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Abstract
It is shown that the existence of continuous functions on the interval [0, 1] that

are nowhere differentiable can be deduced from the Baire category theorem.
This approach also shows that there is a preponderance of such functions.



1 Introduction

The French mathematician Hermite, in a letter written to Stieltjes, dated
May 20, 1893, wrote ‘I turn away with fear and horror from the lamentable
plague of continuous functions which do not have derivatives ..."(cf. Pinkus [6]).
The earliest universally acknowledged explicit example of a continuous func-
tion which is nowhere differentiable is due to Weierstrass (1872) given by

Z a" cos(b"mx)
n=0

where ab > 1+ %ﬂ'. It is also said that Bolzano constructed such an example
(in the 1830s), which was not published. Since then a number of variants
of Weierstrass’ example have appeared in the literature. Here are some of
them.
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e (cf. Rudin [7]) Define
() = x, 0<z<1,
P = VY 2-2, 1<2<2
and extend it to all of R by setting ¢(x+2) = p(z). Then the function

defined by the series
> (3) et

n=0
is again continuous and nowhere differentiable.
In the above three examples, the series are clearly uniformly convergent by

the Weierstrass M-test and so the sum defines a continuous function. One
has to show that it is nowhere differentiable.



Another type of example is constructed as follows. Consider the space
C|0, 1] (the space of continuous functions on [0, 1]) with the usual norm topol-
ogy generated by the norm

[flle = max |f(z)].

z€[0,1]

Let
X ={feCl0o,1] ] f(0) =0, f(1)=1}.

Then it is a closed subset of C[0, 1] and is hence a complete metric space in
its own right. For f € X, define

1/ (32), 0<z<3,
T =< 1+3f2-3z), :<x<?
(f)(z) ;+3f(2-32), 352<3,
143fBx—2), 2<a<1

Then it can be shown that 7" maps X into itself and that

IT() =Tl < 2I1F ~ ol

Hence, by the contraction mapping theorem, there exists h € X such that
T(h) = h. It can be shown then that h is nowhere differentiable.

The aim of the present article is to show the existence of continuous but
nowhere differentiable functions, without exhibiting one. The proof, follow-
ing the ideas of Banach [1] and Mazurkiewicz [5], uses the Baire category
theorem which can be stated as follows.

Theorem 1.1 (Baire)Let X be a complete metric space. If {U,}2, is a
sequence of open and dense sets in X, then

o0
No1Un
1s also dense in X. W

Equivalently, a complete metric space cannot be the countable union of a
family of closed and nowhere dense sets. In technical parlance, a complete
metric space is said to be of the ‘second category’ (the first category being
topological spaces which are countable unions of closed and nowhere dense
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sets), and hence the word ‘category’ in the name of the theorem. For a
proof, see any text on functional analysis (for instance, see Ciarlet [2] or
Kesavan [4]).

Baire’s theorem is the corner stone of the famous trinity of theorems in
functional analysis, viz. the uniform boundedness principle, the open map-
ping theorem and the closed graph theorem. As a consequence of the uniform
boundedness principle, we can show that for a large class of continuous func-
tions, the Fourier series diverges on a large set of points (see, for instance,
Kesavan [4]).

We will use Baire’s theorem to prove the existence of nowhere differen-
tiable functions in C[0,1]. This approach also shows that the class of such
functions is quite large. Our presentation is an adaptation of that found in
Ciarlet [2].

2 Approximation by smooth functions

A celebrated theorem of Weierstrass states that any continuous function on
0, 1] can be uniformly approximated by polynomials. To make this presenta-
tion as self-contained as possible, we will prove a slightly weaker result which
is enough for our purposes, viz. that any continuous function on [0, 1] can be
uniformly approximated by smooth functions.

Consider the function

671“1“”‘2, if |z| < 1,
€T =
pl) {o, if o > 1.

It is not difficult to see that this defines a C* function on R whose support is
the closed ball centered at the origin and with unit radius. For € > 0, define
x

pe(x) = (ke)p (%)

3

- /Zp(w) dr — /llp(x) da.

Then, it is easy to see that p. is also C*° and its support is the closed ball
centered at the origin with radius €. Further

| rwyie = [ pwyae =1
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Recall that if f and g are continuous real-valued functions defined on R,
with one of them having compact support, the convolution product f x g
defined by

(e = [ T fa—ygly) dy = / oo —)f ) dy

is well defined and is a continuous function. Further, if one of them is in
CF(R), then f* g € CK(R) for any 1 < k < oo. If supp(F) denotes the
support of a function F', then

supp(f * g) C supp(f) + supp(g)
where, for subsets A and B of R, we define
A+B = {z+y|xzeAye B}

Proposition 2.1 Let f : R — R be a continuous function with compact
support. Then p. x f converges uniformly to f as e — 0.

Proof: Let K be the support of f. Then K is a compact subset of R.
Without loss of generality, we can assume 0 < € < 1 so that p. x f is a C*
function with support contained in the fixed compact set

{reR||z| <1} + K.

Clearly f is uniformly continuous and so, given 1 > 0, there exists 6 > 0
such that |f(z) — f(y)| < n whenever |z — y| < d. Now, since the integral of
p- 1s unity, we can write

(0o * P)(x) — f(z) = / (fla—y) — F@)p(y) dy.

—&

Thus, if € < § then

(e D)~ F@] < [ 17 =)~ F@lpely) dy <n

for all x and this completes the proof. B

Corollary 2.1 Let f € C[0,1]. Then f can be uniformly approximated by
smooth functions.



Proof: Given f € C[0,1], we can extend it to a continuous function with
compact support in R. For example, define

0, if xr<—lorifxz>2,
>y (x+1)f(0), if z €[-1,0],
fz) = f(x), if z € [0,1],

(2—2)f(1), ifze[l,2)

Now fcan be uniformly approximated by smooth functions in R and so their
restrictions to [0, 1] will approximate f uniformly on [0,1]. B

Proposition 2.2 Let f € C[0,1]. Let ¢ > 0 and n, a positive integer, be
given. Then there exists a piecewise linear continuous function g, defined on
0, 1] such that || f — gllec < € and such that |g'(t)| > n at all points where the
deriwative exists.

Proof: In view of the corollary above, we can assume that f is a smooth
function defined on [0, 1].

Step 1. Since f is smooth, f’ is bounded in [0,1]. Let |f'(x)| < M for all
x € [0,1]. Since f is continuous on [0, 1], it is uniformly continuous and so
there exists 0 > 0 such that, whenever |z —y| < 4§, we have |f(x) — f(y)| < §.
Now, choose h > 0 such that

. g
h < mln{57m}.

Step 2. Now choose a partition
P:0 =ty < t1 < -+ <t =1
such that

L —t) < h.
ogr?gaic)i1(t’+1 ti) < h



Let g : [0,1] — R be a piecewise linear and continuous function, defined on
each sub-interval [t;,;11],0 <i <k — 1, as follows:

g(t:) = f(t:) +(=1)%,
g(tip1) = fltigr) + (—1)71E,

g(t) = it g(tl) + Lo g(ti+1), t, <t< ti—‘rl-

tit1—t; tit1—ts

The function ¢ is differentiable except at the points {¢;,- -, tx_1}.

Step 3. For t € [t;,ti11], 0 <i <k —1, we have

t—t;
9t = () = - lolt) = F(O) + ——
so that

liy1 —1

(g(tiz1) — f(1))

9(t) = O] < 1£(t) = FO + () = FOI + 5 < <

since |t — t;| and |t — t;41| are both less than, or equal to h < . Thus, it
follows that ||f — g]|« < €.
Step 4. For any t € (¢;,t;41), 0 <i <k — 1, we have

J(t) = ftiv) = f(t:) + (=1)"5 (—1)i+is

2 = fi(&)+
where &; € (t;,t;11). Thus, by our choice of h, we have

tiy1 — t; tig1 — b

(_1)i+1 €

g0 = |+ )|
()]
% _

n

VIV IV

which completes the proof. B



3 The main result

Proposition 3.1 Let f € C[0,1] be differentiable at some point a € [0,1].
Then, there exists a positive integer N such that

fla+h) - f(a)

< N.
h

sup
h#£0

Proof: Since f is differentiable at a € [0, 1], there exists hy > 0 such that
for all 0 < |h| < hg, we have

fla+h) = f(a)

Thus, for all 0 < |h| < hg, we have
fla+h)— f(a
@D =IO < 1t i)
If |h| > hg, then trivially
fla+h) - f(a) 2[| floo
h ~  ho

Thus we only need to take
2
N > max{l +|f'(a)], %} n
0

Let us now define, for each positive integer n,

fla+h) - f(a)
h

A, = {feC[O,l] | sup gnforsomeae[o,l]}.
h#£0

Proposition 3.2 For each positive integer n, the set A, is closed in C[0,1].

Proof: Let {fi} be a sequence in A, such that fy — f in C[0,1]. Then,
there exists a sequence {ax} in [0, 1] such that, for each k,

felar +h) — fi(ay)
h

sup
h#0




Let {ay, } be a convergent subsequence, converging to a € [0, 1].

Let h # 0 be given. Choose hy, such that ag, + hy, = a + h.Thus the
sequence {hy,} converges to h # 0 and so we may assume, without loss of
generality, that it is a sequence of non-zero real numbers. Now

[fla+h) = fular, + )| = |(f = fu)la+h)] < |If = fullo-
Also
|f(a)_sz(akz)| < |f(a)_f<a/€z)|+|f(a/€z)_fkl(akz>| < |f(a)_f(akl)|+||f_sz||00

By the continuity of f and the convergence of {f,} to f, we then deduce
that
fla+h)— f(a) fr(ar, + hy) — fi, (ag,)
h hi, -
which shows that f € A,, as well, which completes the proof. B

= lim
l—00

Proposition 3.3 For each positive integer n, the set A, has empty interior.

Proof: Given ¢ > 0, a positive integer n and a function f € A,, let g be
constructed as in the proof of Proposition 2.2. Then it is clear that the ball
centered at f and of radius € in C[0, 1] contains g and that g ¢ A,. This
completes the proof. B

We can now prove the main theorem.

Theorem 3.1 There exist continuous functions on the interval [0, 1] which
are nowhere differentiable. In fact the collection of all such functions forms
a dense subset of C[0,1].

Proof: By Baire’s theorem and the two preceding propositions, it follows
that
C[Ov 1] 7& U;?LozlAn-

From the definition of the sets A,, and from Proposition 3.1, it follows that
every function in

6[07 1]\ UZO:I An = ;Dzo:l(c[()’ 1]\"471)

is nowhere differentiable and also that this set is dense, since it is the count-
able intersection of open dense sets. W

In particular, it follows that every continuous function on [0, 1], irrespec-
tive of its smoothness, is the uniform limit of functions that are nowhere
differentiable!
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