
THE JACOBSON DENSITY THEOREM AND APPLICATIONS

We consider rings not necessarily with identity. By modules we mean right modules.

1. Basic definitions

1.1. Strictly Cyclic Modules and Modular Right Ideals. For a ring A with
identity, cyclic modules are precisely those of the form a\A where a is a right
ideal.1 What might be a useful analogous statement for a ring without identity?
This question motivates what follows in this subsection.

A module M is strictly cyclic if there exists m in M such that mA = M (such
an m is called a generator); a right ideal a is modular if there exists e in A such
that a− ea belongs to a for every a in A (such an e is a left identity for a). These
two notions are related thus: strictly cyclic modules are precisely those of the form
a\A for modular right ideals a. Proof: the image of a left identity for a in a\A is
a generator; if m is a generator for M , then any element e such that me = m is a
left identity for the right ideal consisting of annihilators of m.

The usefulness of the notion of a modular right ideal is further borne out by the
following basic observations. To set these up, first note that the annihilator of a
module is a two sided ideal. Thus, for modules N ⊆ M , the “colon” (N : M) :=
{a ∈ A |Ma ⊆ N} is a two sided ideal in A. In the case when M is A and N a
right ideal a, we can compare a with (a : A). For a modular right ideal a with left
identity e,

• (a : A) ⊆ a; in fact, (a : A) is the largest two sided ideal contained in a.2

• There is no proper right ideal containing both a and e. Thus, by an appli-
cation of Zorn’s Lemma, a is contained in a maximal (proper) right ideal
(which is necessarily modular—see the next item).

• e continues to be a left identity for right ideals containing a.3

1.2. Irreducibility and Primitivity. A module M is irreducible if MA 6= 0 and
there are no proper non-zero submodules. Here are two other equivalent ways of
expressing the irreducibility of a module M :

• M 6= 0, and mA = M for any m 6= 0 in M (this means any m 6= 0 is a
generator for M).

• M is of the form a\A where a is a maximal modular right ideal.4

Date: May 2005; Author: K. N. Raghavan; please send corrections to knr@imsc.res.in.
1Given our conventions, the notation a\A seems more appropriate than A/a for the quotient

of A by its right submodule a.
2In general, without the hypothesis of modularity on a right ideal a, we have:
– Any left ideal b contained in a is contained in (a : A) for Ab ⊆ b ⊆ a.

– The largest left ideal contained in a is a two sided ideal.

3(1 − e)A := {x − ex |x ∈ A} is a right ideal; and e is a left identity for a right ideal b iff b

contains (1− e)A. See §1.4 on quasi-regular elements for more.
4Maximal modular right ideals are maximal as right ideals as observed in §1.1.
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2 THE JACOBSON DENSITY THEOREM AND APPLICATIONS

The proof of the equivalence of these conditions is left as an exercise for the reader.
Annihilators of irreducible modules are called primitive ideals.5 They are pre-

cisely those of the form (a : A) for maximal modular right ideals a.
A ring is primitive6 if 0 is a primitive ideal, that is, if there exists a faithful irre-

ducible module. Division rings are primitive—the ring itself is a faithful irreducible
module. In the commutative case, we have a converse: a primitive commutative
ring is a field. Proof: By primitivity, the zero ideal equals (a : A) for some maximal
modular right ideal a. By commutativity, (a : A) ⊇ a, so a = 0. The modular-
ity of 0 shows that A has an identity. The maximality shows that every non-zero
element is invertible.

1.3. Radical and Semi-simplicity. The radical7 is the intersection8 of all prim-
itive ideals, or, what amounts to the same, any of the following:

• the intersection over all irreducible modules of their annihilators.
• the intersection over all maximal modular right ideals a of (a : A).9

• the intersection of all maximal modular right ideals.
It is only the third alternative description that requires comment. The annihilator
of a module M is the intersection over all elements m in M of their annihilators
(0 : m). For M irreducible, each (0 : m) is a maximal modular right ideal as
(0 : m)\A is isomorphic to M .10

A ring is semi-simple if its radical is 0 and radical if its radical is itself.

1.4. Quasi-regular elements. The internal characterization of the radical in §1.5
below is in terms of quasi-regular elements, whence the motivation for the notion
of quasi-regularity. To understand the definition, suppose that a ring A has an
identity 1. The map z 7→ 1 − z is an involution (as a map of sets) of A. Pulling
back the multiplication of A via this involution gives a new multiplication on A
called the “circle” composition:

z ◦ z′ := z + z′ − zz′

This makes sense even when A does not have an identity. It is associative (proof:
embed A into a larger ring with identity and pull back) and 0 acts as the identity
for it. An element z of A is right quasi-regular if it has a right inverse11 with respect
to this composition, i.e., if there exists z′ such that z ◦ z′ = z + z′ − zz′ = 0.

Left quasi-regularity is similarly defined, and z is quasi-regular if it is both right
and left quasi-regular (in which case there exists z′ such that z ◦ z′ = z′ ◦ z = 0).

5More precisely, although these ideals are themselves two-sided, they should be called right

primitive ideals, for they arise as annihilators of irreducible right modules. There is the analogous
notion of left primitive ideal . An ideal could be right primitive without being left primitive as

was shown by Bergman, Proceedings of the A. M. S., 1964.
6Again, more precisely, right primitive. See the previous footnote.
7More precisely, at least for now, we should say right radical , but, as we will see in §1.5, it

follows as a consequence of the internal characterization of the (right) radical that the left and
right radicals coincide.

8Here and elsewhere, an intersection of a family of subsets is taken to be the whole set when
the family is empty.

9It seems natural to wonder if (a : A) is a maximal two sided ideal when a a maximal modular
right ideal. We will see in §3.1 that this is the case when A is right Artinian.

10This may take some getting used to: unlike in the case when A is commutative with identity,

it is possible (and quite common) that a\A and b\A are isomorphic for distinct right ideals a, b.
11Caution: quasi-regularity means nearness to 0, not to 1.
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If all elements of a right ideal a are right quasi-regular then they are all quasi-
regular: if a is in a with a right circle inverse b, then b belongs to a and so has a
right circle inverse c; then a = a ◦ 0 = a ◦ (b ◦ c) = (a ◦ b) ◦ c = 0 ◦ c = c, so that b
is a left circle inverse for a = c. Such a right ideal is called quasi-regular.

A nilpotent element is quasi-regular: if zn = 0, then −(z + · · ·+ zn−1) is a circle
inverse for z as the familiar identity (1 − z)−1 = 1 + z + · · · + zn−1 shows. Thus
nil-ideals—those ideals all of whose elements are nilpotent—are quasi-regular.

Here is another way of looking at right quasi-regularity: for an element z in a
ring A, {a− za | a ∈ A} is a right ideal which we denote by (1− z)A even if A does
not have 1; it is the smallest right ideal for which z is a left identity.12 Now, z is
right quasi-regular iff (1 − z)A = A, for “clearly” 1 − z has a right multiplicative
inverse iff (1− z)A = A.13

1.5. Internal characterization of the radical. We can now state the main re-
sult of this section, namely, the following characterization of the radical due to
Jacobson14, following Perlis15.

The radical consists of quasi-regular elements and contains every
quasi-regular right ideal.

Before turning to the proof, let us record some consequences:
• The left analogue of the second assertion says that the left radical contains

every quasi-regular left ideal. On the other hand, by the first assertion, the
(right) radical is quasi-regular as a left ideal. Thus the left radical contains
the radical. The other way around is similarly true, so that the radical and
left radical are equal.

• The following are all equal to the radical:
– The union of all quasi-regular right ideals.
– The union of all quasi-regular left ideals.
– {z ∈ A |xzy quasi-regular for all x and y in A}.

The proofs of these equalities are left as exercises for the reader.
• The radical contains all one-sided nil ideals for these are quasi-regular.

Turning to the proof of the result, first suppose that z is not right quasi-regular,
which means (1 − z)A 6= A. Let a be a maximal (proper) right ideal containing
(1−z)A. Then z is a left identity for a, and so does not kill16 the irreducible module
a\A, and so is not in the radical. The first assertion is thus proved.

For the second assertion, suppose that zA is quasi-regular for some z not in the
radical. Let m be an element of an irreducible module M such that mz 6= 0. By
the irreducibility of M , we have mzA = M . In particular, there exists y in A such
that mzy = m or m(1 − zy) = 0. Since (1 − zy) has a right inverse, this means
m = 0, a contradiction, and the proof of the second assertion is complete.

12Recall that z is a left identity for a right ideal a if x− zx belongs to a for every x in A.
13Here as elsewhere it is to be understood that the arguments involving 1 can easily be replaced

by those that do not involve 1 and hold for rings without identity.
14The Radical and Semi-simplicity for Arbitrary Rings, Amer. Jour. of Math., 1945
15A characterization of the radical of an algebra, Bulletin of the A. M. S., vol. 48, 1942.
16Proof: Ann(a\A) = (a : A) ⊆ a since a is modular; if z ∈ (a : A), then, on the one hand,

zA + (1 − z)A ⊆ a since a is a right ideal, but, on the other, zA + (1 − z)A = A, so a = A, a
contradiction to the properness of a.
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2. The Density Theorem

2.1. The Density Theorem. The density theorem was proved by Jacobson in his
beautiful paper “Structure theory of simple rings without finiteness assumptions,”
Trans. Amer. Math. Soc., 1945. The exposition below follows Chapter II of Jacob-
son’s “Structure of Rings,” AMS Colloquium Publications Vol. XXXVII, Second
Edition, 1963.

Let R be a ring (not necessarily with identity) and M a (right) R-module. Sup-
pose that M is irreducible—this means that MR 6= 0 and M has no proper non-zero
submodules. By Schur, Γ := EndR(M) is a division ring. It is natural to let Γ act
on the left on M , turning M into a Γ-R bimodule.17 The Jacobson density
theorem states:

R is dense for M as a Γ vector space, i.e., given a finite sequence
m1, . . . ,mn of Γ-linearly independent elements of M and a se-
quence m′

1, . . . ,m
′
n of elements of M , there exists r in R such that

m1r = m′
1, . . . , mnr = m′

n.

The following result of Burnside follows as an immediate corollary: if V is a fi-
nite dimensional complex irreducible representation of a group G, then EndCV is
spanned by the images in it of elements of G.

The density theorem above follows from a more general statement which we call,
for want of a better name, the “general density theorem”:

Let R and Γ be rings, M a left Γ-module, M ′ a Γ-R bimodule, and
B a subset of Γ-linear maps from M to M ′. Assume that M is
an irreducible R-module, that Γ = EndR(M), and that B is closed
under addition and BR ⊆ B. Then, given a sequence m1, . . . , mn

of elements of M that are Γ-linearly independent modulo B⊥, and
a sequence m′

1, . . . , m′
n of elements of M ′, there exists b in B such

that m1b = m′
1, . . . , mnb = m′

n.

To deduce the density theorem from this, set M ′ = M and B = R. Since M ′ is
irreducible as an R-module, it follows that B⊥ = 0.

The general density theorem is in turn deduced from the following “double an-
nihilator” lemma:

Let R and Γ be rings, M a left Γ-module, M ′ a Γ-R bimodule, and B
a subset of Γ-linear maps from M to M ′. Assume that every R-map
from an R-submodule of M ′ to M ′ is obtained as left multiplication
by an element of Γ, and that B is closed under addition and BR ⊆
B. Then, given finitely many elements u1, . . . , up of M , we have

(u⊥1 ∩ · · · ∩ u⊥p ∩B)⊥ = B⊥ + Γu1 + · · ·+ Γup.

Before turning to the proof of the lemma, let us deduce the general density theorem
from the lemma. It is enough to find b1 in B such that x1b1 = y1, and x2b1 = . . . =
xnb1 = 0, for in that case we will have b2, . . . , bn with analogous properties, and
b = b1 + . . .+bn will do the job (b belongs to B because B is closed under addition).
In turn, it is enough to find b′1 in B such that x1b

′
1 6= 0, and x2b

′
1 = . . . = xnb′1 = 0,

17If A and B are rings and M a left A-module and also a right B-module, we say that M is
an A-B bimodule if the actions on it of A and B commute, i.e., (am)b = a(mb) for a, b, and m

respectively in A, B, and M .
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for, then, by the irreducibility of M ′, there exists r in R such that x1b
′
1r = y1, and

we can take b1 to be b′1r (this belongs to B because BR ⊆ B).
To find such a b′1, we apply the lemma, taking u1, . . . , up to be x2, . . . , xn.

Since M ′ is irreducible and Γ = EndR(M ′), it follows that the hypothesis in
the lemma about R-maps from R-submodules of M ′ to M ′ is satisfied. Since
x1, . . . , xn are linearly independent modulo B⊥, it follows that x1 does not belong
to B⊥+Γx2 + . . .+Γxn. By the lemma, x1 does not belong to (x⊥2 ∩· · ·∩x⊥n ∩B)⊥,
which means precisely the existence of a b′1 in B with the required properties.

Now to the proof of the lemma. It is in general true that the right hand side
is contained in the left hand side. To obtain the other containment, proceed by
induction on p. First suppose that p = 1. Let v belong to (u⊥1 ∩ B)⊥. Then
u1b 7→ vb is a well-defined R-map from the R-submodule u1B of M ′ to M ′. By
hypothesis, there exists γ ∈ Γ such that vb = γu1b for all b in B, which means that
v − γu1 belongs to B⊥. Writing v = γu1 + (v − γu1), and we are done with the
case p = 1.

The induction step of the proof is rather easy. Set B′ := u⊥2 ∩· · ·∩u⊥n∩B. Then B′

too satisfies the hypothesis on B: it is closed under addition and B′R ⊆ B′. By
the case p = 1, we have (u⊥1 ∩B′)⊥ ⊆ B′⊥ + Γu1. By the induction hypothesis, we
have B′⊥ ⊆ B⊥ + Γu2 + · · ·+ Γup. 2

3. Artinian Semisimple Rings

A ring, not necessarily with identity, is called (right) Artinian if the following
equivalent conditions hold:

• Any non-empty collection of right ideals has minimal elements (with respect
to inclusion).

• Dcc on right ideals: any descending chain of right ideals stabilizes.
There is the analogous notion of left Artinian ring . In general, right and left
Artinian-ness are distinct notions,18 although, as we shall see, for a semisimple ring
they coincide.

3.1. Structure of primitive Artinian rings. The Jacobson density theorem
says the following about a primitive ring: it is a dense ring of endomorphisms of
a vector space over a division ring.19 If a primitive ring happens to be Artinian,
then, as is readily seen,20 this vector space is finite dimensional over the division
ring, and so the ring is the full ring of linear transformations. This proves (1)⇒(3)
of the following structure theorem:

The following are equivalent for an Artinian ring:
(1) It is primitive.
(2) It is simple.

18Exercise: Let Q be the field of rational numbers and A := Qe ⊕ Qz a two dimensional

vector space over Q with basis {e, z}. Make A into a ring by defining e2 = e, ez = 0, ze = z, and

z2 = 0. Show that A is right Artinian but not left Artinian.
19A dense ring of linear transformations of a vector space over a division ring is primitive: the

vector space is a faithful irreducible module for the ring. What the theorem says is that every
primitive ring can be realized in this way.

20If m1, m2, . . . is an unending sequence of linearly independent elements, then, since the
action of the ring is dense, Ann (m1) ) Ann (m1, m2) ) . . . is a strictly descending chain of right

ideals.
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(3) It is the full ring of linear transformations of a finite dimen-
sional vector space over a division ring.

That (3)⇒(2) is easy to see “geometrically” and left as an exercise for the reader.
That (2)⇒(1) is also easy: recall that a ring A is called simple if A2 6= 0 and it has
no proper non-zero two-sided ideals. The Artinian assumption guarantees that A
has a minimal non-zero ideal, say a. The annihilator of a being a two sided ideal,
it is either 0 or A. But it cannot be A, for, then, aA = 0, which implies since a 6= 0
that the annihilator Ann(A) of A as a left module is non-zero, but Ann(A) being
a two sided ideal it then equals A, which means A2 = 0, a contradiction. So the
annihilator of a is 0, which means a is faithful as a right module. In particular
aA 6= 0, and a is an irreducible right module.
Example. The whole ring of linear transformations of an infinite dimensional vec-
tor space over a division ring is primitive but not simple: the finite rank linear
transformations form a two sided ideal.

3.2. Structure of semisimple Artinian Rings. Let A be a ring, Artinian and
semisimple. Semisimplicity means that the zero ideal is an intersection of primi-
tive ideals. Combined with Artinian-ness, it implies that the zero ideal is a finite
intersection of primitive ideals: an ideal that is minimal among finite intersections
of primitive ideals is zero, for, otherwise, by intersecting with one more primitive
ideal we can make it smaller.

Thus we can write the zero ideal as an irredundant intersection21 p1 ∩ · · · ∩ pm

of primitive ideals pi. It follows from the structure theorem of §3.1 that the A/pi

are simple rings. Using this, we prove, by induction on m, that A = a1 ⊕ · · · ⊕ am

where ai := p1 ∩ · · · ∩ p̂j ∩ · · · ∩ pm.
For m = 1, we have a1 = A by definition, and so the assertion holds.
Suppose that m ≥ 2. Since am is not contained in pm, its image in A/pm is a

non-zero two sided ideal. But A/pm being simple, the image is all of A/pm, which
translates to A = pm + am. Since am ∩ pm = 0, we get A = pm ⊕ am.

Consider the ideals p1∩pm, . . . , pm−1∩pm in the ring pm. We have pm/pi∩pm
∼=

pi + pm/pi = A/pi, since pi 6⊆ pm and pm is a maximal ideal. Thus we may apply
induction to conclude that pm = a1 ⊕ · · · ⊕ am−1. This finishes the proof that
A = a1 ⊕ · · · ⊕ am.

The ai are primitive and Artinian, for ai
∼= A/pi. By the structure theorem

of §3.1, there exist integers ni and division rings Γi such that ai is the matrix ring
Mni

(Γi) of ni × ni matrices over Γi. Thus we have proved the “existence” part of
The Artin-Wedderburn Structure Theorem: An Artinian
semisimple ring is a finite direct sum of matrix rings over division
rings. The decomposition is unique up to rearrangement of the
summands: if ⊕Mni(Γi) and ⊕Mn′

i
(Γ′i) are two decompositions,

then the number of summands in the two are same, and, after
rearrangement, ni = n′i and Γi

∼= Γi for all i.

The uniqueness part of the theorem is proved in two steps, the first of which is
to prove the following: In a finite direct sum A = ⊕m

i=1ai where ai
∼= Mni(Γi) are

matrix rings over division rings, any two sided ideal is of the form aii ⊕ · · · ⊕ aik

for some 1 ≤ i1 < . . . < ik ≤ m. It follows from the existence of such elements as

21An intersection b = ∩bi, where i ranges over an index set I, is irredundant if, for any subset

J of I such that J 6= I, we have b ( ∩i∈Jbi.
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(0, . . . , 0, 1, 0, . . . , 0) in A that any two sided ideal of A contains its projections on
the ai. Any two sided ideal is therefore a sum of its projections. The projection
on ai is either 0 or all of ai because ai is simple. This proves the assertion. It
follows as a consequence that the ai are uniquely determined as the minimal two
sided ideals. Thus any decomposition must involve the same ai up to permutation.

The second step in the proof of the uniqueness is this: if Mn(Γ) ∼= Mn′(Γ′),
then n = n′ and Γ ∼= Γ′. We may pose this as follows: how to recover Γ and n
from the ring Mn(Γ)? The minimal right ideals of Mn(Γ) are all isomorphic as
Mn(Γ)-modules to one another and to the “standard” module Γn:22

Proposition: Over a primitive ring admitting minimal non-zero
right ideals, any faithful irreducible module is isomorphic to any
such ideal.

Proof: Let M be a faithful irreducible module and b a minimal non-zero right
ideal. Then Mb 6= 0 since M is faithful. Choose m in M such that mb 6= 0. Since
mb is a submodule, we have M = mb by the irreducibility of M . Since Annm is a
right ideal not containing b, we have b ∩ Annm = 0 by the minimality of b. Thus
mb 7→ b defines an module isomorphism from M to b. 2

The action of Mn(Γ) on Γn being dense, we may recover Γ as EndMn(Γ)Γn:
Claim: If A is a 2-transitive ring of Γ-endomorphisms of a vector
space V over a division ring Γ, then EndAV = Γ.

Proof: Set Γ′ := EndAV . We have Γ′ ⊇ Γ by hypothesis. Suppose that Γ′ ) Γ.
Since A is 2-transitive, it is in particular 1-transitive, so V is irreducible for A. By
Schur, Γ′ is a division ring. Choose γ′ ∈ Γ′ \ Γ and 0 6= v in V . Then v, γ′v are
Γ-linearly independent. By 2-transitivity, there exists a in A such that va = 0 and
(γ′v)a 6= 0. But this is a contradiction since (γ′v)a = γ′(va) = 0. 2

Finally, we can recover n as the dimension over Γ of Γn, and the proof of unique-
ness is complete.

4. Modules over Artinian semisimple rings

4.1. Modules to unital modules. Let A be a ring with unity and M an A-
module, not necessarily unital. Then MA and M ′ := {m − m1 |m ∈ M} are
submodules, M = MA ⊕ M ′, MA is unital, and M ′A = 0. If M is irreducible,
then M ′ = 0 and M = MA is unital. Since the ring does not exercise any control
over M ′, the hypothesis of unitality is necessary in any structure theory of A-
modules. It is not so restrictive either since, modulo the part over which we have
no control, modules are unital.

4.2. Completely Reducible modules. Let A be a ring, not necessarily with
identity. Recall that a (right) module M is called irreducible if MA 6= 0 and M
has no submodules other than 0 and itself. A module M is completely reducible if
it satisfies the following equivalent conditions:

(1) It is a sum of irreducible submodules.
(2) It is a direct sum of irreducible submodules.

22Exercise: There is a one-to-one inclusion reversing correspondence between Γ-subspaces W
of a finite dimensional Γ-vector space V and the right ideals a of EndΓV : W 7→ W⊥ and a 7→ a⊥.
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(3) Every submodule has a complement, i.e., given a submodule N , there exists
submodule P such that N⊕P = M ; and the only element m of M satisfying
mA = 0 is 0.

Condition (3) passes to quotients and subs (every sub is isomorphic to a quotient
and vice-versa); in particular, subquotients of completely reducibles are completely
reducible.

The proof of the equivalence of these conditions is left as an exercise for the
reader. The only part that is perhaps tricky is to show that under (3) there do
exist irreducible submodules. Let us see how to do this. If M has no proper non-
zero submodules, then of course M itself is irreducible and we are done. If not,
let N be a proper submodule, choose y in M \N , let N ′ be a maximal submodule
containing N but not y, and let P be a complement for N ′. The maximality of N ′

implies that every non-zero submodule of P contains y. In particular P is not a
direct sum. But (3) holds for P , so P is irreducible.

4.3. Modules over Artinian semisimple rings. Let A be a ring, Artinian and
semisimple. It follows from the Artin-Wedderburn structure theorem of §3 that A
has identity and is a finite sum of minimal right ideals: say A = b1 + · · ·+ bn (not
uniquely of course except in trivial cases). Using these facts, we can prove:

(1) A unital module is completely reducible.
(2) Every irreducible module is isomorphic to a minimal right ideal.
(3) The number of isomorphism classes of irreducible modules equals the num-

ber of simple components of A.

Proof: (1) Given m in M , we have m = m1 ∈ mb1 + · · · + mbn. Suppose that
mbi 6= 0. Then, Annm ∩ bi being a right ideal properly contained in bi, it is 0. So
mb 7→ b defines a module isomorphism between mbi and bi. In particular, mbi is
irreducible. Thus M is the sum of its irreducible submodules.

(2) Let M be an irreducible module. Choose m in M such that mA 6= 0, so
that M = mA = mb1 + · · · + mbn. Let i be such that mbi is a non-zero. Then
mbi = M . And, as in the proof of (1), mbi

∼= bi.
(3) Let A = a1 ⊕ · · · ⊕ am be a decomposition of A into simple components. Let

b be a minimal right ideal. Then b = bA = ba1 + · · · + bam. Clearly bai 6= 0 for
some i. Fix such an i. Then, since bai ⊆ b, we have bai = b. And baj = baiaj = 0
for j 6= i. Let b′ be another minimal right ideal and i′ be such that b′ = b′ai′ . If
i 6= i′, then b 6∼= b′ (e.g., bai 6= 0 and b′ai = 0); if i = i′ then b and b′ are isomorphic
as ai-modules (by the proposition of §3) and so also as A-modules. Finally, observe
that there are minimal right ideals contained in each of the simple components ai. 2


