We also need  ai = (Pi +Pi+1)/ ⏐Ki⏐  and εi = (D - Pi 
2)/ ⏐ D - Pi 

2⏐with ε0 =1. 

  



BHĀSKARA’S EXAMPLES 

का स᳙षि᳥गुिणता कृितरेकयुᲦा का चैकषि᳥िनहता च सखे सरूपा। 
स्यान्मूलदा यिद कृितᮧकृितिनतान्तं त्वᲬेतिस ᮧवद तात तता लतावत्॥ 

     
  



BHĀSKARA’S EXAMPLE:  X2 – 61 Y2 = 1 

 

To find P1: 0+7, 0+8, 0+9 ... divisible by 1. 82 closest to 61. P1 = 8, K1 = 3 

To find P2: 8+4, 8+7, 8+10 ... divisible by 3. 72 closest to 61. P2 =7, K2= -4 

After the second step, we have:   392 - 61.52 = -4 

Now, since have reached K=-4, we can use bhāvanā principle to obtain 

X = (392 +2) [(½) (392 +1) (392 +3) - 1] = 1,766,319,049 

Y = (½) (39.5) (392 +1) (392 +3) = 226,153,980 

17663190492 - 61. 2261539802 = 1 

 

I Pi 
 Ki 

 ai εi Xi Yi 

0 0 1 8 1 1 0

1 8 3 5 -1 8 1

2 7 -4 4 1 39 5

3 9 -5 3 -1 164 21



BHĀSKARA’S EXAMPLE:  X2 – 61 Y2 = 1 

I Pi 
 Ki 

 ai εi Xi Yi 

0 0 1 8 1 1 0
1 8 3 5 -1 8 1
2 7 -4 4 1 39 5
3 9 -5 3 -1 164 21

4 6 5 3 1 453 58

5 9 4 4 -1 1,523 195

6 7 -3 5 1 5,639 722

7 8 -1 16 -1 29,718 3,805

8 8 -3 5 -1 469,849 60,158

9 7 4 4 1 2,319,527 296,985

10 9 5 3 -1 9,747,957 1,248,098

11 6 -5 3 1 26,924,344 3,447,309

12 9 -4 4 -1 90,520,989 11,590,025

13 7 3 5 1 335,159,612 42,912,791

14 8 1 16 -1 1,766,319,049 226,153,980



BHASKARA’S EXAMPLE: X2 – 67 Y2 = 1 

I Pi 
 Ki 

 ai εi Xi Yi 

0 0 1 8 1 1 0
1 8 -3 5 1 8 1
2 7 6 2 1 41 5
3 5 -7 2 1 90 11
4 9 -2 9 -1 221 27
5 9 -7 2 -1 1,899 232
6 5 6 2 1 3,577 437
7 7 -3 5 1 9,053 1,106
8 8 1 16 1 48,842 5,967

To find P1: 0+7, 0+8, 0+9 ... divisible by 1. 82 closest to 67. P1 = 8, K1 = -3 

To find P2: 8+4, 8+7, 8+10...divisible by 3. 72 closest to 67. P2 = 7, K2 = 6 

To find P3: 7+5, 7+11, 7+17...divisible by 6. 52 closest to 67 P3 = 5, K3 =-7 

To find P4: 5+2, 5+9, 5+16...divisible by 7. 92 closest to 67 P4 = 9, K4 =-2 

Now, since have reached K = -2, we can do bhāvanā to find the solution: 

488422 - 2. 59672 = 1   [48842 = (2212 +67.272)/2 and 5967 = 221.27]



MODERN SCHOLARSHIP ON CAKRAVĀLA 

It is not known whether Bachet, Fermat or their successors in 17th and 18th 
century were aware of the Indian work on indeterminate equations. 

The  Bījagaõita of Bhāskara, was translated in to English from the Persian 
Translation of  Ata Allah Rushdi (1634) by Edward Strachey with Notes 
by Samuel Davis (London, 1813). In 1817, Henry Thomas Colbrooke 
published Algebra with Arithmetic and Mensuration from the Sanskrit of 
Brahmagupta and Bhascara (London, 1817), which included a tranlsation 
of Gaõitādhyāya and Kuññakādhyāya of Brāhmasphuña-siddhānta, and  the 
Līlāvatī and Bījagaõita of Bhāskara. 

The true nature of cakravāla method was not understood for long. In the 
second edition (1910) of his work on Diophantus, Edward Heath notes:  

On the Indian method Hankel [1874] says, ‘It is above all praise; it is 
certainly the finest thing which was achieved in theory of numbers 
before Lagrange’; and although this may seem an exaggeration when 
we think of the extraordinary achievements of Fermat, it is true that 
the Indian method is, remarkably though, the same as that which was 
rediscovered and expounded by Lagrange in 1768.  



ANALYSIS OF CAKRAVĀLA PROCESS 

In 1930, A. A. Krishnaswami Ayyangar (1892-1953) presented a detailed 
analysis of the cakravāla process. He explained how it is different from 
and more optimal than the Euler-Lagrange process based on the simple 
continued fraction expansion of √D. He also showed that the cakravāla 
process always leads to a solution of the vargaprakçti equation with K=1. 

Let us consider the equations 

Xi 
2 – D Yi 

2 = Ki  

Pi+1
2 – D.12 = Pi+1

2 – D  

By doing bhāvanā of these, and dividing by Ki
2, we get  

[(Xi Pi+1 + DYi)/ |Ki|]2 – D [(Yi Pi+1 + Xi)/ |Ki|]2 = (Pi+1
2 – D) / Ki 

If we assume that Xi, Yi and Ki are mutually prime, and if we choose      

Pi+1 such that Yi+1 = [(Yi Pi+1 + Xi)/ |Ki|] is an integer, then it can be shown 

that Xi+1=[(Xi Pi+1 + DYi)/Ki|] and Ki+1= (Pi+1
2 – D) /Ki are both integers. 



ANALYSIS OF CAKRAVĀLA PROCESS 

Further, we have 

Xi+2 = [(Xi+1Pi+2 + DYi+1)/ |Ki+1|]   

       = Xi+1 [(Pi+2 + Pi+1)/ |Ki+1|] + Xi (D – Pi+1
2)/ |Ki| |Ki+1| 

               = ai+1 Xi+1 + εi+1 Xi  

and similarly for Yi+2.  

Therefore, instead of using the kuññaka process for finding Pi+2, we can use 

the condition that  

Pi+1 + Pi+2  is divisible by Ki+1. 

 

 

 



ANALYSIS OF CAKRAVĀLA PROCESS 

Krishnaswami Ayyangar, then proceeds to an analysis of the quadratic 

forms (Ki, Pi+1, Ki+1) which satisfy Pi+1
2 – Ki Ki+1 = D. 

Notation: (A, B, C) stands for the quadratic form Ax2+2Bxy+Cy2 

The form (Ki+1, Pi+2, Ki+2), which is obtained from (Ki, Pi+1, Ki+1) by the 

cakravāla process, is called the successor of the latter. 

Ayyangar defines a quadratic form (A, B, C) to be a Bhāskara form if  

A2 + (C2/4) <D and C2 + (A2/4) <D 

He shows that the successor of a Bhāskara form is also a Bhāskara form 

and that two different Bhāskara forms cannot have the same successor. 

 

 

 



ANALYSIS OF CAKRAVĀLA PROCESS 

Krishnaswami Ayyangar considers the general case when we start the 

cakravāla process with an arbitrary initial solution 

X0 
2 – D Y0

2 = K0  

He shows that if ⏐K0⏐   >√D, then the absolute values of the successive Ki 

decrease monotonically, till say Km, after which we have  

⏐Ki⏐  <√D  for i>m.  

He also shows that 

⏐Pi⏐ <2√D  for i>m. 

Since⏐Ki⏐ cannot go on decreasing, for some r>m we have⏐Kr+1⏐  >⏐Kr⏐. 

It can then be shown that (Kr, Pr+1, Kr+1) and all the succeeding forms will 

be Bhāskara forms.  



ANALYSIS OF CAKRAVĀLA PROCESS 

If we start with the initial solution X0 =1, Y0 =0 and K0 =1, then we see 

that cakravāla process leads to P1 = X1 = d, where d>o is the integer such 

that d2 is the square nearest to D. Also Y0 =1 and K1 = d2-D.   

Ayyangar shows that (K0, P1, K1) ≡ (1, d, d2–D) is a Bhāskara form. So is 

the form (d2-D, d, 1) which is equivalent to it. 

Since the values of Ki, Pi are bounded, the Bhāskara forms will have to 

repeat in a cycle and the first member of the cycle is the same as the first 

Bhāskara form which is obtained in the course of cakravāla. 

Finally, Ayyangar shows that two different cycles of Bhāskara forms are 

non-equivalent, and that all equivalent Bhāskara forms belong to the same 

cycle.  

 



ANALYSIS OF CAKRAVĀLA PROCESS 

Ayyangar sets up an association between a Bhāskara form (Ki, Pi+1, Ki+1) 

an equivalent Gauss form (Ki', Pi+1', Ki+1'), which satisfies 

 √D – Pi+1' <⏐Ki'⏐  < √D + Pi+1'.  

If  Pi+1 <√D, then (Ki',  Pi+1', Ki+1') ≡ (Ki, Pi+1, Ki+1) 

If  Pi+1 >√D, then Ki' = Ki, Pi+1' = Pi+1 -⏐Ki⏐and Ki+1' = 2 Pi+1-⏐Ki⏐-⏐Ki+1⏐ 

In this way a Bhāskara cycle can be converted to a unique Gauss cycle and 

vice versa, from which the above results follow. 

Thus, whatever initial solution we may start with, the cakravāla process 

takes us to a cycle of equivalent Bhāskara forms and since the Bhāskara 

form (d2-D, d,1) is in this equivalence class, the cakravāla process leads to 

a solution corresponding to K = 1.  



FERMAT’S CHALLENGE TO BRITISH MATHEMATICIANS (1657) 

In February 1657, Pierre de Fermat (1601-1665) wrote to Bernard Frenicle 
de Bessy asking him for a general rule “for finding, when any number not 
a square is given, squares which, when they are respectively multiplied by 
the given number and unity added to the product, give squares.” If 
Frenicle is unable to give a general solution, Fermat said, can he at least 
give the smallest values of x and y which will satisfy the equations       
61x2 + 1 = y2 and 109x2 + 1 = y2. 

At the same time Fermat issued a general challenge, addressed to the 
mathematicians in northern France, Belgium and England, where he says: 

“There is hardly anyone who propounds purely arithmetical questions, 
hardly anyone who understands them. Is this due to the fact that up to 
now arithmetic has been treated geometrically rather than 
arithmetically? This has indeed generally been the case both in ancient 
and modern works; even Diophantus is an instance. For, although he 
was freed himself from geometry a little more than others in that he 
confines his analysis to the consideration of rational numbers, yet even 
there geometry is not absent… 



FERMAT’S CHALLENGE TO BRITISH MATHEMATICIANS (1657)  

“Now, arithmetic has so to speak, a special domain of its own, the 
theory of integral numbers. This was only lightly touched upon by 
Euclid in his Elements, and was not sufficiently studied by those who 
followed him… 

To arithmeticians, therefore by way of lighting up the road to be 
followed, I propose the following theorem to be proved or problem to 
be solved. If they succeed in discovering the proof or solution, they 
will admit that questions of this kind are not inferior to the more 
celebrated questions in geometry in respect of beauty, difficulty or 
method of proof. 

 Given any number whatever which is not a square, there are also 
given infinite number of squares such that, if the square is multiplied 
into the given number and unity is added to the product, the result is a 
square.... 

Eg. Let it be required to find a square such that, if the product of the 
square and the number 149, or 109, or 433 etc. be increased by 1, the 
result is a square.” 



BROUNKER-WALLIS SOLUTION 

Fermat’s Challenge was addressed to William Brouncker (1620-1684) and 
John Wallis (1616-1703). Brouncker’s first response merely contained 
rational solutions and this led to Fermat complaining (in a letter to the 
interlocutor Kenelm Digby in August 1657) that they were no solutions at 
all to the problem that he had posed. 

 Brouncker then worked out his method of integral solutions which he sent 
to Wallis to be communicated to Fermat. Wallis describes the method of 
solution in two letters dated December 17, 1657 and January 30, 1658. 
Later in 1658, Wallis published the entire correspondence as Commercium 
Epistolicum. He also outlined the method in his Algebra published in 
English in 1685 and in Latin in 1693. 

We do not know what method Fermat had for the solution of the problem 
he posed. Of course he communicated to the English mathematicians that 
he “willingly and joyfully acknowledges” the validity of their solutions. 
He however wrote to Huygens in 1659 that the English had failed to give 
“a general proof”, which according to him could only be obtained by the 
“method of descent”.  



EULER-LAGRANGE METHOD OF SOLUTION 

In a letter to Goldbach written on August 10, 1730, Leonhard Euler (1707-
1787) mentions the equation X2 – 8 Y2 = 1 as a special case of “Pell’s 
Equation”. He notes that “such problems have been agitated between 
Wallis and Fermat... and the Englishman Pell devised for them a peculiar 
method described in Wallis’s works.” 

Citing the above André Weil notes:  

“Pell’s name occurs frequently in Wallis’s Algebra, but never in 
connection with the equation X2 –N Y2 = 1 to which his name, because 
of Euler’s mistaken attribution, has remained attached; since its 
traditional designation as 'Pell’s equation' is unambiguous and 
convenient, we will go on using it even though it is historically 
wrong.” 

In a paper “De solution problematum Diophanterum per numerous 
integros” written in 1730, Euler describes Wallis method. He also shows 
that from one solution of “Pell’s equation” an infinite number of solutions 
can be found and also remarks that they give good approximations to 
square-roots. 



EULER-LAGRANGE METHOD OF SOLUTION 

In his letters to Goldbach in 1753 and 1755 Euler speaks of certain 
improvements he had made in the “Pellian method”.  

In a paper, read in 1759 but published in 1765 (1767), entitled “De Usu 
novi algoritmi in problemate Pelliano solvendo” Euler describes the 
method of solving X2 –D Y2 = 1 by the simple continued fraction expansion 
of √D. He gives a table of cycles (of partial quotients) for all non-square 
integers from 2 to 120 and also notes their various properties. 

In a paper which was published earlier in 1762-3 (1764) Euler proves the 
bhāvanā principle and called it “Theorema Elegantissimum”. 

Euler also wrote a paper in 1773 (published in 1783) on “New Aids” for 
solving the Pell’s equation, where he describes how the equation can be solved 
if solution is known for K = -1, 2, -2, 4. 

By then, in a set of three papers presented to the Berlin Academy in 1768, 
1769 and 1770, Joseph Louis Lagrange (1736-1813) had already worked 
out the complete theory of continued fractions and their applications to 
Pell’s equation along with all the necessary proofs. 



RELATION WITH CONTINUED FRACTION EXPANSION 

A simple continued fraction is of the form (ai are positive integers for i>0) 

 
This is denoted by [a0,  a1,  a2,  a3,  ... ]  or by  

 
Given any real number α, to get the continued fraction expansion, take  

a0 = [α] the integral part of α. 

Let α1 = 1/( α – [α]). Then we take a1 = [α1] 

Let α2 = 1/( α1 – [α1]). Then we take a2 = [α2], and so on. 

a0, a1, a2, ..  are called partial quotients; α1, α2, ... are the complete quotients. 

 



RELATION WITH CONTINUED FRACTION EXPANSION  

The k-th convergent of the continued fraction [a0, a1, a2, a3, ... ] is given by  

Ak/Bk = [a0,  a1,  a2, a3, ... ,ak]   

Ak, Bk satisfy the recurrence relations: 

A0 = a0, A1 = a1 a0 + 1,  

Ak = ak Ak-1 + Ak-2 for k ≥2 

B0 = 1, B1 = a1,  

Bk = ak Bk-1 + Bk-2 for k ≥2 

The convergents also satisfy 

Aj Bj-1  – Aj-1 Bj  = (-1)j-1 

 

 

 



RELATION WITH CONTINUED FRACTION EXPANSION  

Example 

149/17 = [8, 1, 3, 4] 

The convergents are  

A0/B0 = 8/1, A1/B1 = 9/1, A2/B2 =35/4, A3/B3 =149/17 

 We have  

A3 B2 – A2 B3 = 149.4–35.17 = 1 

This is very similar to the kuññaka method for solving 149x – 17y =1. 

Note: The simple continued fraction expansion of a real number does not 

terminate if the number is irrational. For instance 

 (1+ √5)/2 = [1, 1, 1, 1, ...], 

 e = [2, 1, 2, 1, 1, 4, 1,1, 6, 1, 1, 8, 1, 1, ...]. 



RELATION WITH CONTINUED FRACTION EXPANSION  

It was noted by Euler that the simple continued fraction of √D is always 

periodic and is of the form 

 
where k is the length of the period, and the convergents   Ak-1,  Bk-1 satisfy 

 Ak-1
2 – DBk-1

2 = (-1)k 

Further, all the solutions of, X2 – D Y2 = 1 can be obtained by composing 
(bhāvanā) of the above solution with itself. 

These results were later proved by Lagrange. 

Example: To solve X2 – 13Y2 = 1 

 
A4/B4 = 18/5 and we have 182 – 13.52 = -1, leading to 6492 – 13.1802 = 1 



BHĀSKARA SEMI-REGULAR CONTINUED FRACTIONS 

In a couple of papers which appeared during 1938-41, Krishnaswami 

Ayyangar showed that the cakravāla procedure actually corresponds to a   

“semi-regular continued fraction” expansion of √D. 

A semi-regular continued fraction is of the form 

a0+ ε1 / a1+    ε2 / a2+   ε3 / a3+  ... 

where εi = ± 1, ai ≥ 1 for  i≥ 1, and ai + εi+1 ≥ 1 for  i≥ 1. 

Then the convergents satisfy the relations  

A0 = a0, A1 = a1 a0 + ε1,  

Aj = aj Aj-1 + εjAj-2 for j ≥2 

B0 = 1, B1 = a1,  

Bj = aj Bj-1 + εjBj-2 for j ≥2 



BHĀSKARA SEMI-REGULAR CONTINUED FRACTIONS 

Krishnaswami Ayyangar showed that the cakravāla method of Bhāskara 
corresponds to a periodic semi-regular continued function (Nearest Square 
Continued Fraction) expansion  

√D = a0+ ε1 / a1+    ε2 / a2+   ε3 / a3+  ... 

where   ai = (Pi +Pi+1)/ ⏐Ki⏐,  εi  = (D - Pi 
2)/ ⏐ D - Pi 

2⏐  and the convergents are 

related to the solutions Aj  = Xj+1 and Bj  = Yj+1. 

Note: The Simple Continued Fraction of Euler-Lagrange and the Nearest 
Integer Continued Fraction can also be generated by a cakravāla type of 
algorithm if we replace the condition II respectively by 

(II')    D - Pi +1 
2 > 0 and is minimum 

(II'') ⏐Pi+1 -√D⏐ is minimum 

[The Nearest Integer Continued Fraction expansion is implicit in the 
variant of the cakravāla method discussed by Nārāyaõa Paõóita in his 
Gaõitakaumudī (c.1356). It was discovered as a more optimal method for 
solving "Pell’s equation" than SCF by B. Minnigerode in 1873]    



EULER-LAGRANGE METHOD FOR X2 – 67 Y2 = 1 

I Pi 
 Ki 

 ai εi Xi Yi 

0 0 1 8 1 1 0
1 8 -3 5 1 8 1
2 7 6 2 1 41 5
3 5 -7 1 1 90 11
4 2 9 1 1 131 16
5 7 -2 7 1 221 27
6 7 9 1 1 1678 205
7 2 -7 1 1 1899 232
8 5 6 2 1 3577 437
9 7 -3 5 1 9053 1106

10 8 1 16 1 48842 5967

The steps which are skipped in cakravāla are highlighted 

The corresponding simple continued fraction expansion is 

 
The Bhāskara nearest square continued fraction is given by 

 



EULER-LAGRANGE METHOD FOR X2 – 61 Y2 = 1 

 

I Pi 
 Ki 

 ai εi Xi Yi 

0 0 1 7 1 1 0
1 7 -12 1 1 7 1
2 5 3 4 1 8 1
3 7 -4 3 1 39 5
4 5 9 1 1 125 16
5 4 -5 2 1 164 21
6 6 5 2 1 453 58
7 4 -9 1 1 1070 137
8 5 4 3 1 1523 195
9 7 -3 4 1 5639 722

10 5 12 1 1 24079 3083
11 7 -1 14 1 29718 3805

    The steps which are skipped in cakravāla are highlighted 

  



EULER-LAGRANGE METHOD FOR X2 – 61 Y2 = 1 (CONTD) 

12 7 12 1 1 440131 56353
13 5 -3 4 1 469849 60158
14 7 4 3 1 2319527 296985
15 5 -9 1 1 7428430 951113
16 4 5 2 1 9747967 1248098
17 6 -5 2 1 26924344 3447309
18 4 9 1 1 63596645 8142716
19 5 -4 3 1 90520989 11590025
20 7 3 4 1 335159612 42912791
21 5 -12 1 1 1431159437 183241189
22 7 1 14 1 1766319049 226153980

The corresponding simple continued fraction expansion is 

 
The Bhāskara nearest square continued fraction is given by 



BHĀSKARA OR NEAREST SQUARE CONTINUED FRACTION 

In the continued fraction development of √D, the complete quotients are 
quadratic surds which may be expressed in the standard form (P +√D)/Q,  
where P, Q and (D-P2)/Q are integers prime to each other. 

If a = [(P +√D)/Q] is the integral part of (P +√D)/Q, then we can have 

(P +√D)/Q = a + Q'/( P' +√D)                                     (I) 

(P +√D)/Q = (a +1) - Q''/( P'' +√D)                             (II) 

where the surds in the rhs are also in the standard form. 

In the Bhāskara or Nearest Square Continued Fraction development we 
choose a as the partial quotient  

(i) if ⏐P'2-D⏐<⏐P''2-D⏐,                                           

ii) or if ⏐P '
2-D⏐=⏐P' '

2-D⏐ and Q<0. Then we set ε = 1.  

Otherwise we choose a +1 as the partial quotient and set ε = -1. 

Note: If we start with √D, we always have Pi ≥ 0 and Qi >0 and  
         Ki  = (-1)i ε1 ε2... εi Qi 



BHĀSKARA OR NEAREST SQUARE CONTINUED FRACTION  

Krishnaswami Ayyangar showed that the Bhāskara or nearest square 
continued fraction of √D is of the form 

 

where k is the period. Further, it has the following symmetry properties: 

Type I: There is no complete quotient of the form [p+q+√( p2+q2)]/p, 

where p>2q>0 are mutually prime integers. In this case, the Bhāskara 

continued fraction for √D has same symmetry properties as in the case of 

Simple Continued Fraction expansion. 

 

 



BHĀSKARA OR NEAREST SQUARE CONTINUED FRACTION  

Examples of Type I: 

 

Type II: There is a complete quotient of the form [p+q+√( p2+q2) ]/p, 
where p>2q>0 are mutually prime integers. In such a case, the period k ≥4 
and is even and there only one such complete quotient which occurs at k/2. 
The symmetry properties are same as for Type I, except that  

Examples of Type II: 

 



LEHMER ON BHĀSKARA CONTINUED FRACTION 

The American number theorist Derrick Henry Lehmer (1905-1991) 
reviewed the work of Krishnaswami Ayyangar in the Mathematical 
Reviews (1944): 

“These papers are concerned with a peculiar semi-regular continued 
fraction algorithm somewhat akin to the nearest integer algorithm. The 
expansion is defined only for the standard quadratic surd... and is 
presumably based on Bhāskara’s ‘cyclic method’ of solving the Pell 
equation, although the author does not trace the connection in detail... 

The author proves that the period is either symmetric, as in the regular 
case, or else ‘almost symmetric’, that is symmetric except for three 
central asymmetric partial quotients... 

The theory of this continued fraction in most respects closely parallels 
the classical regular case of Lagrange. The slight blemishes 
characteristic of the new (or should one say 12th century) algorithm do 
not seem to be compensated by any useful features other than that 
possessed by the nearest integer algorithm....”  



RECENT WORK ON "PELL’S EQUATION" 

"Pell’s equation" continues to be an important subject of current research. 

The period k(D) of the simple continued fraction expansion of √D is a 
good measure of the number of steps  needed to solve the equation. And 
this is known to fluctuate wildly between as low a value as 1 and an upper 
bound which is of the order of (√D)log(D). The solutions are similarly 
bounded above by a multiple of D exp(√D) 

For instance, for D=1620, k(D) = 1 and we have the roots (161, 4) 

For D=1621, k(D) = 78 (the NSCF has a period of 56), and the larger root 
has 76 digits!  

While it is true that even writing down the solutions involves exponential 
time (in terms of input length logD), various algebraic number theoretic 
techniques are being developed to obtain a significant number of digits of 
the solution by "faster" means. Recently Hallgren (2002) has come up 
with a polynomial-time quantum algorithm for the same purpose.



MID-POINT CRITERIA 

Recently, Mathews, Robertson and White (2010) have worked out the 
mid-point criteria for the Bhāskara continued fraction expansion of √D. 

In the case of the Simple Continued Fraction expansion of √D, the mid-
point criteria were given by Euler: 

If Qh-1 = Qh (or ⏐Kh-1⏐=  ⏐Kh⏐),  then the period  k = 2h-1 and  

Ak-1 = Ah-1Bh-1+ Ah-2Bh-2 

Bk-1 = Bh-1
2 + Bh-2

2 

which satisfy Ak-1
2 - DBk-1

2 = -1 

 

If Ph = Ph+1, then the period k = 2h and  

Ak-1 = Ah-1Bh+ Ah-2Bh-1 

Bk-1 = Bh-1 (Bh + Bh-2) 

which satisfy Ak-1
2 - DBk-1

2 = 1 

  



MID-POINT CRITERIA 

Mathews et al have obtained the following mid-point criteria for the 
Bhāskara  or the Nearest Square Continued Fraction expansion of √D:  

If Qh-1 = Qh (or ⏐Kh-1⏐=  ⏐Kh⏐),  then the period  k = 2h-1 and  

Ak-1 = Ah-1Bh-1+ εhAh-2Bh-2 

Bk-1 = Bh-1
2 + εhBh-2

2 

which satisfy Ak-1
2 - DBk-1

2 = -εh
 

 

If Ph = Ph+1, then the period k = 2h and  

Ak-1 = Ah-1Bh+εh Ah-2Bh-1 

Bk-1 = Bh-1 (Bh + εhBh-2) 

which satisfy Ak-1
2 - DBk-1

2 = 1 

In the Type I case, the mid-point will in variably satisfy one of the above 
two criteria.  



MID-POINT CRITERIA 

In the Type II case, the following is the mid-point criterion: 

When Qh = ⏐Kh⏐ is even and Ph = Qh + (½)Qh-1  = ⏐Kh⏐+ (½)⏐Kh-1⏐     
and εh =1, then k = 2h  and 

Ak-1 = AhBh-1- Bh-2 (Ah-1 - Ah-2) 

Bk-1 = 2Bh-1
2 - Bh Bh-2 

which satisfy Ak-1
2 - DBk-1

2 = 1 

These mid-point criteria serve to further simplify the computation of the 
solution. 

Note: The mid-point criteria for the Nearest Integer Continued Fraction 
expansion, obtained by Williams and Buhr (1979), are considerably more 
complicated than the above mid-point criteria for NSCF.  



OPTIMALITY OF CAKRAVĀLA METHOD 

We have already remarked that the cakravāla process skips certain steps 

in the Euler-Lagrange process. Sometimes the period of Euler-Lagrange 

continued fraction expansion could be double (or almost double) the 

period of Bhāskara expansion. For instance, for D=13, 44, 58, we have the 

following: 

 



OPTIMALITY OF CAKRAVĀLA METHOD 

 

We may note that whenever there is a 'unisequence' (1,1,...,1) of partial 

quotients of length n, the cakravāla process skips exactly (n/2) steps if n is 

even, and  (n+1)/2 steps if n is odd.  

In a series of papers (1960-63), Selenius has shown that the cakravāla 

process is 'ideal' in the sense that, whenever there is such a 'unisequence', 

only those convergents Ai/Bi are retained for which Bi⏐Ai - Bi √D ⏐ are 

minimal.  

Recently, Mathews et al (2010) have shown that the period of Bhāskara or 

Nearest Square Continued Fraction is the same as that of the Nearest 

Integer Continued Fraction. They also estimate that the ratio of this period 

to that of simple continued fraction is log2 [(1+√5)/2] ≈ 0.6942419136... 

 



OPTIMALITY OF CAKRAVĀLA METHOD

  



REFERENCES 
1. Bījagaõita of Bhāskara with Comm. of Kçùõa Daivajña, Ed. 

Radhakrishna Sastri, Saraswati Mahal, Thanjavur 1958. 
2. Bījagaõita of Bhāskara with Vāsanā and Hindi Tr. by Devachandra Jha, 

Chaukhambha, Varanasi 1983. 
3. Bījagaõita of Bhāskara with Vāsanā, with notes by T. Hayashi, 

SCIAMVS, 10, December 2009, pp. 3-303. 
4. H. T. Colebrooke, Algebra with Arithmetic and Mensuration from the 

Sanskrit of Brahmagupta and Bhāskara, London 1817. 
5. J. Wallis, Commercium Epistolicum de Quaestionibus, London, 1658. 
6. L. Euler, Elements of Algebra with Notes of Bernoulli and Lagrange, 

Tr. by J. Hewlett, 3ed 1822. 
7. B. Minnegerode, Uber eine neue methode die Pellsche Gleischung 

aufzullosen, Nachr Konig Gesselsch Wiss Gottingen Math Phys Kl, 23, 
1873, pp. 619-652. 

8. A. Hurwitz, Uber eine besondere Art de Kettenbruchentwicklung 
Grossen, Acta Math. 12, 1889, pp.367-405. 

9. A. A. Krishnaswami Ayyangar, New Light on Bhāskara’s Cakravāla or 
Cyclic method, J. Indian Math. Soc. 18, 1929-30, pp.225-248. 



10. B. Datta and A. N. Singh, History of Hindu Mathematics, Vol II, 
Algebra,  Lahore  1938; Reprint, Asia Publishing House, Bombay 1962.   

11. A. A. Krishnaswami Ayyangar, A New Continued Fraction, Current 
Sci., 6, June 1938, pp. 602-604. 

12. A. A. Krishnaswami Ayyangar, Theory of Nearest Square Continued 
Fraction, J. Mysore Univ., Section A 1, 1941, pp 21-32, 97-117. 

13. K. S. Shukla, Acharya Jayadeva the Mathematician, Ganita, 5, 1954, 
pp.1-20. 

14. C. O. Selenius, Rationale of the Cakravāla Process of Jayadeva and 
Bhāskara II, Hist. Math. 2, 1975, pp.167-184. 

15. H. C. Williams and P. A. Buhr, Calculation of the regulator of        

Q (√D) by the use of the Nearest Integer Continued Fraction algorithm,  
Mathematics of Computation, 33, 1979, pp.369-381.  

16. A. Weil, Number Theory An Approach Through History From 
Hammurapi to Legendre, Birkhauser, Boston 1984. 

17. R. Sridharan, Ancient Indian Contributions to Quadratic Algebra, in 
B. V. Subbarayappa and N. Mukunda Eds., Science in the West and 
India, Himalaya, Bombay 1995, pp.280-289. 



18. H. C. Williams, Solving the Pell’s equation, in M. A. Bennett et al 
Eds., Proc. of Millennial Conference on Number Theory, A. K. Peters, 
Mass. 2002, pp. 397-435. 

19. H. W. Lenstra Jr., Solving the Pell’s equation, Notices of Amer. 
Math. Soc. 49, 2002, pp. 182-192. 

20. S. Hallgren, Polynomial-time Quantum Algorithms for Pell’s 
equation and the principal ideal problem, STOC 2002. 

21. M. S. Sriram, Algorithms in Indian Mathematics, in G. G. Emch et al 
Eds., Contributions to the History of Indian Mathematics, Hindustan 
Book Agency, Delhi 2005, pp.153-182. 

22. M. J. Jacobson and H. C. Williams, Solving the Pell’s Equation, 
Springer, New York 2009. 

23. K. R. Matthews, J. P. Robertson and J. White, Mid-point Criteria for 
Solving Pell’s Equation Using the Nearest Square Continued Fraction, 
Math. Comp. 79, 2010, pp.485-499. 

24. K. R. Mathews and J. P. Robertson, Equality of Period Length for 
NICF and NSCF, Glass. Mat. Ser. III, 46.2, 2011, pp. 269-282. 

25. A. Dutta, Nārāyaõa’s Treatment of Varga-prakçti, Indian Journal of 
History of Science 47, 2012, pp.633-77. 


