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Abstract. Given a stream of n numbers and a number B, the subset
sum problem deals with checking whether there exists a subset of the
stream that adds to exactly B. The unary subset sum problem, USS, is
the same problem when the input is encoded in unary. We prove that
any p-pass randomized algorithm computing USS with error at most
1/3 must use space Ω(B

p
). For p ≤ B, we give a randomized p-pass

algorithm that computes USS with error at most 1/3 using space Õ(nB
p
).

We give a deterministic one-pass algorithm which given an input stream
and two parameters B, ε, decides whether there exist a subset of the
input stream that adds to a value in the range [(1− ε)B, (1 + ε)B] using
space O

(
logB
ε

)
. We observe that USS is monotone (under a suitable

encoding) and give a monotone NC2 circuit for USS. We also show that
any circuit using ε-approximator gates for USS under this encoding needs
Ω(n/ logn) gates to compute the Disjointness function.

1 Introduction

The Subset Sum problem is defined as follows: Given a number B ∈ N and a
sequence of numbers a1, . . . , an ∈ N, decide whether there is a subset S ⊆ [n]
such that

∑
i∈S ai = S. This problem is one of the earliest problems shown to

be NP-complete and can be found in [GJ79].
The Unary Subset Sum problem (USS) is the same problem, but with the

input numbers given in unary (for instance 1B01a10 . . . 1an .)
USS is known to be in P. In [EJT10], Elberfeld, Jakoby and Tantau showed

a powerful meta-theorem for obtaining logspace upper bounds, and used it to
conclude that USS is even in LogSpace. In [Kan10] Daniel Kane gave a consider-
ably simplified logspace algorithm. Improving upon this further, in [EJT12] it is
shown that under appropriate encodings USS has polynomial-sized formulas and
hence is in NC1. They also show that USS has polynomial-sized constant-depth
formulas using MAJORITY and NOT gates and hence is in TC0. On the other
hand, it can be shown easily that MAJORITY reduces to computing USS and
hence USS is TC0-hard. Thus USS is TC0-complete.

A natural question to ask at this point is: Is it crucial to have access to the
entire input at any time in order to be able to solve USS in LogSpace? In other
words: how hard, with regard to space, is USS when the inputs are, say, read
in a stream? We study the complexity of USS and related questions in different
models from this perspective.



In Section 2, we consider the space complexity of USS in the streaming
world. The input numbers arrive in a stream, and we want to design a small
space algorithm that makes one, or maybe a few, passes over the input stream
and decides the instance. We assume that B is the first number in the stream.
We assume that the stream contains integers in the range 1, . . . , B. We use
lower bounds from communication complexity to show that any randomized p-
pass streaming algorithm for USS that makes error bounded by 1/3 must use
Ω(Bp ) space (Theorem 1). Also, by modifying the algorithm from [Kan10], we
obtain, for each p ≤ B, a randomized streaming algorithm for USS that makes p
passes over the input, uses space O((nBp ) log2(Bn)), and on each input errs with

probability at most 1/3 (Theorem 2).

In Section 3, we consider the complexity of approximating USS. We say that
an algorithm ε-approximates USS if it outputs Yes exactly when there is a subset
S ⊆ [n] such that |B−

∑
i∈S ai| < εB. Note that this problem is not necessarily

easier than the exact version of USS since the exact version is not an optimization
problem. i.e., if the answer to exact-USS on an input instance is NO, this does
not mean that the answer to the approximate version is a NO. However, there is
a fully polynomial time approximation scheme (FPTAS) for approximate subset
sum, where the goal is to find a subset S such that B − εB ≤

∑
i∈S ai ≤ B

(see for instance [CLRS09]). But this is not efficient in terms of streaming space,
even when the input is given in unary. We give a simple deterministic 1-pass
streaming algorithm that takes input ε, B, ã and ε-approximates USS on the
stream ã using space O( logB

ε ) (Theorem 3). We also show that this is almost
tight (Lemma 3).

In Section 4, we consider the monotone circuit complexity of USS. Note that
USS is naturally monotone in the following sense: if the number of occurrences
of a number i in the stream is increased, a Yes instance remains a Yes instance.
To model this monotonicity, we consider the following encoding of USS: For
each positive integer B, the input consists of the frequency of each number in
the stream in unary. That is, an instance consists of B blocks of B bits each,
where the ith block wi has as many 1s as the number of occurrences mi of the
number i in the stream. Thus, the input records the multiplicity of each number
in [B] (without loss of generality, no multiplicity exceeds B). Call this problem
the multiplicity-USS problem, mUSS. We show, by a monotone reduction to
reachability, that this problem has monotone circuits of polynomial size and
O(log2B) depth (Theorem 5). The circuit we construct can also be used to solve
the approximate version of USS.

A related question is: How powerful are ε-approximators when used as gate
primitives in circuits? We explore this direction in section 5. We observe that ε-
approximators for mUSS (we call them ApproxUSS gates) are at least as powerful
as threshold gates. Using a technique introduced by Nisan in [Nis94], we also
show that any circuit computing the Disjointness function using ε-mUSS gates
requiresΩ(n/ log n) gates. However we have not been able to compare ApproxUSS
gates explicitly with Linear Threshold gates.



2 Exact USS in Streaming Model

In the communication problem corresponding to USS, both Alice and Bob are
given an integer B. Further, each of them has a multiset of numbers and they
have to determine if there is a sub-multiset of numbers among the union of their
multisets that adds to B. The goal is to minimize the number of bits exchanged
between Alice and Bob. Additionally, there may be constraints on how often the
communication exchange changes direction (the number of rounds).

A standard lower bound technique (see [AMS99]) shows that a p-pass space
O(s) streaming algorithm yields a protocol with communication complexity
O(ps) and 2p− 1 rounds. Thus a communication complexity lower bound yields
a streaming space lower bound. We use this technique to show that any 1-pass
streaming algorithm for USS needs Ω(B) space.

Lemma 1. Any deterministic or randomized 1-pass streaming algorithm for
USS uses space Ω(B).

Proof. We reduce the INDEX problem to USS. The INDEXn function is defined
as follows: Alice has x ∈ {0, 1}n and Bob has an index k ∈ [n]. The goal is to
find xk. Alice can send one message to Bob, after which Bob should announce
what he believes is the value of xk. It is known that the 1-way randomized
communication complexity of INDEXn is Θ(n) (see [BYJKS02] or [KNR95]).

The reduction from INDEXn to USS is as follows: Let B = 2n. Alice creates
a set S = {2n− i|xi = 1}. Bob creates the set T = {k}. Notice that each number
in S is at least n. And so any subset of S that has two or more numbers would
have a sum strictly greater than 2n. Hence any subset of S ∪ T that has a sum
of 2n can have at most one number from S. Now it is easy to see that if xk = 1,
the subset {(2n− k), k} has sum 2n. And if xk = 0, there is no subset of S ∪ T
that has sum 2n. Thus a protocol that correctly decides the USS instance where
B = 2n, Alice has S and Bob has T with communication cost c also correctly
decides INDEXn(x, k) with communication cost c.

Assume that there is a space s(B) 1-pass streaming algorithm for USS. Then
there is a cost s(B) protocol for USS, and hence by the above reduction, a cost
s(2n) protocol for INDEXn(x, k). By the lower bound for INDEX, s(2n) ∈ Ω(n),
and so s(B) ∈ Ω(B). ut

A generalization of the above proof gives a space lower bound for streaming
USS that depends on the number of passes.

Theorem 1. Any deterministic or randomized p-pass streaming algorithm for
USS uses space Ω(B/p).

Proof. We give a reduction from DISJn to USS. The Disjointness problem DISJn
is defined as follows: for x, y,∈ {0, 1}n, DISJn(x, y) = ∧ni=1¬(xi∧yi). (That is, if
x and y are characteristic vectors of sets X,Y ⊆ [n], then DISJn(x, y) = 1 if and
only if X∩Y = ∅. ) Its complement DISJn is the intersection problem. Alice and
Bob are given x ∈ {0, 1}n and y ∈ {0, 1}n respectively. The goal is to determine if
there exists an i ∈ [n] such that xi = y1 = 1. It is known [KS92,Raz92,BYJKS04]



that any randomized protocol for DISJn, with any number of rounds, must
exchange Ω(n) bits to bound error probability by 1/3.

The reduction from DISJ to USS is as follows: We set B = 12n − 1. Alice
constructs the set S = {8n − 2i|xi = 1}. Bob constructs the set T = {4n +
2i− 1|yi = 1}. Notice that all numbers in S are greater than B/2, and that all
numbers in T lie in the interval (B/3, B/2). Further note that each number in
S is even and that each number in T is odd. We claim that DISJn = 1 exactly
when S ∪ T has a subset adding to B. To see why, first observe that

1. Using numbers only from S cannot give a sum of B since B itself does not
appear in S, and the sum of even two numbers from S exceeds B.

2. Using numbers only from T cannot give a sum of B since (1) B does not
appear in T ; (2) Any two numbers in T add to an even number greater than
B/2, but B is odd; and (3) adding three or more numbers from T gives a
sum greater than B.

Thus we see that if any subset of S ∪ T adds to B, then it must contain exactly
one number from S and one from T . That is, it must be of the form {8n−2i, 4n+
2j − 1}. To add up to 12n − 1, it must be the case that i = j. Hence such a
subset exists if and only if there exists an i ∈ [n] such that xi = yi = 1.

Now, as in Lemma 1, assume that there is a space s(B) p-pass streaming
algorithm for USS. Then there is a cost (2p − 1)s(B) protocol for USS with p
rounds, and hence by the above reduction, a cost (2p − 1)s(12n − 1) protocol
for DISJn. By the lower bound for DISJn, (2p − 1)s(12n − 1) ∈ Ω(n), and so
s(B) ∈ Ω(B/p). ut

We now show a space upper bound for USS, for large number of passes.

Theorem 2. For every s ≤ B, there is a randomized streaming algorithm for

USS that makes s passes over the input, uses space O(nB log2(nB)
s ), and on each

input errs with probability at most 1/3.

Proof. The idea is to use the algorithm of [Kan10] for just one prime p. We
will pick this prime randomly from a large enough range to ensure that the
probability of success is high. We first briefly recapitulate Kane’s algorithm.

Let a1, . . . , an be the given set of numbers, and let A be the number of subsets
of {a1, . . . , an} that add to B. We want to determine whether A = 0. If A = 0,
then A = 0 (mod p) for all primes p. If A 6= 0, then A 6= 0 (mod p) for all
primes that do not divide A; the number of primes p such that A = 0 (mod p)
is fewer than logA ≤ log 2n = n.

The algorithm from [Kan10] proceeds as follows: Define

C = |B|+
n∑
i=1

|ai|+ 1.

Let P be the set of the first n primes beyond C. Compute A (mod p) for each
p ∈ P. Clearly, A = 0 ⇐⇒ ∀p ∈ P : A = 0 (mod p). So it suffices to show how
to compute A (mod p) for p ∈ P. To do this, Kane establishes the following key
lemma, which we also use.



Lemma 2 (Lemma 1 from [Kan10]). For any prime p > C:

p−1∑
x=1

x−B
n∏
i=1

(1 + xai) ≡ −A (mod p)

This gives a space-efficient way of computing A (mod p), for any fixed p: com-
pute the left-hand-side above modulo p by sequentially accumulating the con-
tributions from each x ∈ {1, . . . , p − 1}. This yields the logspace algorithm of
[Kan10].

However, this approach seems to require multiple passes over the input, since
for each x ∈ {1, . . . , p− 1} we need all the input numbers, and furthermore, we
need to compute A (mod p) for each p ∈ P.

To handle the second problem, we choose a single prime p uniformly at ran-
dom from the first 3n primes beyond C. More precisely, we choose D such that
there are at least 3n primes between C and D. Let Q be the set of primes be-
tween C and D. Now we pick a prime p ∈ Q uniformly at random. If A = 0, then
A = 0 (mod p). If A > 0, then A = 0 (mod p) for at most n distinct primes p.
Hence the probability that our randomly chosen prime p yields A = 0 (mod p)
is at most 1/3. Thus it suffices to compute the left-hand-side of the expression
in Lemma 2 for a single randomly chosen prime p. We are left with the problem
of dealing with sequential accumulation, each x requiring all inputs.

Assume that p has been chosen. Define

f(x) = x−B
n∏
i=1

(1 + xai) (mod p)

σ(i, j) =

j∑
x=i+1

f(x) (mod p)

−A ≡ σ(0, p− 1) (mod p)

f(x) can be computed in 1 pass using O(log p) space. Hence σ(i, j) can be com-
puted in j − i passes with O(log p) space. But it can also be computed in 1 pass
with O((j − i) log p) space, by computing f(x) for each x ∈ [i+ 1, j] in parallel.
In fact, we have a trade-off: for any 1 ≤ s ≤ j − i, if s passes are allowed, then

σ(i, j) can be computed in (j−i)
s log p space.

We use this trade-off to compute σ(0, p − 1) in s passes. We first compute
K = dp−1s e. We then compute σ(0,K) in the first pass, σ(K, 2K) and hence
σ(0, 2K) in the second pass and so on. In s passes, we can obtain σ(0, p − 1),
and we use O(K log p) space throughout. This works provided s ≤ p − 1; since
p > B, it works fo all s ≤ B.

The kth prime is roughly k ln k ∈ O(k log k). The prime we use, p, is at
most as large as the (C + 3n)th prime. Since C ∈ O(nB), we see that p ∈
O(nB log(nB)). Hence the space used is O(nB log2(nB)

s ). ut



3 Approximate USS in Streaming Model

As computing exact USS is provably hard (Theorem 1), the next natural question
to ask is: can it be approximated? There is a classical approximation algorithm
for the following approximation version of the Subset Sum problem: Given a set
of numbers and a target B, let B∗ be the largest value smaller than B expressible
as a sum of a subset of the given numbers. Find a subset with sum in the range
[(1− ε)B∗, B∗], for a given ε. (Note that B∗ itself is not explicitly known.) It is
known that this problem has a fully polynomial time approximation scheme (an
algorithm with run time polynomial in n, B, 1/ε); see for instance [CLRS09].
This algorithm is one-pass and works even if the input data is given in binary.
However, the space used is O(n) even if the input is given in unary. We wish to
approximate USS using a small number of passes on the input and using space
polylogarithmic in the length of the input. We consider the following variant: For
any ε and B and input stream ã = a1, . . . , an where each ai ∈ [B], we say that
set S ⊆ [n] is an ε-approximator of B in ã if

(∑
i∈S ai

)
∈ [B(1 − ε), B(1 + ε)].

Given ε, B, ã, we want to decide whether there is an ε-approximator of B in ã.
We prove the following theorem:

Theorem 3. There is a deterministic 1-pass streaming algorithm that on an
input stream ε, B, ã, uses space O( logB

ε ) and outputs 1 if and only if there exists
an ε-approximator for B in the stream ã.

Proof. Consider the following algorithm A:

Maintain a set of intervals T .
Initialise: T ← {[B(1− ε), B(1 + ε)]}.
while End of stream not reached do
a← Next number in stream.
if ∃ interval [α, β] ∈ T such that a ∈ [α, β] then

Output YES and halt.
else
T ′ ← {[α, β], [α− a, β − a] | [α, β] ∈ T};
T ← T ′.
Merge overlapping intervals in T to get a set of pairwise disjoint intervals.
(If [a, b], [c, d] ∈ T and a ≤ c ≤ b ≤ d, remove [a, b], [c, d] and add [a, d].)

end if
end while

Before seeing why the algorithm is correct, we first consider the space analy-
sis. Note that at the beginning of each iteration, T has a set of disjoint intervals
and each interval has size at least 2Bε. The space required to store the endpoints
of each interval is O(logB). There can be at most B/(2Bε) disjoint intervals from
1 to B, so at any given time, |T | ≤ 1

ε . Since T ′ has two intervals for each interval

of T , |T ′| is also O( 1
ε ). So the space used is O( logB

ε ).
We now show that A is correct; that is, A outputs YES if and only if there

exists a subset of the input numbers that has sum in [l, r]. The intuition behind
the correctness is the following: We maintain the set of intervals T such that if



any number in the union of the intervals in T is seen as input, then there indeed
exists a subset that generates B. This is true in the beginning by the way we
initialize T . When a number m is read, a copy of each interval in T is shifted
down by m to create a new interval. So if a number in any of these new intervals
is seen, then it can be combined with m to give a number in one of the older
intervals. (The original intervals are also retained, so we can also not use m in
creating a subset.) And this property is maintained by updating T with every
number seen. Note that no interval in T gets deleted. Intervals in T only get
merged into other intervals to become larger intervals and this does not affect
the invariant property.

We now describe the proof more formally: For a set of intervals T , define
R(T ) = {a | ∃[α, β] ∈ T : a ∈ [α, β]}; R(T ) is the union of all the intervals in T .
Let l = B(1− ε) and r = B(1 + ε). Initially, R(T ) = {a | l ≤ a ≤ r}.

⇒: Assume that A outputs YES. Let Tk denote the collection of intervals after
reading k numbers from the stream. A accepts at a stage k when it reads a
number ak ∈ R(Tk−1). We show below, by induction on k, that if a ∈ R(Tk),
then there is a subset of {a1, . . . , ak} ∪ {a} with sum in [l, r]. This establishes
that the YES answers are correct.

In the beginning, T0 is initialized to {[l, r]}. Thus a ∈ R(T0)⇒ a ∈ [l, r].
Now assume that the property holds after reading k− 1 numbers. That is, if

a ∈ R(Tk−1), then there is a subset of {a1, . . . , ak−1} ∪ {a} with sum in [l, r].
If ak ∈ R(Tk−1), the algorithm terminates here and there is nothing more to

prove. Otherwise, ak 6∈ R(Tk−1), and the algorithm goes on to construct Tk. The
update sets R(Tk) to contain all of R(Tk−1) as well as all numbers b such that
ak + b ∈ R(Tk−1). Now consider an a ∈ R(Tk). If it also holds that a ∈ R(Tk−1),
then we can pretend that ak was not read at all, and using induction, pull
out a subset of {a1, . . . , ak−1} ∪ {a} with sum in [l, r]. If a 6∈ R(Tk−1), then
ak + a ∈ R(Tk−1). By induction, we have a subset of {a1, . . . , ak−1} ∪ {ak + a}
with sum in [l, r]. Hence we have a subset of {a1, . . . , ak−1, ak} ∪ {a} with sum
in [l, r], as desired.

⇐: Let S, |S| = k, be the first subset of numbers in the input stream that has
sum in [l, r]. That is,

– S = {ai1 , ai2 , . . . , aik} for some i1 < i2 < . . . < ik,

–
∑k
j=1 aij = B −Bλ for some |λ| < |ε|, and

– there is no such subset in a1, . . . aik−1.

We will show that A outputs YES on reading aik .
To simplify notation, let sj denote aij .
Observe that if a number a enters R(T ) at any stage, then it remains in R(T )

until the end of the algorithm. This is because an interval is deleted only when
an interval containing it is added.

Now we observe the way T gets updated. After reading s1, R(T ) will contain
the intervals {[l, r], [l − s1, r − s1]}. (It may contain more numbers too, but



that is irrelevant.) After reading s2, R(T ) will contain {[l, r], [l− s1, r − s1], [l−
s2, r− s2], [l− s1− s2, r− s1− s2]}. Proceeding in this way, and using the above
observation that R(T ) never shrinks, after reading s1, s2, · · · , sk−1, R(T ) will
contain [l− (s1 + · · ·+ sk−1), r− (s1 + s2 + · · ·+ sk−1)]. But this interval is the
following:

[(B(1− ε)− (s1 + · · ·+ sk−1)), (B(1 + ε)− (s1 + · · ·+ sk−1))]

= [(B(1− ε)− (B −Bλ− sk)), (B(1 + ε)− (B −Bλ− sk))]

= [(sk +Bλ−Bε), (sk +Bλ+Bε)]

= [(sk −B(ε− λ)), (sk +B(ε+ λ))]

Since ε > 0 and |λ| < |ε|, sk ∈ [(sk + B(λ − ε)), (sk + B(λ + ε))]. Hence A will
output YES when sk is read. ut

The following lemma shows that the simple streaming algorithm discussed
above is pretty much tight.

Lemma 3. Let f be any real-valued function. If f(2x) log x ∈ o(x), then there
is no randomized 1-pass streaming algorithm that ε-approximates USS and uses
only O(f( 1

ε ) logB) space.

Proof. Assume to the contrary that A is a randomized 1-pass algorithm that
ε-approximates USS and uses space O(f( 1

ε ) logB). Choose ε = 1
2B . Now for this

value of ε, and for every stream ã, A will behave like an exact algorithm for USS.
The lower bound from Lemma 1 now implies that f

(
1
ε

)
logB ∈ Ω(B), and hence

f(2B) logB ∈ Ω(B). But the last relation cannot hold if f(2x) log x ∈ o(x). ut

4 Multiplicity USS (mUSS) and Monotone Circuits

In this section, we consider the monotone circuit complexity of USS. Without the
monotone restrictions, it is known that USS is complete for the circuit class TC0

([EJT12]). However, in a very natural sense, Subset Sum is a monotone problem,
and so we can consider monotone circuits for it. The encoding of the input
becomes crucial for achieving monotonicty. We choose the following encoding:

For each positive integerB, the input consists of the frequency of each number
in the stream in unary. An instance w ∈ {0, 1}B2

consists of B blocks of B bits
each. For each k ∈ [B], if k occurs in the stream mk times, then the kth block

wk has exactly mk 1s; that is,
∑B
j=1 wkj = mk. Thus the input records the

multiplicity of each number in [B] (we assume that no multiplicity exceeds B).

Define the transitive relation �: For u = (u1, u2, . . . , uB), v = (v1, v2, . . . , vB)

with uk, vk ∈ {0, 1}B , u � v if and only if ∀k ∈ [B],
∑B
j=1 ukj ≤

∑B
j=1 vkj .

We define the multiplicity-USS problem, denoted as mUSS, and its approxi-
mation variant ε-mUSS, as follows.



mUSS(w,B) = 1⇐⇒ ∃y = (y1, y2, . . . , yB) :

yk ∈ {0, 1}B ∀k ∈ [B], y � w, and

B =

 B∑
k=1

k

 B∑
j=1

ykj


ε-mUSS(w,B) = 1⇐⇒ ∃y = (y1, y2, . . . , yB) :

yk ∈ {0, 1}B ∀k ∈ [B], y � w, and

B(1− ε) ≤

 B∑
k=1

k

 B∑
j=1

ykj

 ≤ B(1 + ε)

We call such a y a witness for (w,B). The vector y represents a subset of
the multi-set represented by w such that the elements in y sum to B (or to a
number within ε of B, respectively).

For example, for B = 4, the stream 1 3 2 2 1 4 3 can be encoded by any of the
following strings (and by many more): 1100 1100 1100 1000, 1010 0101 0011 0010.
Some witnesses for this instance are 1100 1000 0000 0000 (use two 1s and a 2),
0100 0000 0001 0000 (use a 1 and a 3), 0000 0000 000 1000 (use the 4).

Fact 4 mUSS is a monotone function, i.e. for each positive integer B, and for
each u = (u1, u2, . . . , uB), if mUSS(u,B)= 1, and if v = (v1, v2, . . . , vB) is
obtained from u by changing some 0s to 1s, then mUSS(v,B)= 1.
Similarly, for each ε and B, ε-mUSSis a monotone function.

It has been known for over three decades ([MS80]) that USS is in nondeter-
ministic logspace; hence USS reduces to the problem Reach defined below:

Given: a layered directed acyclic graph G, two designated nodes s, t
Output: 1 if there is a path from s to t in G, 0 otherwise.

It is well-known that Reach has monotone circuits of depth O(log2 n), where n is
the number of vertices in the input instance. (This follows from the construction
of [Sav70]. See for example [AB09].) We show that with the encoding described
above, exact and approximate versions of mUSS reduce to Reach via monotone
projections, and hence have small depth monotone circuits.

Theorem 5. For every positive integer B, mUSS(·, B) and ε-mUSS(·, B) have
monotone circuits of depth O(log2B).

Proof. (Sketch) We prove this by reducing an instance of mUSS into an instance
of Reach via a monotone projection.

For every integer B, and given w ∈ {0, 1}B2

= (w1, w2, . . . , wB) we create a
graph with B2 + 1 layers. The zero-th layer consists of the source vertex and the
other B2 layers have (B + 1) vertices each. We further partition B2 layers into
B blocks of B consecutive layers each.



Let vij,k denote the i-th vertex in the layer j in the block k. Intuitively, each
layer corresponds to a bit position in the input string. We add edges in order to
ensure that a vertex vik,j is reachable from the source vertex if and only if the
stream corresponding to the first k−1 blocks of w and j bits from the kth block
has a subset that adds to i.
If after reading l bits of w there is a subset that adds to i then this subset
continues to exist even after reading more bits. To capture this phenomenon, we
add horizontal edges from every vertex v in layer l to the copy of v in layer l+ 1.
If the bit wkj = 1, then using this copy of k, for each existing subset sum s, the
subset sum s+ k can also be created. To capture this, we include slanted edges
from each vij,k to vi+kj+1,k.

Thus, there is a path form the source to vertex viB,B exactly when there is a

subset that sums to i. By connecting viB,B for appropriate i to a new target
node t, we reduce mUSS or ε-mUSS to Reach. ut

5 Circuits with ε-approximators for mUSS as gates

We now examine the power of ε-approximators for mUSS when used as a prim-
itive to compute other functions. In [Nis94], Nisan showed that any circuit for
DISJn using linear threshold gates requires Ω(n/ log n) gates. We introduce a
new kind of gate, an ApproxUSS gate, that we show is at least as powerful as
a Threshold or Majority gate, and show that any circuit that uses ApproxUSS
gates to compute Disjointness needs size Ω(n/ log n). However, we do not know
whether linear threshold gates can simulate ApproxUSS gates with at most sub-
logarithmic blowup in the number of gates or vice versa.

We define approximate USS gates, denoted ApproxUSS, as gates that solve
the ε-mUSS problem defined in Section 4. An ApproxUSSε,B gate takes a bit
string x of length B2 as input, and outputs 1 exactly when ε-mUSS(x,B) =1.

While it is trivial to see that majority can be computed with a single call to
an oracle for mUSS, it is not immediately clear that oracle access to ε-mUSS when
ε > 0 is also sufficient. We show that this is indeed the case, by showing that
ApproxUSS gates are at least as powerful as standard threshold gates. Specifically,
we show that an ApproxUSS gate can simulate majority with only a polynomial
blowup in the number of wires.

Lemma 4. The MAJ2n+1 function can be computed by an ApproxUSSε,B gate
with B = O(n3) and a suitable non-zero value for ε.

On the other hand, it is not known whether ApproxUSS, for ε 6= 0, can be
decided with a single oracle call to majority. It is conceivable that demanding
a YES answer for a wider range of inputs (the approximation) makes the prob-
lem harder. It is therefore interesting to examine the power of circuits using
ApproxUSS gates. We follow this thread below.

The communication problem ccApproxUSS corresponding to ApproxUSS can
be described as follows. Let S ⊆ [B2]. Both Alice and Bob know S, B and ε.



Alice knows the bits xi for i ∈ S, and Bob knows the remaining bits of x. They
must decide whether ApproxUSSε,B(x) = 1, that is, whether ε-mUSS(x,B) =1.

In Theorem 3 we proved that for every ε, there is a one-pass streaming
algorithm that ε-approximates USS using space O ((logB)/ε). The algorithm
works for every possible ordering of the numbers in the input stream. This implies
that there is a O ((logB)/ε) bit one-round protocol for ccApproxUSS for worst
case partitioning of the input (for every S ⊆ [B2]). (The string x determines
the multi-set of numbers. For any partition of x, Alice and Bob can construct a
stream of numbers forming this multi-set, where Alice has the initial part of the
stream and Bob has the latter part. Treat the indices in B2 as pairs k, j where
k is the block number and j is the index within the block. Alice includes in her
stream a copy of k for each bit xkj = 1 in her part. Bob does the same.) Therefore,
using an argument similar to that of [Nis94], we can prove the following lemma:

Lemma 5. Let C be a circuit that computes DISJn using s ApproxUSSε,B gates,
where ε ∈ Θ(1), and the value of B at each ApproxUSSε,B is bounded above by a
polynomial in n. Then s ∈ Ω(n/ log n).

Proof. Let C be such a circuit, with s ApproxUSS gates. Let t denote the max-
imum value of B in any of the gates. We use C to obtain a protocol for DISJn
as follows. Alice and Bob evaluate C bottom-up, reaching a gate only after
all its children have been evaluated. At each ApproxUSS gate, we know that
logB ∈ O(log t) ⊆ O(log n). When an ApproxUSS gate has to be evaluated, an
efficient protocol of O ((log t)/ε) bits for ccApproxUSS is invoked with the ap-
propriate partition of the inputs of the gate. As there are s ApproxUSS gates,
the entire protocol for computing DISJn uses O(((log t)/ε)× s) bits of commu-
nication. However, we know that any protocol for DISJn requires Ω(n) bits of
communication ([KS92,Raz92,BYJKS04]). Hence, s log t = Ω(εn). By assump-
tion, ε ∈ Θ(1), and log t = O(log n). Hence s = Ω(n/ log n). ut

6 Discussion

We now discuss a few aspects of our results and some open questions.

– The upper and lower bounds from Theorems 1 and 2, for s-pass streaming
algorithms for USS, do not quite match. There is a gap of n log2(nB). Closing
this gap will be interesting.

– If the multiplicities of all numbers are restricted to be between {0, 1}, then
the problem does not become easier. In fact, our lower bound proof for USS
in Section 2 (Theorem 1) generates such instances.

– We know that USS is in TC0 [EJT12] and we have proved that mUSS
is in monotone NC2. It is known that there exists a monotone formula
of polynomial size which cannot be computed by constant depth polyno-
mial sized monotone threshold circuits [Yao89]. However, the question of
whether monotone TC0 is contained in monotone NC1 is open (see for in-
stance [Ser04]). Majority is known to be in monotone NC1 [Val84]. And it is
easy to observe that majority reduces to USS. In the light of these results,
the question of whether mUSS is contained in monotone NC1 is interesting.
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