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What is geometry?

There are many different ways of defining ‘geometry’ but one of them is:

Geometry is the study of shapes, and how their properties are affected by

given groups of transformations: which properties are left unaltered, and

which ones undergo a change.

This view of geometry is due to the

mathematician Felix Klein (1849–1925).
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What is a ‘Geometric Transformation’?

A transformation of the plane is a function defined on the plane, moving

points around according to a definite law.

Matters of interest: Is the function ‘well behaved’? Is it smooth? Does it

preserve length? Angles? Orientation? Area?

In today’s talk we shall see how the use of transformations can give rise to

elegant proofs of some geometrical propositions.
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Affine maps

Let f be a bijection of the plane. We say that f is affine if it preserves the

property of collinearity. Let the images of points A, B, C , . . . under f be

A′, B′, C ′, . . .. Let the images of lines l , m under f be l ′, m′. Then:
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Let f be a bijection of the plane. We say that f is affine if it preserves the

property of collinearity. Let the images of points A, B, C , . . . under f be

A′, B′, C ′, . . .. Let the images of lines l , m under f be l ′, m′. Then:

• l ‖ m ⇐⇒ l ′ ‖ m′

SAS (CoMaC) Snapshots from Transformation Geometry Nov 2013 4 / 44



Affine maps

Let f be a bijection of the plane. We say that f is affine if it preserves the

property of collinearity. Let the images of points A, B, C , . . . under f be

A′, B′, C ′, . . .. Let the images of lines l , m under f be l ′, m′. Then:

• l ‖ m ⇐⇒ l ′ ‖ m′

• B is the midpoint of AC ⇐⇒ B′ is the midpoint of A′C ′
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Affine maps

Let f be a bijection of the plane. We say that f is affine if it preserves the

property of collinearity. Let the images of points A, B, C , . . . under f be

A′, B′, C ′, . . .. Let the images of lines l , m under f be l ′, m′. Then:

• l ‖ m ⇐⇒ l ′ ‖ m′

• B is the midpoint of AC ⇐⇒ B′ is the midpoint of A′C ′

• A, B, C collinear =⇒ AB : BC = A′B′ : B′C ′
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Affine maps

Let f be a bijection of the plane. We say that f is affine if it preserves the

property of collinearity. Let the images of points A, B, C , . . . under f be

A′, B′, C ′, . . .. Let the images of lines l , m under f be l ′, m′. Then:

• l ‖ m ⇐⇒ l ′ ‖ m′

• B is the midpoint of AC ⇐⇒ B′ is the midpoint of A′C ′

• A, B, C collinear =⇒ AB : BC = A′B′ : B′C ′

• Interior of △ABC is mapped to interior of △A′B′C ′
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Examples of affine maps

1 Isometries: mappings which preserve distance. Examples:
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Examples of affine maps

1 Isometries: mappings which preserve distance. Examples:

(a) Displacement (‘translation’) through a vector
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Examples of affine maps

1 Isometries: mappings which preserve distance. Examples:

(a) Displacement (‘translation’) through a vector

(b) Mirror reflection in a line
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Examples of affine maps

1 Isometries: mappings which preserve distance. Examples:

(a) Displacement (‘translation’) through a vector

(b) Mirror reflection in a line

(c) Rotation about a point, through some angle
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Examples of affine maps

1 Isometries: mappings which preserve distance. Examples:

(a) Displacement (‘translation’) through a vector

(b) Mirror reflection in a line

(c) Rotation about a point, through some angle

2 Enlargement about a point, by some scale factor (‘homothety’)
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Examples of affine maps

1 Isometries: mappings which preserve distance. Examples:

(a) Displacement (‘translation’) through a vector

(b) Mirror reflection in a line

(c) Rotation about a point, through some angle

2 Enlargement about a point, by some scale factor (‘homothety’)

3 Shear
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Examples of affine maps

1 Isometries: mappings which preserve distance. Examples:

(a) Displacement (‘translation’) through a vector

(b) Mirror reflection in a line

(c) Rotation about a point, through some angle

2 Enlargement about a point, by some scale factor (‘homothety’)

3 Shear

Note the progression: congruence geometry, similarity geometry, affine

geometry. This is in keeping with Klein’s vision.
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Notation

Symbol Meaning

T
PQ

Translation (‘displacement’) through vector PQ

H
P

Half-turn centred at point P

Mℓ Mirror reflection in line ℓ

R
P,θ Rotation centred at P, through angle θ

E
P,k

Enlargement centred at P, with scale factor k

Note: (i)
(

T
PQ

)−1
= T

QP
(ii) H

P
and M

ℓ
are self-inverse (iii) inverse of

R
P,θ

is R
P,−θ

(iv) inverse of E
P,k

is E
P,1/k

(v) E
P,−1

is the same as H
P
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Composition of two reflections: parallel mirrors

If l ‖ m, then Ml followed by Mm is equivalent to a displacement.

l m

b b b

b b b

b bb

b b

A A′ A′′

B B′ B′′

C C′C′′

D D′ D′′

Segments AA′′, BB′′,

CC ′′, DD′′ have equal

length: each is twice the

distance between l & m.
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Composition of two reflections: non-parallel mirrors

If ¬(l ‖ m), then Ml followed by Mm is equivalent to a rotation.

b

b

b

b

O
l

m

A

A′

A′′

∠(l , O, m)

x

x

y

y

∠AOA′′ = 2 × ∠(l , O, m) = twice the directed angle from l to m
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Composition of two rotations

(With due apologies to Herr Klein)

b

b

A

B

I

II

III

RB,30◦

RA,60◦

Here we see a motif rotated

first about A by 60◦, then

about B by 30◦. From the

positions, it appears as though

a single rotation could have

taken the motif from I to III.
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Locating the centre of RB,β ◦ RA,α

A B

C

l

m

n

b b

b

1
2
α

1
2
β

1
2
α + 1

2
β

Draw line AB; draw lines m, n

through A, B such that

∠(m, l) = 1
2
α, ∠(l , n) = 1

2
β.

Keep directions in mind!

Let m, n meet at C . Then ∠(m, n) = 1
2
α + 1

2
β. So:
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Locating the centre of RB,β ◦ RA,α

A B

C

l

m

n

b b

b

1
2
α

1
2
β

1
2
α + 1

2
β

Draw line AB; draw lines m, n

through A, B such that

∠(m, l) = 1
2
α, ∠(l , n) = 1

2
β.

Keep directions in mind!

Let m, n meet at C . Then ∠(m, n) = 1
2
α + 1

2
β. So:

RA,α = Ml ◦ Mm, RB,β = Mn ◦ Ml ,

∴ RB,β ◦ RA,α = (Mn ◦ Ml) ◦ (Ml ◦ Mm) .
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So RB,β ◦ RA,α = Mn ◦ (Ml ◦ Ml) ◦ Mm = Mn ◦ Mm and is therefore

equivalent to the composite map Mn ◦ Mm.
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So RB,β ◦ RA,α = Mn ◦ (Ml ◦ Ml) ◦ Mm = Mn ◦ Mm and is therefore

equivalent to the composite map Mn ◦ Mm.

But Mn ◦ Mm is equivalent to a rotation about the point where m and n

meet, through twice ∠(m, n).
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So RB,β ◦ RA,α = Mn ◦ (Ml ◦ Ml) ◦ Mm = Mn ◦ Mm and is therefore

equivalent to the composite map Mn ◦ Mm.

But Mn ◦ Mm is equivalent to a rotation about the point where m and n

meet, through twice ∠(m, n).

Therefore, RB,β ◦ RA,α is equivalent to the rotation RC ,α+β.
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So RB,β ◦ RA,α = Mn ◦ (Ml ◦ Ml) ◦ Mm = Mn ◦ Mm and is therefore

equivalent to the composite map Mn ◦ Mm.

But Mn ◦ Mm is equivalent to a rotation about the point where m and n

meet, through twice ∠(m, n).

Therefore, RB,β ◦ RA,α is equivalent to the rotation RC ,α+β.

Could anything go wrong with this analysis? Yes: it could happen that

m ‖ n, in which case the lines m, n do not meet at all!
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This will happen if α + β is a multiple of 360◦.

However, the conclusion that RB,β ◦ RA,α = Mn ◦ Mm stays.
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This will happen if α + β is a multiple of 360◦.

However, the conclusion that RB,β ◦ RA,α = Mn ◦ Mm stays.

But since m ‖ n, the map Mn ◦ Mm is a displacement.
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This will happen if α + β is a multiple of 360◦.

However, the conclusion that RB,β ◦ RA,α = Mn ◦ Mm stays.

But since m ‖ n, the map Mn ◦ Mm is a displacement.

So if α + β is a multiple of 360◦, then RB,β ◦ RA,α is a displacement.

(Counterintuitive? Or daily life wisdom?)
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Part I

Problems and Theorems

We showcase some applications of the method of transformations.
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One of Euler’s (many) theorems

O: circumcentre, G: centroid, H: orthocentre;
−→
OH = 3

−→
OG

b
A

b

B
b

C

b

G

b

O

b

H

b

D

b EbF

→ △ABC , with circumcentre O,

centroid G , orthocentre H

→ D, E , F : midpoints of sides

→ Consider EG,−1/2:
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One of Euler’s (many) theorems

O: circumcentre, G: centroid, H: orthocentre;
−→
OH = 3

−→
OG

b
A

b

B
b

C

b

G

b

O

b

H

b

D

b EbF

→ △ABC , with circumcentre O,

centroid G , orthocentre H

→ D, E , F : midpoints of sides

→ Consider EG,−1/2: it maps

A, B, C to D, E , F .
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One of Euler’s (many) theorems

O: circumcentre, G: centroid, H: orthocentre;
−→
OH = 3

−→
OG

b
A

b

B
b

C

b

G

b

O

b

H

b

D

b EbF

→ △ABC , with circumcentre O,

centroid G , orthocentre H

→ D, E , F : midpoints of sides

→ Consider EG,−1/2: it maps

A, B, C to D, E , F . It maps

the perpr to BC through A to

the perpr to EF through D.
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One of Euler’s (many) theorems

O: circumcentre, G: centroid, H: orthocentre;
−→
OH = 3

−→
OG

b
A

b

B
b

C

b

G

b

O

b

H

b

D

b EbF

→ △ABC , with circumcentre O,

centroid G , orthocentre H

→ D, E , F : midpoints of sides

→ Consider EG,−1/2: it maps

A, B, C to D, E , F . It maps

the perpr to BC through A to

the perpr to EF through D. So

it maps H to O.
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One of Euler’s (many) theorems

O: circumcentre, G: centroid, H: orthocentre;
−→
OH = 3

−→
OG

b
A

b

B
b

C

b

G

b

O

b

H

b

D

b EbF

→ △ABC , with circumcentre O,

centroid G , orthocentre H

→ D, E , F : midpoints of sides

→ Consider EG,−1/2: it maps

A, B, C to D, E , F . It maps

the perpr to BC through A to

the perpr to EF through D. So

it maps H to O. It follows that
−→
OH = 3

−→
OG.
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Two tangent circles

b

I

b

D

b
A

b

O

b

E

b

B
b

C

→ Circles (I, A) and (O, A) touch

internally at A.

→ Chord BC of (O, A) is tangent

to (I, A) at D.

→ Point E lies on (O, A) such

that OE ⊥ BC .

→ Points A, D, E lie in a straight

line.
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Two more tangent circles

b

O

b
K

b

I

bA b B

bC b D → Circles (I, K) and (O, K) touch

each other at K .

→ AB and CD are a pair of

parallel diameters of the two

circles (labeled suitably)

→ Points B, K, C lie in a straight

line, as do points A, K, D.
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An optimization problem

A nice use of transformations comes in solving the following problem first

studied by Fermat and Torricelli.

Problem

Given a triangle ABC , to find a point P in the plane of the triangle such

that PA + PB + PC has the least value possible.

We shall assume that no angle of the triangle exceeds 120◦.
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b

b

A

B C

D

P

Q

b

b b

b

→ P: candidate point.

→ Apply RC,60◦ : P 7→ Q, B 7→ D.
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b

b

A

B C

D

P

Q

b

b b

b

→ P: candidate point.

→ Apply RC,60◦ : P 7→ Q, B 7→ D.

→ △CPQ, △BDC : equilateral
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b

b

A

B C

D

P

Q

b

b b

b

→ P: candidate point.

→ Apply RC,60◦ : P 7→ Q, B 7→ D.

→ △CPQ, △BDC : equilateral

→ PC = PQ; PB = QD
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b

b

A

B C

D

P

Q

b

b b

b

→ P: candidate point.

→ Apply RC,60◦ : P 7→ Q, B 7→ D.

→ △CPQ, △BDC : equilateral

→ PC = PQ; PB = QD

→ PA + PB + PC = DQ + QP + PA
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b

b

A

B C

D

P

Q

b

b b

b

→ P: candidate point.

→ Apply RC,60◦ : P 7→ Q, B 7→ D.

→ △CPQ, △BDC : equilateral

→ PC = PQ; PB = QD

→ PA + PB + PC = DQ + QP + PA

→ PA + PB + PC ≥ DA
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b

b

A

B C

D

P

Q

b

b b

b

→ P: candidate point.

→ Apply RC,60◦ : P 7→ Q, B 7→ D.

→ △CPQ, △BDC : equilateral

→ PC = PQ; PB = QD

→ PA + PB + PC = DQ + QP + PA

→ PA + PB + PC ≥ DA

→ For equality: ∠APC , ∠BPC , ∠APB

all 120◦. These are the conditions for

P to be optimal.
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Fermat point of a triangle

b

A

B C

D

E

F

K

b

b b

b

b

b

→ △BDC , △CEA, △AFB:

equilateral

→ AD, BE , CF have equal length,

and they meet in the Fermat

point, K

→ AD, BE , CF make equal angles

with one another
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Fermat point of a triangle

b

A

B C

D

E

F

K

b

b b

b

b

b

→ △BDC , △CEA, △AFB:

equilateral

→ AD, BE , CF have equal length,

and they meet in the Fermat

point, K

→ AD, BE , CF make equal angles

with one another

→ What happens if ∠A > 120◦?
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What happens if ∠A > 120◦

A

B C

F

b P
b

Q

b

b b

b

→ P: candidate point
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What happens if ∠A > 120◦

A

B C

F

b P
b

Q

b

b b

b

→ P: candidate point

→ Apply RA,−60◦ . It maps P to Q &

B to F . Crucial: segment CF lies

‘outside’ the figure.
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What happens if ∠A > 120◦

A

B C

F

b P
b

Q

b

b b

b

→ P: candidate point

→ Apply RA,−60◦ . It maps P to Q &

B to F . Crucial: segment CF lies

‘outside’ the figure.

→ PA + PB + PC is equal to

CP + PQ + QF
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What happens if ∠A > 120◦

A

B C

F

b P
b

Q

b

b b

b

→ P: candidate point

→ Apply RA,−60◦ . It maps P to Q &

B to F . Crucial: segment CF lies

‘outside’ the figure.

→ PA + PB + PC is equal to

CP + PQ + QF

→ CP + PQ + QF ≥ CA + AF , so

d(P) ≥ d(A).
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What happens if ∠A > 120◦

A

B C

F

b P
b

Q

b

b b

b

→ P: candidate point

→ Apply RA,−60◦ . It maps P to Q &

B to F . Crucial: segment CF lies

‘outside’ the figure.

→ PA + PB + PC is equal to

CP + PQ + QF

→ CP + PQ + QF ≥ CA + AF , so

d(P) ≥ d(A). Hence A is the

optimizing point.
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Von Aubel’s quadrilateral theorem

b
A

b

B
b

C

b
D

b
P

b
Q

b R

b

S

b

b

b b

b

bb

b

→ Quadrilateral ABCD

→ Squares on its sides

→ Centres P, Q, R, S
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Von Aubel’s quadrilateral theorem

b
A

b

B
b

C

b
D

b
P

b
Q

b R

b

S

b

b

b b

b

bb

b

→ Quadrilateral ABCD

→ Squares on its sides

→ Centres P, Q, R, S

→ PR = QS, PR ⊥ QS
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b
A

b

B
b

C

b
D

bP

b
Q

b R

b

S

b

M

→ Apply f = RP,90◦ , g = RQ,90◦ .

g ◦ f is a half-turn.
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b
A

b

B
b

C

b
D

bP

b
Q

b R

b

S

b

M

→ Apply f = RP,90◦ , g = RQ,90◦ .

g ◦ f is a half-turn.

→ g ◦ f (B) = g(A) = D; so the

centre of g ◦ f is the midpoint

M of BD.
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b
A

b

B
b

C

b
D

bP

b
Q

b R

b

S

b

M

→ Apply f = RP,90◦ , g = RQ,90◦ .

g ◦ f is a half-turn.

→ g ◦ f (B) = g(A) = D; so the

centre of g ◦ f is the midpoint

M of BD.

→ △PMQ is isosceles right-angled

at M. Same is true of △RMS.
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b
A

b

B
b

C

b
D

bP

b
Q

b R

b

S

b

M

→ Apply f = RP,90◦ , g = RQ,90◦ .

g ◦ f is a half-turn.

→ g ◦ f (B) = g(A) = D; so the

centre of g ◦ f is the midpoint

M of BD.

→ △PMQ is isosceles right-angled

at M. Same is true of △RMS.

→ Now apply h = RM,90◦ . It maps

Q to P, S to R. Hence it maps

QS to PR. Hence etc.
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Napoleon’s theorem

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

A

B C

X

Y

Z

D

E

F

→ △ABC : arbitrary

→ △BXC , △CYA,

△AZB: equilateral

→ D, E , F : their centroids

(respectively); then:

→ △DEF is equilateral
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Napoleon’s theorem: proof

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

A

B C

X

Y

Z

D

E

F

→ Apply RB,30◦ to △ABX , and then

E
B,1/

√
3

SAS (CoMaC) Snapshots from Transformation Geometry Nov 2013 24 / 44



Napoleon’s theorem: proof

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

A

B C

X

Y

Z

D

E

F

→ Apply RB,30◦ to △ABX , and then

E
B,1/

√
3

→ △ABX gets mapped to △FBD so:
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Napoleon’s theorem: proof

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

A

B C

X

Y

Z

D

E

F

→ Apply RB,30◦ to △ABX , and then

E
B,1/

√
3

→ △ABX gets mapped to △FBD so:

→ DF = AX/
√

3, ∠(DF , AX) = 30◦
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E
B,1/

√
3

→ △ABX gets mapped to △FBD so:

→ DF = AX/
√

3, ∠(DF , AX) = 30◦

→ Apply RC,−30◦ to △ACX , then

E
C,1/

√
3.
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→ Apply RB,30◦ to △ABX , and then

E
B,1/

√
3

→ △ABX gets mapped to △FBD so:

→ DF = AX/
√

3, ∠(DF , AX) = 30◦

→ Apply RC,−30◦ to △ACX , then

E
C,1/

√
3. We get: DE = AX/

√
3

and ∠(DE , AX) = −30◦. So:
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→ Apply RC,−30◦ to △ACX , then

E
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3. We get: DE = AX/

√
3

and ∠(DE , AX) = −30◦. So:

→ DE = DF , ∠(DF , DE) = 60◦
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→ Apply RB,30◦ to △ABX , and then

E
B,1/

√
3

→ △ABX gets mapped to △FBD so:

→ DF = AX/
√

3, ∠(DF , AX) = 30◦

→ Apply RC,−30◦ to △ACX , then

E
C,1/

√
3. We get: DE = AX/

√
3

and ∠(DE , AX) = −30◦. So:

→ DE = DF , ∠(DF , DE) = 60◦

→ Hence △DEF is equilateral
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Napoleon’s theorem: second proof
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→ ∠BFA = ∠AEC = ∠CDB = 120◦,

and 3 × 120◦ = 360◦
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→ ∠BFA = ∠AEC = ∠CDB = 120◦,

and 3 × 120◦ = 360◦

→ Let f = RD,120◦ ◦ RE,120◦ ◦ RF ,120◦ ;

f maps B to itself. Hence f = Id .
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→ ∠BFA = ∠AEC = ∠CDB = 120◦,

and 3 × 120◦ = 360◦

→ Let f = RD,120◦ ◦ RE,120◦ ◦ RF ,120◦ ;

f maps B to itself. Hence f = Id .

→ Hence RE,120◦ ◦ RF ,120◦ = RD,240◦

SAS (CoMaC) Snapshots from Transformation Geometry Nov 2013 25 / 44



Napoleon’s theorem: second proof

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

A

B C

X

Y

Z

D

E

F

→ ∠BFA = ∠AEC = ∠CDB = 120◦,

and 3 × 120◦ = 360◦

→ Let f = RD,120◦ ◦ RE,120◦ ◦ RF ,120◦ ;

f maps B to itself. Hence f = Id .

→ Hence RE,120◦ ◦ RF ,120◦ = RD,240◦

→ Recalling the way rotation maps are

composed, we see that

∠DEF = 60◦ = ∠DFE .
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and 3 × 120◦ = 360◦

→ Let f = RD,120◦ ◦ RE,120◦ ◦ RF ,120◦ ;

f maps B to itself. Hence f = Id .

→ Hence RE,120◦ ◦ RF ,120◦ = RD,240◦

→ Recalling the way rotation maps are

composed, we see that

∠DEF = 60◦ = ∠DFE .

→ Hence △DEF is equilateral
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Napoleon’s theorem: generalized version
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F

→ △ABC : arbitrary

→ △BDC , △CEA, △AFB: all

isosceles, with apex angles α, β, γ

(resp), α + β + γ = 360◦; then:
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Napoleon’s theorem: generalized version
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A

B C

D

E

F

→ △ABC : arbitrary

→ △BDC , △CEA, △AFB: all

isosceles, with apex angles α, β, γ

(resp), α + β + γ = 360◦; then:

→ △DEF has angles α/2, β/2, γ/2

(resp)

→ Proof: Immediate . . .
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Napoleon tweaked . . .
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B C

b
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D

θ

b
E

θ

bF
θ

b
Pθ

b

H

b

G

→ △ABC : arbitrary

→ △BDC , △CEA,

△AFB: similar

isosceles, all with

apex angle θ

→ AD, BE , CF concur

at P = Pθ

→ Locus of Pθ?
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Kiepert hyperbola

A

B C

b

b b

b

D

θ

b
E

θ

bF
θ

b
Pθ

b

H

b

G

b

The locus of Pθ is a

rectangular hyperbola

which passes through A,

B, C , H and G (here H

is the orthocentre and G

the centroid of △ABC)!
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Nine-point circle

bc
A

bc
B

bc
C

bc

D

bc
E

bcF

bcH

bcG

bc

P

bc
Q

bc
R

bcO

bc
U

bc
V

bc
W

bcN

→ △ABC : arbitrary

→ D, E , F : midpoints of sides

→ P, Q, R: feet of altitudes

→ U, V , W : midpoints of

segments HA, HB, HC

→ Points D, E , F , P, Q, R,

U, V , W all lie on a circle

centred at the midpoint N

of OH
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Basic idea for the proof

bcA bc Bbc

K

C1

C2

Given two circles C1, C2 of equal size,

sharing a chord AB, there are at least

two distinct isometric maps which map

one circle to the other:

→ Reflection in line AB

→ Half-turn about the midpoint K of

AB.

Notation: ω(ABC) denotes the circumcircle of △ABC , etc
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Nine-point circle: first part of proof
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K

1 EA,1/2 maps ω(ABC) to ω(AFE)
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1 EA,1/2 maps ω(ABC) to ω(AFE)

2 MEF maps ω(AFE) to ω(PFE)

3 HK maps ω(AFE) to ω(DEF)

4 Hence P lies on ω(DEF). By

symmetry, do so Q, R.
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Nine-point circle: first part of proof
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1 EA,1/2 maps ω(ABC) to ω(AFE)

2 MEF maps ω(AFE) to ω(PFE)

3 HK maps ω(AFE) to ω(DEF)

4 Hence P lies on ω(DEF). By

symmetry, do so Q, R.

5 So ω(DEF) = ω(PQR).

6 Centre: E + F − A/2 which is

(A + B + C)/2 = H/2 = N
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Nine-point circle: second part of proof
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1 EH,1/2 maps ω(ABC) to

ω(UVW )
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Nine-point circle: second part of proof
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1 EH,1/2 maps ω(ABC) to

ω(UVW )

2 Hence the centre of ω(UVW ) is

H/2 = N, and its radius is half

the radius of ω(ABC)

SAS (CoMaC) Snapshots from Transformation Geometry Nov 2013 32 / 44



Nine-point circle: second part of proof

bc
A

bc
B

bc
C

bc

D

bc EbcF

bc

H

bc

P

bc
Q

bc
R

bc

O

bc
U

bc
V

bc
W

bc

N

bc
K

1 EH,1/2 maps ω(ABC) to

ω(UVW )

2 Hence the centre of ω(UVW ) is

H/2 = N, and its radius is half

the radius of ω(ABC)

3 Hence ω(UVW ) coincides with

ω(DEF) and ω(PQR).
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Nine-point conic

Generalization of the nine-point circle theorem
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bc EbcF
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bcR
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bc W
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Points D, E , F are midpoints of BC , CA,

AB. Point H is arbitrary, and P, Q, R are

its ‘traces’. U, V , W are the midpoints of

HA, HB, HC . These nine points lie on a

conic whose centre N is collinear with H

and G, with N = (3G + H)/4. Well!
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Part II

Frieze Patterns
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Mosaic

Human beings have used mosaic as an art form for centuries. The Islamic

cultures in particular have developed this art form to a very high level.
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Mosaic

Human beings have used mosaic as an art form for centuries. The Islamic

cultures in particular have developed this art form to a very high level.

Mosaic can be one dimensional, as in a frieze pattern, or two dimensional,

as in wallpaper or floor tilings.

The most stunning exhibitions of tiling patterns are seen in the Alhambra

Palace in Granada, Spain.
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The seven frieze patterns

Frieze patterns are all around us (look around you and check this out).

It can be shown that the underlying symmetry group of a frieze pattern is

one of just seven possibilities.

This may come as a surprise, but it can be proved. The individual details

of the motifs used in the pattern may differ, but the symmetry groups are

just seven in number.

We take a quick look at these seven possibilities.
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Translations only

Frieze pattern type T : . . . F F F F F F F . . .
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Translations and horizontal axis reflection

Frieze pattern type TX : . . . B B B B B B B . . .
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Translations and vertical axis reflection

Frieze pattern type TY : . . . A A A A A A A . . .
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Translations and half turns

Frieze pattern type TH: . . . N N N N N N N . . .
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Translations and horizontal and vertical reflections

Frieze pattern type THXY : . . . X X X X X X X . . .
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Translations and glide reflections

Frieze pattern type TG: . . . b p b p b p b p . . .
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Translations and vertical reflections + glides

Frieze pattern type TGY : . . . p q b d p q b d p q b d p q . . .
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Max Jeger, Transformation Geometry (1966)

E A Maxwell, Geometry By Transformations (Cambridge Univ Press,

SMP)

I M Yaglom, Geometric Transformations I and Geometric

Transformations II (MAA)

SAS (CoMaC) Snapshots from Transformation Geometry Nov 2013 44 / 44


	Problems and Theorems
	Frieze Patterns

