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Abstract

A new proof (due to X. Cabre) of the classical isoperimetric theorem, based
on Alexandrov’s idea of moving planes, will be presented. Compared to the
usual proofs, which use geometric measure theory, this proof will be based
on elementary ideas from calculus and partial differential equations (Laplace
equation).



The origin of the study of isoperimetric inequalities goes back to antiquity.
Known as Dido’s Problem, one of the first such inequalities arose when trying
to determine the shape of a domain with maximum possible area, given its
perimeter. Hence the name isoperimetric inequality (the prefix iso stands
for ‘same’ in Greek). The answer to this question is that the circle, and the
circle alone, maximizes the area for a given perimeter. Equivalently, given
the area enclosed by a simple closed curve, the circle and it alone, minimizes
the perimeter.

Nature too plays this game of shape optimization. Why are soap bubbles
round? A bubble will attain a position of stable equilibrium if the potential
energy due to surface tension is minimized. This, in turn, is directly propor-
tional to the surface area of the air - soap film interface. Thus, for a given
volume of air blown to form a bubble, the shape of the bubble will be that
for which the surface area is minimized and this occurs only for the spherical
shape.

In the case of the plane, the isoperimetric property of the circle was
established by Steiner using very ingenious geometric arguments (see the
book of Courant and Robbins for a very nice treatment of this). There are
two aspects to a proof of this kind. First we assume that there is such an
optimal shape and deduce that it must be the circle. Next we prove the
existence of the optimal shape. Steiner’s method does not work in three
dimensions. Indeed, the proof of the isoperimetric property of the sphere in
IR3 was a far more daunting task and was proved in a rather difficult paper
by H. A. Schwarz.

An analytic way of looking at this problem is to formulate an isoperimetric
inequality. If L is the perimeter of a region in the plane and A is its area,
then

L? > 4mA. (1)

Thus, whatever be the plane domain of perimeter L, the greatest possible
area it can have is L?/4r and this is attained for the circular region and for
it alone. This settles the question of the existence and uniqueness of the
optimal shape in a single stroke. In the case of three dimensions, if V' is the
volume of a region and S is the surface area, then the isoperimetric inequality
reads as

S? > 36mV? (2)

with equality only for the sphere. We can generalize this to N - dimensions.
Let wy denote the volume of the unit sphere in IR (Exercise: prove that



wy = 7V/2/T(N/2 + 1) where I'(s) = [;° e “z*~'dz is the usual gamma
function). If Q C IR" is a bounded domain, and 952 denotes its boundary,
then .

99 > Nwj|Q'~ (3)

where |E| denotes the N - dimensional (Lebesgue) measure or the (N —1) -
dimensional surface measure of a subset E of IRV as the case maybe. Once
again, equality is attained in (3) for the sphere and only for the sphere.

The inequality (1) can be proved very easily using Fourier series (cf. for
example, Sitaram’s article in Resonance, 1997, for a very readable exposi-
tion). However, for dimensions N > 3, the proof of (3) is not that immediate.
In fact, even the notion of ‘surface measure’ of the boundary is not obvious.
When N = 2, we clearly understand the notion of length of a rectifiable
curve. In higher dimensions, 092 will be a (N —1)- dimensional manifold and
there are several ways to define |0Q2|. There are, for instance, the induced
(N — 1)- dimensional surface measure (from IRY), the Hausdorff measure,
the Minkowski content, the de Giorgi perimeter etc. All these notions agree
on smooth domains. The differences occur in the presence of singularities
on the surface. However, whatever may be the definition chosen, (3) is al-
ways true. Indeed, the validity of the classical isoperimetric inequality (with
equality only for the sphere) is a criterion for the acceptability of the notion
of a surface measure.

In general, the proof uses difficult notions from geometric measure theory.
Recently, Cabre (personal communication) has observed that it is possible to
use an idea similar to that used by Alexandrov in proving certain estimates
for solutions of elliptic partial differential equations to prove the classical
isoperimetric theorem. We will present this proof.

While (1) or (3) is referred to as the classical isoperimetric inequality, by
an isoperimetric problem, we mean today a problem of optimizing some do-
main dependent functional keeping some geometric parameter of the domain
(like its measure) fixed.

Lower Contact Set

Let f :[a,b] — IR be a C! (i.e. continuously differentiable) function. Let
T, € (a,b) be a point in the interior such that the graph of the function f
lies entirely above the tangent at x,. Thus, for all z € [a, b],

f(@) = fzo) + ['(zo)(z — o). (4)
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The set S of all points z, € (a,b) such that (4) is true for all z € [a, b
is called the lower contact set of the function f. If, in addition, f is twice
differentiable, then

1
F(@) = [(@o) + ['(wo) (z = zo) + 5" (@) (& = 20)” + 0|z — 2, [),
where o(|z — x,|?) signifies an error term e(z — x,) such that

. _ . 2 _
z}I—ISvg(x Zo)/|z — xo|" = 0.

From this we deduce that
f'(@o) = 0 (5)
for all z, € S.

Let us now consider a straight line with slope m lying entirely below the
graph of the function f : [a,b] — IR in the plane. Let us move this line
parallel to itself. Eventually, the line must encounter the graph of f. The
(abcissa of the) first point of contact could be a,b or in (a,b).

Let us assume that the (abcissa of the) first point of contact, x,, lies in
the interior (a,b). Then, if f is C',

g(ﬂ?) = f(.I) - f(xo) —m(a; _xo) > 0
for all z € [a, b] and is equal to zero, i.e. it attains its minimum, at z,. Thus
g'(z,) =0, i.e. f'(z,) =mandz,€S.

Hence, any straightline moving parallel to itself from below (the graph
of) f and first hitting f at an ‘interior point’ must do so as a tangent and so
the slope of such a line must be in the set f'(S).

If Q ¢ RY is a bounded domain, and if f : Q — IR is a C" function, we
can again define its lower contact set, S, analogously as follows:

S = {z,€Q| f(z) > f(x,) + VF(2,).(x — z,) for all z € Q}  (6)

where the dot in the above inequality denotes the usual scalar product in
IRYN. Again, if the function is twice differentiable, then

flx) = f(z,)+Vf(z,).(x—z,)+ %(aj —2,)TD?f(2,)(x — o) + o(|7 — 2,|%)

where D?f(z,) denotes the Hessian matrix of second derivatives, i.e. the
symmetric matrix whose entries are %(mo), and |z — z,| denotes the Eu-
10T

clidean distance in IR". We can then easily see that, if z, € S, then D?f(z,)
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is a symmetric and positive semi-definite matrix, i.e. for all £ € IRY, we have
7D f(2,)€ > 0.

If we now consider a hyperplane moving parallel to itself, it is easy to see
that, analogously, if the first point of contact is an interior point, then the
plane becomes the tangent at that point. The direction cosines of the normal
to the plane will then belong to the set V f(S), where S is the lower contact
set.

These ideas justify the terminology we have used for the set S.

The Neumann Problem

Let Q C IRY be a bounded and smooth domain. Let A denote the Laplace

operator, i.e.
N 52
A = —.
i:zl ox

If v(z) denotes the unit outward normal to the boundary 02 at the point
x € 0f), then the outer normal derivative of a differentiable function v is
given by

s

3_v
ov

Let us examine the lower contact set of a solution of the Neumann problem:

Au = f inQ }

() = Vu(z).v(z).

(7)

% = g on 0.
This problem will have (an infinite number of) solutions if, and only if, f
and g satisfy the compatibility condition (see Box 1)

/Qf - /mg. (8)

Let us now take g = 1 on 0f2. Then, if we take f to be constant on €, it
follows from (8) that

_ 199
= T 9)

Let m be an arbitrary vector in JRY. There do exist planes, of the form
z = m.z + ¢, lying below the graph of u. Moving the plane parallel to itself,
we will eventually meet the graph of u. If the (abcissa of the) first point of
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contact lies in €2, we already observed that the plane becomes a tangent to
u and that m € Vu(S), where S is the lower contact set of .

On the other hand, if the (abcissa of the) first point of contact x, € 0%,
then, for all z € Q,

g(z) = u(x) —u(z,) —m.(z—2,) > 0

and g(z,) = 0 is the minimum and is attained on the boundary. It follows
that if v(z,) is the unit outward normal of 02 at z,, then,

Vyg(z,).v(z,) < 0

since g is decreasing in that direction at z,. Thus,

ou
m.v(z,) > Vu(z,).v(z,) = 5(%) = 1.
Hence |m| > 1. Therefore, if |m| < 1, the moving plane of the form z =
m.z 4 ¢ can meet, the graph of u only as a tangent at an ‘interior point’ and

so m € Vu(S). We have thus established the following result.

Lemma 1 If Bi(0) denotes the ball of unit radius in RN having its centre

at the origin, then
Bi(0) € Vu(S).m (10)

The Isoperimetric Inequality

Let Q C IRY be a smooth domain and let u be a solution of (7) when
g = 1 and f given by (9). Then u will be a smooth function. Then, by
Lemma 1,

wy = |B1(0)| < |Vu(9)] :/

Vu(

dw§/|det(D2u)\dx,
S) s

by the change of variable formula applied to the mapping Vu : Q — IRY.
The reason we have an inequality for the last term is that this mapping
may not be a diffeomorphism (see Box 2). Now, recall that, on S, D?u is
symmetric and non-negative definite. Hence its eigenvalues and, therefore,
its determinant will be non-negative. Thus,

Wy g/qdet(DQU)dxg/g<@>Ndx
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by the AM-GM inequality. But tr(D%*u) = Au and by (7) and (9), we get

w </ —|6Q| Ndx</ —|8Q| Ndx_7|aQ|N
M7 Js \V[Q ~ Ja \N|Q| ~ NNQIN-

from which we easily deduce (3).

This proves the inequality for smooth domains. For general domains,
depending on the definition of the surface measure, the inequality usually
follows by approximation of the domain by smooth domains.

The Equality Case

Let us now assume that Q C IR" is a smooth domain such that equality
is attained in (3). We will show that © must be a ball. (It is obvious that,
conversely, if ) is a ball, then we do have equality in (3); for, |Q| = w,r"
and |0Q)] = Nw, V!, where r is the radius of the ball.)

If we have equality in the isoperimetric inequality, then, retracing the
proof of the theorem presented in the previous section, we see that all the
inequalities become equalities. In particular, we get that |S| = |Q], i.e. Q\S
has measure zero, and so S is dense in 2. But it is immediate to see from
(6) that, since u is smooth, S = 2. Further, on S(= ), we have equality in
the AM-GM inequality for the eigenvalues of D?u and so the eigenvalues are
all equal, i.e. D?u is a scalar matrix. Thus

0%u
83:1- 8xj

where the delta on the right-hand side is the usual Kronecker delta and A(z)
is easily seen to be a constant given by

1/N
A = (“’—N> .
Q|

Next, since Bi(0) C Vu(S) and, in the equality case, both have the
same measure, we have that B;(0) is dense in Vu(S) = Vu(f2). By the
smoothness of u, it thus follows that |Vu| < 1 in Q. But, on the boundary,
|Vu| > 2% = 1. Thus, |[Vu| = 1 on the boundary and this implies that
the tangential component of the gradient is zero on the boundary. Thus u is
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constant on the boundary. Since any two solutions of (7) differ by an additive
constant, we may henceforth assume that

Au = @ in €2

|
u = 0 on 0N2 (12)
% =1 on Of).

By the maximum principle (see Box 3), v < 0 in © and so u must attain a
minimum at a point z, in Q. Clearly Vu(z,) = 0.

Let B be the largest possible ball in €2 with centre at x,. Now, if x € B,
then for some £ in the line segment joining x and x,, we have, by the mean
value theorem,

u(z) = ulz,) + Vu(z,).(x — o) + 3(z — z,) ' D?u(€) (z — z,)
= u(z,) + 3|z — 20|~

By the nature of B, there must be a point on 0B which also lies on 02 and
so u = 0 at that point. But by the above formula, it then follows that © = 0
on all of 0B. Since u < 0 in €2, this will be possible only if B coincides with
Q, i.e. Qis a ball. In fact, if —M = u(x,) < 0 is the minimum of u, then

90 = {x €T | uz) =0} = {x||x—xo|2:¥}.

Remark: Problem (12) is an overdetermined boundary value problem. Ser-
rin formulated a method which was further developed as the method of mov-
ing planes by Gidas, Ni and Nirenberg to study symmetry properties of
positive solutions of semilinear elliptic equations. This has been further re-
fined by Berestycki and Nirenberg. Their method uses, in an essential way,
maximum principles. In particular, a maximum principle in ‘small domains’
is very useful and it was proved by Varadan using an estimate for solutions
of second order elliptic equations due to Alexandrov, Bakelman and Pucci.
This last estimate was proved using the idea of the lower contact set and an
inclusion analogous to that stated in Lemma 1, and inspired Cabre to imitate
it to suggest the proof of the isoperimetric inequality presented here.ll
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Box 1

If A is a square matrix of order n which is singular, i.e. there exists a non-
zero vector x, such that Az, = 0, then the system of linear equations Ax = b
either has no solution or an infinity of solutions according as b does not or
does satisfy a compatibility condition. If the matrix is symmetric (or self-
adjoint, in the complex case) the condition is b.z, = 0 for any z, in the null
space of A. For, if Ay = b, then

bz, = Ayz, = y. ATz, = y. Az, = 0.

By dimension arguments, it can also be shown that this condition is suffi-
cient. The situation in the case of the Neumann problem is very similar.
The problem (7) can be put in the form of a linear equation in an infinite
dimensional Hilbert space with the linear operator being what is known as
a self-adjoint compact operator. Such operators have properties very similar
to those of linear operators in finite dimensional spaces. In particular, if
f=0and g =0 in (7) we have non-trivial solutions viz. constant functions,
as solutions to (7). Thus, in the general case, (7) either has no solution or
an infinite number of solutions according as (8) is not or is satisfied. This
property is known is functional analysis as the Fredhdolm Alternative.

The necessity of (8) is easy to see by just integrating both sides of the
differential equation in (7) and applying Green’s (i.e. integration by parts)
formula to the term on the left-hand side.

Box 2

If T = (11, Ty,....,Ty) : Q — T(Q), where € is an open set in IRY, is a C'-
diffeomorphism (i.e. T is invertible and both T and 7! are C'- mappings),
then for a subset S of €2, by the change of variable formula

/T(S) do = /S | det(T"(z))|dx

where 7"(z) is the Jacobian matrix whose entries are g—f;(x) However, if
T is not a diffeomorphism, we have that the equality in the above relation
is replaced by the inequality “<”. For example consider 7 : IR — [0, +00)
given by T(z) = z? and S = [-1,1].

In our case T'= Vu and so T'(z) = D*u(x).
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Box 3

Many of you would have come across something called the maximum modulus
principle when studying analytic functions in the complex plane. The real
and imaginary parts of an analytic function are harmonic functions, i.e. they
satisfy the equation Au = 0. Solutions of the Laplace equation (and, more
generally, those of a class of partial differential equations known as elliptic
second order equations, of which the Laplace equation is the prototype) enjoy
special properties which go under the name of maximum principles. For
instance, the weak maximum principle states that if Au > 0 in a domain
and if v < 0 on the boundary, then v < 0 in the domain as well. The
strong maximum principle then asserts that either u is identically equal to
a constant in the closure of the domain or u attains its maximum only on
the boundary. In particular, if « = 0 on the boundary and if u were non-
constant (as is the case in the Neumann problem (12) considered above, since
Au # 0), we deduce that v < 0 in the interior of the domain.
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