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The Dirichlet Problem

Let Ω ⊂ RN be a bounded domain.

Consider the following problem: Find
u 6≡ 0 and λ ∈ R such that

−∆u = λu in Ω
u = 0 on ∂Ω

where

∆u =
N∑
i=1

∂2u

∂x2
i

and ∂Ω denotes the boundary of Ω.
N = 1 : vibrating string which is fixed at both ends.
N = 2 : vibrating membrane (drum) fixed along the boundary.
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N = 1,Ω = (0, 1)

−d2u
dx2 = λu in (0, 1),

u(0) = 0 = u(1).

We get that the only non-trivial solutions are

λn = n2π2, un = C sin nπx , n ∈ N

where C is any real constant. If we fix C =
√

2, we get∫ 1

0
u2
n(x) dx = 1, for all n ∈ N.
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λn = n2π2, un =
√

2 sin nπx .

We have a sequence of eigenvalues

0 < λ1 < λ2 < · · · < λn < · · · → ∞

Notice that ∫ 1

0
un(x)um(x) dx = δnm

and, from the theory of Fourier series, we know that {un} forms an
orthonormal basis of L2(0, 1) (Fourier sine series).

In this case, all the eigenvalues are simple, i.e. the eigenspaces are
one dimensional.

u1 > 0 in (0, 1).

un has exactly n − 1 zeros in (0, 1).
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Sobolev Spaces

Let Ω ⊂ RN be a reasonably smooth domain. Then H1(Ω) is the
completion of C∞(Ω) with respect to the norm

‖u‖1,Ω =

[∫
Ω

(
|∇u(x)|2 + |u(x)|2

)
dx

] 1
2

where x = (x1, x2, · · · , xN) and dx = dx1dx2 · · · dxN .

The space H1
0 (Ω) is the completion of C∞c (Ω), the space of C∞ functions

with compact support, with respect to the above norm, and is thus a
closed subspace of H1(Ω).
Poincaré’s Inequality states that the semi-norm

|u|1,Ω =

[∫
Ω
|∇u(x)|2 dx

] 1
2

is also a norm for H1
0 (Ω), which is equivalent to the norm ‖u‖1,Ω.
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Equivalently, H1(Ω) can be thought of as the space of L2(Ω) ‘functions’
whose distributional derivatives of the first order are also in L2(Ω) and
H1

0 (Ω) is the closed subspace of ‘functions’ in H1(Ω) which ‘vanish’ on the
boundary ∂Ω.

These are Hilbert spaces with the following inner-products:

(u, v)H1(Ω) =

∫
Ω

(∇u(x).∇v(x) + u(x)v(x)) dx ;

(u, v)H1
0 (Ω) =

∫
Ω
∇u(x).∇v(x) dx .
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Let f ∈ L2(Ω). Consider the problem: Find v such that

−∆v = f in Ω,
v = 0 on ∂Ω.

Its weak form is to find v ∈ H1
0 (Ω) such that∫

Ω
∇v .∇w dx =

∫
Ω

fw

for all w ∈ H1
0 (Ω). This problem has a unique solution and we define

G : L2(Ω)→ H1
0 (Ω) by G (f ) = v . This is a continous operator and if we

compose it with the inclusion

H1
0 (Ω) ⊂ L2(Ω)

which is compact (Rellich’s theorem) we get that G is a compact operator
of L2(Ω) into itself and it is easy to see that it is self-adjoint as well.
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If (u, λ) solves the original eigenvalue problem, then, in the new notation
we have

u = G (λu)

and, since λ > 0, we can write

G (u) =
1

λ
u.

Thus, from the spectral theory of compact self-adjoint operators on a
Hilbert space, we deduce that there exists a sequence {λn} of positive
eigenvalues increasing to infinity and an associated orthonormal family of
eigenfunctions {un} which forms an orthonormal basis for L2(Ω).
Let us write

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → ∞

with the λn being repeated as many times as the dimension of the
corresponding eigenspace.
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Example

Ω = (0, 1)× (0, 1) ⊂ R2. Then, it is easy to see that λnm = π2(n2 + m2)
is an eigenvalue with corresponding eigenfunction

unm = 2 sin nπx sin mπy .

That these are the only ones needs proof and follows from the fact that
{unm} is a complete orthonormal basis for L2(Ω). Thus, λ1 = 2π2 while
λ2 = λ3 = 5π2 corresponding to n = 1,m = 2 and n = 2,m = 1 and the
space of eigenfunctions is two dimensional spanned by 2 sinπx sin 2πy and
2 sin 2πx sinπy .
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Example

Ω is the unit disc in R2. In polar coordinates, we have

−
[

urr +
1

r
ur +

1

r 2
uθθ

]
= λu.

We look for solutions of the form u(r , θ) = v(r)w(θ) and this leads us to
look at

w” + kw = 0, w is 2π − periodic

and

v” +
1

r
v ′ +

(
λ− k

r 2

)
= 0

with v ′(0) = v(1) = 0. The first equation implies that
k = n2, n ∈ {0} ∪ N and substituting it in the second leads us to the
Bessel’s equation. In particular, u1 corresponds to k = 0 and is a radial
function and λ1 comes from the first zero of the Bessel function J0:

λ1 = j2
0,1, u1 = CJ0(j0,1r).

One can show that all eigenvalues and eigenfunctions occur only in this
way.
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If j0,l is the l-th zero of J0, then j2
0,l is a simple eigenvalue with

eigenfunction CJ0(j0,l r) which is also radial. While u1 is positive in Ω, the
others change sign.

If we take k = n2, n ∈ N, then for n, l ≥ 1 we have the double eigenvalue
j2
n,l with eigenspace spanned by

CJn(jn,l r) cos nθ, and CJn(jn,l r) sin nθ.
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Variational Characterization

Define

R(v) =

∫
Ω |∇v |2 dx∫

Ω |v |2 dx
, v ∈ H1

0 (Ω), v 6= 0.

Given an orthonormal basis of eigenfunctions {un} corresponding to the
eigenvalues {λn} listed in increasing order, taking into account the
multiplicity, set, for k ∈ N,

Vk = span{u1, · · · , uk}

Then, for k ∈ N,

λk = R(uk)
= maxv∈Vk ,v 6=0 R(v)
= minv⊥Vk−1,v 6=0 R(v)
= minV⊂H1

0 (Ω),dimV=k maxv∈V ,v 6=0 R(v)

In particular,
λ1 = min

v∈H1
0 (Ω),v 6=0

R(v).
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Monotonicity with respect to domain inclusion

Let Ω1 ⊂ Ω2.
We will write {λk(Ωi )}, i = 1, 2 for the sequence of eigenvalues of
Ωi , i = 1, 2. It follows from the variational characterization that for each
k ∈ N,

λk(Ω2) ≤ λk(Ω1).

This is because extension of a function by zero outside Ω1 gives an
imbedding of H1

0 (Ω1) into H1
0 (Ω2).
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The first eigenfunction

An important property of H1(Ω) (resp. H1
0 (Ω)) is that if u is in that

space, then so are u+ and u−. So we can use these as test functions in the
weak formulation: ∫

Ω
∇u.∇v dx = λ

∫
Ω

uv dx .

Setting u = u1, λ = λ1 and v = u±, we easily deduce that

λ1 = R(u+) = R(u−).

Since λ1 is the absolute minimum of R(v) for v ∈ H1
0 (Ω), we deduce that

u±1 are eigenfunctions corresponding to λ1 as well. By the strong
maximum principle for the Laplacian, it follows that u±1 ≡ 0 or u±1 > 0 in
all of Ω. Since u1 6≡ 0, both cannot be simultaneously zero, nor can both
be simultaneously strictly positive over all of Ω. Thus,

u1 = u+
1 or u−1 in Ω.
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Thus, u1 does not vanish inside Ω.

Since ui are all orthogonal to u1 (in L2(Ω)) for i ≥ 2, it follows that they
all change sign inside Ω.
It also follows that λ1 is a simple eigenvalue.
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Nodal Domains

If u is an eigenfunction, then a nodal domain of u is a subdomain of Ω
where u has a constant sign.

Theorem

(Courant): Let k ≥ 2. Then uk can have atmost k nodal domains.

Corollary: If k = 2, then u2 has exactly two nodal domains.

Theorem

(Pleijel): There exists a positive integer k0 such that for all k ≥ k0, the
number of nodal domains of an eigenfunction of λk is strictly less than k.
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When Ω ⊂ R2 is a convex domain, then the curve

{x ∈ Ω : u(x) = 0},

called the nodal line, hits ∂Ω exactly at two points.

Conjecture

(Payne) The same is true for any simply connected plane domain.

This is still open.
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Asymptotic Behaviour

Ω ⊂ RN . Let |Ω| denote the (N-dimensional) Lebesgue measure of Ω.
Weyl’s asymptotic Formula

λk(Ω) ∼ 4π2

(
k

ωN |Ω|

) 2
N

as k →∞, where ωN is the volume of the unit ball in RN .

ωN =
π

N
2

Γ(N2 + 1)
.

Pleijel (N = 2):
∞∑
k=1

e−λk (Ω)t ∼ A

2πt
− L

4

1√
2πt

as t → 0, where A is the area and L is the perimeter of Ω ⊂ R2.
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Isospectral Domains

Let Ωi ⊂ RN , i = 1, 2.
We say that Ω1 and Ω2 are isospectral if

λk(Ω1) = λk(Ω2)

for all k ≥ 1.

Question (Kac, 1966)

If Ω1 and Ω2 are isospectral, then are they isometric as well? i.e. Can one
be obtained from the other by a translation and rotation?(‘Can one hear
the shape of a drum?’)

Answer: ‘No’. The case N = 2 resisted resolution till the early 90’s.
(Gordon, C., Webb, D. L. and Wolpert, S., BAMS (New Series),Vol. 27,
No. 1, pp.134-138, 1992).
Can produce examples by paper folding: See, Chapman, S. J.: Drums that
sound the same, AMM,102, Feb. 1995,pp.124-138.
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Example of isospectral domains
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Let N = 2 and let Ω1 be a disc. If Ωi , i = 1, 2 are isopsectral, then they
have the same area, A and the same perimeter, L. But then, since Ω1 is a
disc, we have L2 = 4πA, which is now true for Ω2 as well and so, by the
classical isoperimetric inequality, Ω2 has to be a disc of the same size as
well.
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Schwarz Symmetrization

Let Ω ⊂ RN . let Ω∗ be the ball with centre at the origin and such that
|Ω∗| = |Ω|.
Let u : Ω→ R be an integrable function.
u# : [0, |Ω|]→ R is its one-dimensional decreasing rearrangement.

If µ(t) = |u > t| is the distribution function of u, then, roughly, u# is the
inverse function. The Schwarz symmetrization of u is u∗ : Ω∗ → R defined
by

u∗(r) = u#(ωN rN)

where r 2 =
∑N

i=1 |xi |2, x = (x1, · · · , xN) ∈ RN .
Thus, u∗ is a radial and radially decreasing function.
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u, u# and u∗ are equimeasurable, i.e. they have the same distribution
function.

If F : R→ R is a non-negative Borel function, then∫
Ω

F (u) dx =

∫
Ω∗

F (u∗) dx .

In particular, all Lp-norms of u and u∗ are the same.

Hardy-Littlewood Inequality:∫
Ω

uv dx ≤
∫

Ω∗
u∗v∗ dx .

Polya-Szegö Inequality: if u ∈ H1
0 (Ω) and if u ≥ 0 in Ω, then

u∗ ∈ H1
0 (Ω∗) and ∫

Ω
|∇u|2 dx ≥

∫
Ω∗
|∇u∗|2 dx .
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Extremum Problems for the eigenvalues

Rayleigh-Faber-Krahn
Of all domains of fixed measure, the ball has the least first eigenvalue.

λ1(Ω) ≥ λ1(Ω∗).

(SK) In case of equality, then Ω must be a ball. (Also proved by Faber and
Krahn for N = 2; by Kawohl, using Steiner symmetrization arguments.)
Consequence: In any dimension, given two isospectral domains, one of
them being a ball, the other is also a ball.
Proof: Since they are isospectral, by Weyl’s formula, they have the same
measure. Thus we can consider them as Ω and Ω∗. Now, by the equality
of λ1, it follows that Ω is also a ball.
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Proof of the inequality:
Let u1 be an eigenfunction corresponding to λ1(Ω). Then u1 ∈ H1

0 (Ω) and
u1 > 0 in Ω. So u∗1 ∈ H1

0 (Ω∗) and∫
Ω
|∇u1|2 dx ≥

∫
Ω∗
|∇u∗1 |2 dx

while ∫
Ω
|u1|2 dx =

∫
Ω∗
|u∗1 |2 dx .

Thus,
λ1(Ω) = RΩ(u1) ≥ RΩ∗(u∗1) ≥ λ1(Ω∗).
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Consider the Neumann problem:

−∆u = µu in Ω
∂u
∂ν = 0 on ∂Ω.

Again, we have a sequence of eigenvalues

0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µn · · · → ∞

Szegö - Weinberger:

µ2(Ω) ≤ µ2(Ω∗).

S. Kesavan (IMSc) Spectrum of the Laplacian July 1, 2013 26 / 37



Consider the Neumann problem:

−∆u = µu in Ω
∂u
∂ν = 0 on ∂Ω.

Again, we have a sequence of eigenvalues

0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µn · · · → ∞
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Other Dirichlet eigenvalues

Krahn-Szegö: Amongst all domains of fixed measure, c , the minimiser of
λ2 is the disjoint union of two balls, each of measure c/2.

There is no minimizer for λ2 amongst connected sets of fixed measure.

Theorem

Let c > 0 and let k be a positive integer. There exists a convex domain Ω̃
such that |Ω̃| = c and

λk(Ω̃) = min

{
λk(Ω) :

Ω ⊂ RN ,
Ω is convex, |Ω| = c

}
.

Open Problem

Find the shape of the convex minimizer of λ2?
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The third eigenvalue

Theorem

(Bucur-Henrot) There exists a minimser for λ3 amongst domains of fixed
measure.

Theorem

(Wolf-Keller) In dimensions 2 and 3, the minimiser is connected.

Theorem

The minimiser is either connected or is the disjoint union of three identical
balls.

Theorem

(Wolf-Keller) In the plane, the ball is a local minimiser for λ3.
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Open Problem

Prove that the minimiser for λ3 is a ball for dimensions N = 2, 3 and is the
disjoint union of three identical balls for dimensions N ≥ 4.

Theorem

(Bucur, 2012) For every k ∈ N, there exists a minimiser for λk amongst
domains of equal measure.

Conjecture (Szegö): The minimiser of λk is a ball or is a disjoint union of
balls.
Answer: No.
(Wolf-Keller) The 13th eigenvalue of a square is strictly less than that of
any union of discs of equal area, in the plane.
Numerical experiments show that for k ≥ 5,the minimiser is not a ball, nor
a disjoint union of balls, in the plane.

Open Problem

Amongst domains of fixed measure in RN , the N-ball minimises λN+1.
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Conjecture (Szegö): The minimiser of λk is a ball or is a disjoint union of
balls.
Answer: No.
(Wolf-Keller) The 13th eigenvalue of a square is strictly less than that of
any union of discs of equal area, in the plane.
Numerical experiments show that for k ≥ 5,the minimiser is not a ball, nor
a disjoint union of balls, in the plane.

Open Problem

Amongst domains of fixed measure in RN , the N-ball minimises λN+1.

S. Kesavan (IMSc) Spectrum of the Laplacian July 1, 2013 29 / 37



Open Problem

Prove that the minimiser for λ3 is a ball for dimensions N = 2, 3 and is the
disjoint union of three identical balls for dimensions N ≥ 4.

Theorem

(Bucur, 2012) For every k ∈ N, there exists a minimiser for λk amongst
domains of equal measure.
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Other Problems

Payne-Polya-Weinberger Conjecture (1950s): N = 2

λ2(Ω)

λ1(Ω)
≤ λ2(Ω∗)

λ1(Ω∗)
.

Answer: Yes, for all N, with equality iff Ω is a ball (Ashbaug-Benguria,
1992).
Clever use of Schwarz symmetrization and properties of Bessel functions.
Other conjectures, still open, due to Payne-Polya:

λ2(Ω) + λ3(Ω)

λ1(Ω)
≤ λ2(Ω∗) + λ3(Ω∗)

λ1(Ω∗)
.

λm+1(Ω)

λm(Ω)
≤ λ2(Ω∗)

λ1(Ω∗)
.
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The Biharmonic Operator

Vibration of a clamped plate

∆2u = Λu in Ω,

u = ∂u
∂ν = 0 on ∂Ω.

The buckling of a clamped plate

∆2u = −σ∆u in Ω,

u = ∂u
∂ν = 0 on ∂Ω.

The existence of a sequence of eigenvalues and a complete orthonormal
sequence of eigenfunctions follows as before. However,

Λ1 and σ1 are not necessarily simple eigenvalues (but true for a ball).

The first eigenfunction in either case is not necessarily of constant
sign in Ω (but true for a ball).
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Conjecture (Rayleigh, 1894):

Λ1(Ω) ≥ Λ1(Ω∗).

Conjecture (Polya-Szegö, 1950s):

σ1(Ω) ≥ σ1(Ω∗).

Rayleigh’s conjecture proved for N = 2 by Nadirashvili (1992) and for
N = 2, 3 by Ashbaugh and Benguria. Case of general N is open.
Polya-Szegö conjecture still open in all dimensions.
Both are easy to prove if we know that the first eigenfunction does not
change sign, but this is unfortunately not true!
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σ1(Ω) ≥ σ1(Ω∗).

Rayleigh’s conjecture proved for N = 2 by Nadirashvili (1992) and for
N = 2, 3 by Ashbaugh and Benguria. Case of general N is open.
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We can show that
Λ1(Ω) ≥ cΛ1(Ω∗)

and
σ1(Ω) ≥ dσ1(Ω∗)

with c = d = 1/2.

It has been shown that these inequalities hold in RN with c = cN and
d = dN where 0 < cN , dN < 1 and cN , dN are computable constants which
tend to unity as N →∞.
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The p-Laplacian

Let 1 < p <∞. Consider the nonlinear eigenvalue problem:

−div(|∇u|p−2∇u) = λ|u|p−2u in Ω,
u = 0 on ∂Ω.

Weak form: Find λ ∈ R and u ∈W 1,p
0 (Ω), u 6≡ 0, such that, for every

v ∈ C∞c (Ω), ∫
Ω
|∇u|p−2∇u.∇v dx =

∫
Ω
|u|p−2uv dx ,

where W 1,p
0 (Ω) is the Sobolev space which is the completion of C∞c (Ω)

with respect to the norm

‖u‖1,p =

(∫
Ω

(|∇u|p + |u|p) dx

) 1
p

.
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As in the case p = 2, by Poincaré’s inequality, the norm

|u|1,p =

(∫
Ω
|∇u|p dx

) 1
p

is an equivalent norm.

This is a nonlinear problem and so we do not have an eigenspace attached
to an eigenvalue. The eigenvalues are critical values of the Rayleigh
quotient

Rp(v) =

∫
Ω |∇u|p dx∫

Ω |u|p dx
.

The minimum of Rp is attained and so it is called the principal eigenvalue
and the minimiser is an eigenfunction. It can be shown that all
eigenfunctions associated to the principal eigenvalue are scalar multiples of
each other and so we say that this eigenvalue, called λ1, is ‘simple’.
Further, the eigenfunctions do not change sign in Ω.

λ1(Ω) ≥ λ1(Ω∗)

and the principal eigenfunction in a ball is radial.
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Using critical point theory (Lusternik-Schnirelman) applied to the Rayleigh
quotient, we can show the existence of an increasing sequence of positive
eigenvalues, which tends to infinity.

Open Problem

Are these the only eigenvalues?

It can be shown that there are no other eigenvalues between λ1 and λ2.
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Thank You!

S. Kesavan (IMSc) Spectrum of the Laplacian July 1, 2013 37 / 37


