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Abstract

The equivalence of the uniform boundedness principle, the open mapping
theorem and the closed graph theorem is established. These theorems are
proved without the use of the Baire category theorem.

1 Introduction

In an earlier article (cf. Kesavan [2], the following result was proved.

Theorem 1.1 Each of the following statements imply the others.

(i) The closed graph theorem
Let V and W be Banach spaces and let T : V → W be a linear map. If the
graph of T defined by

G(T ) = {(x, Tx) | x ∈ V } ⊂ V ×W

is closed in V ×W , then T is continuous.

(ii) The open mapping theorem
Let V and W be Banach spaces and let T : V → W be a continuous linear
map which is surjective. Then T is an open map, i.e. T maps open sets of
V onto open sets of W .

(iii) The bounded inverse theorem
Let V and W be Banach spaces and let T : V → W be a continuous linear
bijection. Then T is an isomorphism, i.e. T−1 is also continuous.

(iv) The two norms theorem
Let V be a vector space and let ‖ · ‖1 and ‖ · ‖2 be two norms on V . If V
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is a Banach space with respect to either norm and if there exists a constant
C > 0 such that

‖x‖1 ≤ C‖x‖2 (1.1)

for every x ∈ V , then the two norms are equivalent.

Each of the above statements implies the following:

(v) Uniform boundedness theorem
Let V be a Banach space and W be a normed linear space. Let, Ti : V → W
be a continuous linear map for each i ∈ I. If

sup
i∈I
‖Tix‖W < ∞ (1.2)

for each x ∈ V , then there exists a constant C > 0 such that ‖Ti‖ ≤ C for
each i ∈ I. �

The aim of the present note is two-fold: first we show that, in fact, all the
statements (i)-(v) in the above theorem are equivalent. Secondly, since we
gave a proof of the uniform boundedness principle without using the Baire
category theorem in the above mentioned article, we can now prove all the
theorems without the use of Baire’s theorem.

It is important, at this point, to set the record straight about our mo-
tives for writing this article. First of all, no originality is claimed regarding
the mathematical arguments. All the proofs presented are already available,
some in standard textbooks and some scattered in the literature. The aim of
writing this article is, on one hand, to present all the arguments in a cogent
form in one place for ready reference, and on the other hand, to show the
logical dependence of these results on each other.

It must be stressed that the aim of this article is certainly not to down-
play the importance of the Baire category theorem. Indeed, it can be seen
that the proofs of these results, found in standard text books, using the Baire
category theorem, are easier and more natural. However, the fact that they
can be proved without the use of Baire’s theorem shows that it is the com-
pleteness of the spaces involved which is the basis for these theorems. Baire’s
theorem, while being a convenient and unifying tool to prove these results,
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is not the foundation for these results, as often students are led to believe.

For sake of completeness of the exposition, and for all proofs to be in a
single place for ready reference, we will be presenting all the proofs. Many
of them are well known and can be found in most text books.

2 The main result

Theorem 2.1 Each of the following statements implies the others.

(i) Uniform boundedness theorem
Let V be a Banach space and W be a normed linear space. Let, Ti : V → W
be a continuous linear map for each i ∈ I. If

sup
i∈I
‖Tix‖W < ∞ (2.1)

for each x ∈ V , then there exists a constant C > 0 such that ‖Ti‖ ≤ C for
each i ∈ I.

(ii) The open mapping theorem
Let V and W be Banach spaces and let T : V → W be a continuous linear
map which is surjective. Then T is an open map, i.e. T maps open sets of
V onto open sets of W .

(iii) The bounded inverse theorem
Let V and W be Banach spaces and let T : V → W be a continuous linear
bijection. Then T is an isomorphism, i.e. T−1 is also continuous.

(iv) The closed graph theorem
Let V and W be Banach spaces and let T : V → W be a linear map. If the
graph of T defined by

G(T ) = {(x, Tx) | x ∈ V } ⊂ V ×W

is closed in V ×W , then T is continuous.

(v) The two norms theorem
Let V be a vector space and let ‖ · ‖1 and ‖ · ‖2 be two norms on V . If V
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is a Banach space with respect to either norm and if there exists a constant
C > 0 such that

‖x‖1 ≤ C‖x‖2 (2.2)

for every x ∈ V , then the two norms are equivalent.

Proof that (i) ⇒ (ii).

Let V and W be Banach spaces and let T : V → W be a continuous linear
mapping which is surjective.

Step 1. Let B denote the open unit ball in V . We show that there exists a
constant c > 0 such that the open ball in W with centre at the origin and
radius 2c, denoted BW (0; 2c) is contained in T (B), the closure, in W, of the
image of B.

For each positive integer n, define a norm on W by

‖y‖n
def
= inf{‖v‖V + n‖w‖W | v ∈ V,w ∈ W,w + Tv = y}. (2.3)

Since T is onto, given any y and w in W , we can always find v ∈ V such that
w + Tv = y. Thus the quantity ‖y‖n is well-defined and it is easy to verify
that this defines a norm on W . Since we can take w = y and v = 0, so that
w + Tv = y, we imediately see that

‖y‖n ≤ n‖y‖W . (2.4)

Further, since T is onto, given y ∈ W , there exsts x ∈ V such that Tx = y
from which it follows that

‖y‖n ≤ ‖x‖V . (2.5)

Thus, for each y ∈ W , the sequence {‖y‖n} is bounded.

Now let N stand for the natural numbers (i.e. positive integers greater
than, or equal to unity). Let

Z = {f : N→ W |f is finitely supported}.
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In other words, Z is the space of sequences with entries taken from W such
that all but a finite number of the entries are zero. Then, it is immediate to
see that the following quantity is well-defined and that it defines a norm on
Z:

‖f‖Z
def
= sup

n
‖f(n)‖n.

Define Sn : W → Z by

Sn(y)(k) =

{
y, if k = n,
0, if k 6= n.

Then, using (2.4), we get

‖Sn(y)‖Z = ‖y‖n ≤ n‖y‖W .

Thus,for each n, we have that Sn defines a continuous linear map from W
(which is complete with respect to the norm ‖ · ‖W ) into the normed linear
space Z. Further, by virtue of (2.5) we also have that, if y = Tx, then,

‖Sn(y)‖Z ≤ ‖x‖V .

The sequence {Sn} is pointwise bounded and hence, by (i), it is uniformly
bounded. Thus, there exists M > 0 such that ‖Sn‖ ≤M .

Let c > 0 such that 2c < M−1. Let y ∈ W be such that ‖y‖W < 2c.
Then,

‖y‖n = ‖Sn(y)‖Z ≤ ‖Sn‖ ‖y‖W ≤M‖y‖W < 1.

Then, there exist vn ∈ V and wn ∈ W such that wn + Tvn = y and ‖vn‖V +
n‖wn‖W < 1.This shows that ‖vn‖V < 1 for all n and that wn → 0 in W .
Thus Tvn → y and so y ∈ T (B). Thus

BW (0; 2c) ⊂ T (B). (2.6)

Step 2. Let c > 0 be such that (2.6) is true. Then we claim that

BW (0; c) ⊂ T (B). (2.7)

Let y ∈ BW (0; c). We need to find x ∈ B such that T (x) = y. Let ε > 0.
There exists z ∈ V such that ‖z‖V < 1/2 and ‖y − T (z)‖W < ε by virtue of
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(2.6) (applied to 2y). Set ε = c/2 and let z1 ∈ V be such that ‖z1‖V < 1/2
and ‖T (z1)− y‖W < c/2.

We can iterate this procedure. By another application of (2.6) (to 4(T (z1)−
y)) we can find z2 ∈ V such that

‖z2‖V <
1

4
, ‖T (z1 + z2)− y‖W <

c

4
.

Thus, we can find, by repeated use of (2.6), a sequence {zn} in V such that

‖zn‖V <
1

2n
, ‖T (z1 + · · ·+ zn)− y‖W <

c

2n
.

Then, it follows that the sequence {z1 + · · ·+ zn} is Cauchy in V , and, since
V is complete, it will converge to an element z ∈ V such that ‖z‖V < 1 and
we will also have T (z) = y. This proves (2.7).

More generally, if r > 0, there exists s > 0 such that

BW (0; s) ⊂ T (BV (0; r)).

Step 3: Let G be an open set in V . We now show that T (G) is open,
which will prove (ii). Let y ∈ T (G). Then, there exists x ∈ G such that
Tx = y. Since G is open, there exists r > 0 such that x + BV (0; r) ⊂ G.
Hence, y + T (BV (0; r)) ⊂ T (G). But by Step 2, there exists s > 0 such that
BW (0; s) ⊂ T (BV (0; r)) and so y+BW (0; s) ⊂ T (G) which means that T (G)
is open. This completes the proof that (i) ⇒ (ii). �

Proof that (ii) ⇒ (iii)

Assume that the open mapping theorem is true. Then if T : V → W is a bi-
jective and continuous linear map between the Banach spaces V and W , then
it maps open sets onto open sets. This immediately implies that T−1 : W →
V is continuous since, if U ⊂ V is an open set, then (T−1)−1(U) = T (U)
which is open in W . �

Proof that (iii) ⇒ (iv)

Let V and W be Banach spaces and let T : V → W be a linear map such
that its graph, G(T ), is closed in V ×W . Define, for x ∈ V ,

‖x‖T = ‖x‖V + ‖Tx‖W .
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Then it is easy to see that ‖ · ‖T defines a norm on V . If {xn} is a Cauchy
sequence with respect to this norm, then it is also a Cauchy sequence with
respect to ‖ · ‖V and {Txn} is a Cauchy sequence in W . Thus, let xn → x in
V and let Txn → y in W . Since G(T ) is closed it follows that y = Tx and
so ‖xn − x‖T → 0. Thus V is complete with respect to the norm ‖ · ‖T as
well. Further, since ‖x‖V ≤ ‖x‖T , for every x ∈ V , the identity map from
(V, ‖ · ‖T ) onto (V, ‖ · ‖V ) is a continuous bijection and hence the identity
map in the opposite direction is also continuous, by (iii). Thus, there exists
a constant C > 0 such that, for every x ∈ V , we have ‖x‖T ≤ C‖x‖V . In
particular, we have that, for every x ∈ V ,

‖Tx‖W ≤ C‖x‖V .

Thus T is continuous. �

Proof that (iv) ⇒ (v)

Let V be a vector space which is complete with respect to both the norms
‖ · ‖1 and ‖ · ‖2. If I : V → V is the identity mapping, then the given
inequality (2.2) implies that if ‖xn − x‖1 → 0 and if ‖xn − y‖2 → 0, then
y = x. Thus the graph of the identity map from (V, ‖ · ‖1) onto (V, ‖ · ‖2) is
closed and so the map is continuous, by the closed graph theorem. SInce the
identity map the other way around is already given to be continuous, thanks
to (2.2), we have that the norms are equivalent. �

Proof that (v) ⇒ (i).

Let {Ti}i∈I be a collection of continuous linear maps from a Banach space V
to a normed linear space W such that (2.1) holds for all x ∈ V . Now consider
the norm on V defined by

‖x‖2 = ‖x‖V + sup
i∈I
‖Tix‖W , x ∈ V

which is well-defined in view of (2.1). If {xn} is a Cauchy sequence in V
with respect to this norm, then it is also a Cauchy sequence with the original
norm and so, xn → x in V (with respect to the original norm). From the
definition of ‖ · ‖2, it follows that the sequences {Tixn} are uniformly Cauchy
from which we immediately see that

sup
i∈I
‖Tixn − Tix‖W

n→∞−→ 0.

7



Thus {xn} converges to x with respect to the norm ‖ · ‖2 as well and so the
space V is complete with respect to both norms. Since we have that ‖x‖V ≤
‖x‖2 for all x ∈ V , it follows from (iv) that these norms are equivalent. Thus
there exists C > 0 such that for all x ∈ V , we have ‖x‖2 ≤ C‖x‖V . In
particular, we have

sup
i∈I
‖Tix‖W ≤ C‖x‖V

for all x ∈ V which implies that ‖Ti‖ ≤ C for every i ∈ I. The proof of
Theorem 2.1 is thus complete. �

Remark 2.1 The first step in the proof of the implication (i) ⇒ (ii) oc-
curs, in a more general form, in Schechter [4]. The remaining steps of this
implication and the proof of the implication (ii) ⇒ (iii), can be found in al-
most any standard text on functional analysis. For instance, see Kesavan [1].
The proofs of the implications (iii) ⇒ (iv) and (iv) ⇒ (v) are also standard,
though usually statement (v) is proved before (iv). But the proofs are essen-
tially the same. The author learnt of the proof of the implication (v) ⇒ (i)
from a note by Ramaswamy and Ramasamy [3]. �

Remark 2.2 In the proof of the implication (i)⇒ (ii),the first step uses the
completeness of W , while the second step uses the completeness of V . The
completeness of both the spaces is needed in Step 3 to complete the proof.
�

Remark 2.3 In the earlier version of this article (cf. Kesavan [2]), the closed
graph theorem was the starting point and in an attempt to close the loop of
the various implications, the proof that the uniform boundedness principle
implies the closed graph theorem needed the reflexivity of the target space.
In the above mentioned article, this implication was proved in the context of
Hilbert spaces. The case where W is a reflexive Banach space is treated by
Ramaswamy and Ramasamy [3]. Here, we have started with the open map-
ping theorem and have been able to close the loop without extra hypotheses.
In particular, without extra hypotheses, we have also established that the
uniform boundedness theorem implies the closed graph theorem. �

Remark 2.4 Finally here is a quick proof that the closed graph theorem im-
plies the open mapping theorem, without going through the uniform bound-
edness theorem. A proof of this was already given in Kesavan [2], but this is
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even simpler.

• If T : V → W is a continuous bijection between Banach spaces, then
it is immediate to check that the graph of T−1 is closed. Thus T−1 is
also continuous. This proves the implication (iv) ⇒ (iii).

• Let V be a normed linear space and let W be a closed subspace. Con-
sider the canonical mapping π : V → V/W , given by x 7→ x+W . This
is continuous, since ‖x + W‖V/W ≤ ‖x‖V , by definition. Further, if
‖x+W‖V/W < r, there exists w ∈ W such that ‖x+ w‖V < r and we
also have π(x + w) = π(x) = x + W . Thus BV/W (0; r) ⊂ π(BV (0; r)),
from which we easily deduce that π is also an open map (cf. Step 3 of
the proof of the implication (i) → (ii) of Theorem 2.1).

• Let T : V → W be a surjective and continuous linear map between
the Banach spaces V and W . Let Z = Ker(T ). Define T : V/Z → W
by T (x + Z) = Tx. It is easy to see that this map is well-defined and
that it is a bijection. It is continuous since, for every z ∈ Z, we have
Tx = T (x+ z) and so we deduce that

‖T (x+ Z)‖W = ‖Tx‖W ≤ ‖T‖ inf
z∈Z
‖x+ z‖ = ‖T‖‖x+ Z‖V/Z .

Thus, by (iii), it is an isomorphism, and hence is an open map. Now
T = T ◦ π and so T is an open map as well. This proves (ii). �

We have thus seen that the uniform boundedness theorem, the open map-
ping theorem and the closed graph theorem are all equivalent to each other
and the only common ingredient in all of the proofs is the completeness of
the spaces involved. We will now reproduce the proof (due to Sokal [5]),
presented in Kesavan [2], of the uniform boundedness theorem, which does
not use the Baire category theorem. Thus all the three grand theorems can
be proved without using Baire’s theorem.

Proof of the uniform boundedness theorem:

Step 1. Let x, y ∈ V . Since 2y = (x + y) − (x − y), the triangle inequality
gives

‖Ty‖W ≤ 1

2
[‖T (x+y)‖W+‖T (x−y)‖W ] ≤ max{‖T (x+y)‖W , ‖T (x−y)‖W}
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where T is a continuous linear map from V to W . If we now take the
supremum as y varies over the open ball centred at the origin and of radius
r > 0, we deduce that

sup
x′∈BV (x;r)

‖Tx′‖W ≥ r‖T‖. (2.8)

Step 2. Assume that {‖Ti‖}i∈I is unbounded. Then choose a sequence
{Tn}∞n=1 from this family such that ‖Tn‖ ≥ 4n for each n. Set x0 = 0. Then,
by Step 1, we can inductively find {xn}∞n=1 in V such that ‖xn−xn−1‖V < 3−n

and ‖Tnxn‖W > 2
3
3−n‖Tn‖. By construction, since

∑
3−n is convergent, the

sequence {xn} is Cauchy and since V is complete, we have xn → x in V .
Now, if m > n, we have

‖xn − xm‖V ≤ 3−(n+1) + 3−(n+2) + · · ·+ 3−m.

Keeping n fixed and letting m→∞, we deduce that

‖xn − x‖V ≤
1

2
3−n.

Then, by the triangle inequality, we get that

‖Tnx‖W ≥ ‖Tnxn‖W − ‖Tn(xn − x)‖W ≥ 1

6
3−n‖Tn‖ ≥

1

6

(
4

3

)n

.

Thus {‖Tnx‖W} is unbounded which contradicts (2.1). This completes the
proof. �

Remark 2.4 The above proof just proves the uniform boundedness theo-
rem to the extent that pointwise boundedness implies uniform boundedness.
However, when proved using the Baire category theorem, we can also make
statements on what happens when we do not have pointwise boundedness.
This has nice applications, in particular, to the question of divergence of
Fourier series. See, for instance, Kesavan [1] for details. �
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