
Monomials, Multilinearity and Identity Testing in

Simple Read-Restricted Circuits∗

Meena Mahajan †1, B V Raghavendra Rao ‡2, and Karteek
Sreenivasaiah §1

1The Institute of Mathematical Sciences, Chennai
2Indian Institute of Technology Madras, Chennai

October 6, 2013

Abstract

We study the problem of testing if the polynomial computed by an
arithmetic circuit is identically zero. We give a deterministic polynomial
time algorithm for this problem when the inputs are read-twice or read-
thrice formulas. In the process, these algorithms also test if the input
circuit is computing a multilinear polynomial.

We further study three related computational problems on arithmetic
circuits. Given an arithmetic circuit C, 1) ZMC: test if a given monomial
in C has zero coefficient or not, 2) MonCount: compute the number of
monomials in C, and 3) MLIN: test if C computes a multilinear polyno-
mial or not. These problems were introduced by Fournier, Malod and
Mengel [STACS 2012], and shown to characterize various levels of the
counting hierarchy (CH).

We address the above problems on read-restricted arithmetic circuits
and branching programs. We prove several complexity characterizations
for the above problems on these restricted classes of arithmetic circuits.

Keywords : Arithmetic Circuits, Computational Complexity.

1 Introduction

A fundamental question one can ask concerning a given arithmetic circuit is:
does the circuit compute the identically zero polynomial? This is the well-known

∗A preliminary version of this paper appeared in MFCS ’12 (see [18]). This research is
partially supported by Indo-German Max Planck Center (IMPECS)
†meena@imsc.res.in
‡bvrr@cse.iitm.ac.in
§karteek@imsc.res.in

1

Polynomial Identity Testing problem PIT, that has spurred an enormous amount
of research in the last two decades. A complete derandomization of black-box
PIT even for the case of depth three arithmetic circuits implies circuit lower
bounds [12, 16].

Today, there are two frontiers for identity testing. One is based on the
(alternation) depth of the circuit. Deterministic identity testing algorithms are
known for depth-2 circuits, for depth-3 circuits with restrictions on the top
fanin, and for restricted depth-4 circuits. (See [1] and the references therein.)
As indicated by [12], improving this to arbitrary depth-3 circuits will be a major
breakthrough.

The other frontier is concerned with formulas. Restricting fanout in a circuit
to 1 yields formulas; further restricting formulas to allow each variable at no
more than k leaves yields Read-k Formulas. The simplest kind of formulas are
read-once formulas ROFs: every variable appears at most once. Deterministic
polynomial-time algorithms for PIT on such formulas are trivial. Going beyond
these for k > 1, one breakthrough in [19] shows how to test k-sums of ROFs: for
each k ∈ O(1), PIT can be efficiently performed on a sum of k ROFs. However,
not every Read-k formula can be expressed as a sum of k ROFs. Along this
thread, the next improvement in [5] shows how to do identity testing on read-k
formulas that are known to be multilinear, that is, the polynomials computed
at each node are multilinear.

To use the algorithm from [5] for a Read-k formula, we first need to check
whether it is multilinear. Multilinearity testing is as hard as PIT in general
([11]), but for read-k formulas, it could conceivably be easier. Thus one way to
extend the result of [5] to arbitrary read-k formulas is to develop a multilinearity
test for such formulas.

Our main results are a multilinearity and identity test for read-twice and
read-thrice formulas. Our tests are intertwined with a PIT algorithm for subfor-
mulas. We give a deterministic polynomial-time algorithm that simultaneously
decides whether an R2F is multilinear and whether it is identically zero (Theo-
rem 4). It uses the sum-of-k-ROFs test from [19] on some subformulas as well as
on some formulas obtained by transforming subformulas of the input formula.
Thus it is inherently a non-blackbox algorithm; so is the polynomial-time algo-
rithm from [19]. In Theorem 5, we give a mutlilinearity and identity test for
read-thrice formulas. However, this does not gather as much information as the
test for read-twice. Hence we feel that the multilinearity test for the read-twice
case can potentially be extended to formulas that read variables more than
twice.

PIT algorithms check whether the polynomial computed by the circuit has
at least one monomial. Natural generalizations/variants of this question are
(1) MonCount: compute the number of monomials in the polynomial computed
by a given circuit, and (2) ZMC: Decide whether a given monomial has zero
coefficient in the polynomial computed by a given circuit. ZMC was introduced
by Koiran and Perifel [17]. More recently, Fournier, Malod and Mengel [11]
showed that ZMC and MonCount characterize certain levels of the counting
hierarchy (CH, the hierarchy based on the complexity classes PP and C=P). In

2

fact, MonCount remains hard even if restricted to formulas. They also show that
if the circuits compute multilinear polynomials, then these problems become
easier (equivalent to PP and PIT respectively), and that multilinearity checking
itself is equivalent to PIT. All these results from [11] are in the non-black-box
model, where the circuit is given explicitly in the input.

Since PIT on Read-k formulas appears easier, naturally one could ask whether
MonCount and ZMC become easier as well? We observe that this is not the case:
even for monotone (no negative constants) read-twice formulas, MonCount is
#P-hard. This further leads us to the investigation: where exactly does hard-
ness for MonCount and ZMC begin? Further, translating the classes between NP
and PSPACE down to classes below P, can we show that on restricted circuits,
MonCount and ZMC are complete for the translated classes?

Starting with ROFs, we show (Theorem 7) that MonCount for ROFs is in
the GapNC1-hierarchy, i.e. the AC0-closure of GapNC1, where GapNC1 is the
class of Boolean problems that can be computed by arithmetic formulas over
the integers with constants 0, 1, -1. The GapNC1-hierarchy is an intriguing
class that lies between NC1 and DLOG and has been studied extensively in the
last two decades; see for instance [2]. We also show that ZMC for ROFs is in
logspace (Theorem 18). It is straightforward to see that ZMC for ROFs is hard
for C=NC1, so this is almost tight. (The “gap” between Boolean NC1, C=NC1,
GapNC1 and DLOG is very small.)

Another equally natural and well-studied restriction is when the circuit is
an algebraic branching program BP with edges labeled by the allowed constants
or by variables. Evaluation of BPs on Boolean-valued inputs is complete for
the arithmetic class GapL, the logspace analogue of the class GapP. The GapL
hierarchy (the AC0 closure of GapL) is known to be contained in log n depth
threshold circuits TC1 and hence in log2 n depth Boolean circuits NC2. Two
restrictions on BPs, in order of increasing generality, are: (1) occur-once BPs,
or OBPs, where each variable appears at most once anywhere in the BP, these
subsume ROFs, and (2) multilinear BPs, or MBPs, where the polynomial com-
puted at every node is multilinear. Again, deterministic algorithms are known
for ACIT on OBPs, [14]. We show that MonCount for OBPs is in the GapL hi-
erarchy (Theorem 15), while ZMC for OBPs and even MBPs is complete for the
complexity class C=L (Theorem 17). (As a comparison, a well-known complete
problem for C=L is testing singularity of an integer matrix [3].)

A related problem explored in [11] as a tool to solving MonCount is that of
checking, given a circuit C and monomial m, whether C computes any monomial
that extends m. Denote this problem ExistExtMon. Though our algorithms for
MonCount do not need this subroutine, we also show that for OBPs (and hence
for ROFs), ExistExtMon lies in the GapL hierarchy (Theorem 19).

3

2 Preliminaries

Circuits, formulas, branching programs, polynomials.

Let X = {x1, . . . , xn} be a set of variables. An arithmetic circuit C over a ring R
is a directed acyclic graph with internal nodes labeled + or × and leaves labeled
from X∪R. Every node has in-degree zero or two, and there is exactly one node
of out-degree zero, called the output gate. Unless otherwise stated, we consider
R to be the ring of integers Z, and we allow only the constants {−1, 0, 1} in
the circuits. An arithmetic formula F is an arithmetic circuit where fan-out for
every gate is at most one.

The depth of a circuit is the length of a longest root-to-leaf path. The
alternation-depth is the maximum number of alternations between + and ×
gates along any root-to-leaf path. In the literature on identity testing, depth is
used to mean alternation-depth. However we differentiate between these, as is
done in uniform circut complexity literature, because bounded fanin is crucial
to some of our algorithms. Note that converting a circuit to a bounded fanin
circuit increases only the depth, not the size or the alternation depth.

Every node in C computes a polynomial in R[x1, . . . , xn] in a natural way.
Let g be a gate in a circuit (or formula) C. We denote by pg the polynomial
computed at gate g of C. We denote by pC the polynomial pr, where r is the

output gate of C. Let varg
∆
= {xi | some descendant of g is a leaf labelled xi}.

A read-once arithmetic formula (ROF for short) is an arithmetic formula
where each variable occurs at most once as a label. More generally, in a read-k
arithmetic formula a variable occurs at most k times as a label.

An algebraic branching program (ABP for short) over a ring R is an undi-
rected acyclic graph B with edges labeled from {x1, . . . , xn} ∪R, and with two
designated nodes, s with zero in-degree, and t with zero out-degree. For any
directed path ρ in B, define

weight(ρ) =
∏

e: an edge in ρ

label(e).

Any pair of nodes u, v in B computes a polynomial in R[x1 . . . xn] defined
as follows:

pB(u, v) =
∑

ρ: ρ is a u v path in B

weight(ρ).

The ABP B computes the polynomial pB
4
= pB(s, t). We drop the subscript B

from the above when clear from context.
We consider the following restrictions of ABPs in increasing order of gen-

erality: (1) occur-once ABPs (OBP for short), where each variable appears at
most once anywhere in the ABP (such BPs generalize ROFs), (2) read-once
ABPs, or RBPs, where no path has two occurrences of the same variable, and
(3) multilinear BPs, or MBPs, where the polynomial computed at every node
is multilinear.

4

Complexity Classes.

For all the standard complexity classes, the reader is referred to [6]. We provide
below the definitions of some of the less-familiar complexity classes that are
used in the paper. Let f = (fn)n≥0 be a family of integer valued functions
fn : {0, 1}n → Z. f is in the complexity class GapL exactly when there is some
nondeterministic logspace machine M such that for every x, f(x) equals the
number of accepting paths of M on x minus the the number of rejecting paths
of M on x. C=L is the class of languages L such that for some f ∈ GapL, for
every x, x ∈ L ⇔ f(x) = 0. The GapL hierarchy, at an intuitive level, can
be seen as classes of functions built over bit access to other functions, with a
deterministic logspace machine at the base and access to GapL functions at the
first level. It is known to be contained in NC2. For technical complications that
arise in the definition of the GapL hierarchy, the reader is referred to [4, 3] or [7].

GapNC1 denotes the class of families of functions (fn)(n≥0), fn : {0, 1} → Z,
where fn can be computed by a uniform polynomial size log depth arithmetic
circuit. This equals the class of functions computed by uniform polynomial-sized
arithmetic formulas ([9]). C=NC1 is the class of languages L such that for some
GapNC1 function family (fn)n≥0, and for every x, x ∈ L ⇐⇒ f|x|(x) = 0. The

GapNC1 hierarchy comprises of languages accepted by polynomial-size constant
depth unbounded fanin circuits (AC0) with oracle access to bits of GapNC1

functions. It follows from the results of [13] that the hierarchy is contained in
DLOG.

Miscellaneous Notation.

A monomial is represented by the sequence of degrees of the variables. For in-
stance, over x1, x2, x3, the monomial x2

1 is represented as (2, 0, 0), and the mono-
mial x1x3 is represented as (1, 0, 1). For a degree sequence m = (d1, . . . , dn) we
denote the monomial

∏n
i=1 x

di
i by Xm. For any set S ⊆ [n], we denote by

mS the multilinear monomial
∏
i∈S xi. For a monomial m and polynomial p,

coeff(p,m) denotes the coefficient of m in p. [statement S] is a Boolean 0-1
valued predicate that takes value 1 exactly when the statement S is true.

We now describe the computational problems considered in this paper.

MonCount: Given an arithmetic circuit C over Z, compute the number of mono-
mials in the polynomial computed by C.

MLIN: Given an arithmetic circuit C over Z, test if the polynomial pC is mul-
tilinear or not.

ZMC: Given an arithmetic circuit C over Z, and a monomialm, test if coeff(pC ,m) =
0 or not.

ExistExtMon: Given an arithmetic circuit C over Z, and a monomial m, test
if there is a monomial M with non-zero coefficient in pC such that M
extends m; that is, m|M .

5

Note that for a polynomial p, when the input monomial is a single variable
xi, ExistExtMon reduces to checking if the partial derivative of p w.r.t xi is
identically zero.

The following propositions list some of the known results used in the paper.

Proposition 1 ((follows from [9, 13])). Evaluating an arithmetic formula where
the leaves are labelled {−1, 0, 1} is in DLOG (even GapNC1).

Proposition 2 ([19]). Given k ROFs in n variables, there is a deterministic
(non black-box) algorithm that checks whether they sum to zero or not. The
running time of the algorithm is nO(k).

The following result can be obtained by easy reductions to known log-space
complete problems [10].

Proposition 3 ([10]). The following problems are in DLOG:
1) Given a formula F , a gate g ∈ F , and a variable x, checking whether

x ∈ varg.
2) Given a rooted tree T , and two nodes u, v, find lowest common ancestor

(LCA) of u and v.

3 Multilinearity and identity tests

In this section we consider read-twice formulas, and the problems of testing mul-
tilinearity MLIN and testing identically zero PIT on read-2 and read-3 formulas.
We first look at the read-2 case.

Read-2 Formulas

The individual degree of a variable in a polynomial p computed by read-twice
formula F is bounded by two. Thus, multilinearity testing boils down to testing
if the second order partial derivative of F with respect to xi is zero for every
variable xi. Note that the second-order partial derivative of F with respect to
xi is a polynomial in n − 1 variables; thus MLIN reduces to n instances of PIT
on n − 1 variables. Our approach is to use the inductive structure of a read-
twice polynomial to test these partial derivatives for zero, using the knowledge
of multilinearity of gates at the lower levels. As an aid in this computation, we
also check, for each gate g and each variable x, whether x survives in pg.

Theorem 4. For read-twice formulas, the problems PIT, ExistExtMon(φ, x),
and MLIN (where φ is the input formula and x is a single variable in it) are in
P.

Proof. Let φ be the given read-twice formula on variables x1, . . . , xn, with S
internal nodes. Without loss of generality, assume that φ is strictly alternating.
That is, inputs to a + gate are either leaves or are × gates, and inputs to a ×
gate are either leaves or are + gates.

We proceed by induction on the structure of the formula φ.

6

We iteratively compute, for each gate g in φ and each variable x ∈ X, the
following set of 0-1 valued functions:

PIT(g) = 1 ⇔ pg ≡ 0

MLIN(g) = 1 ⇔ pg is multilinear

ExistExtMon(g, x) = 1 ⇔ pg has a monomial m that contains x

We say that x survives in g if ExistExtMon(g, x) = 1.
The base case is when φ is a single variable or a constant. That is, φ

consists of a single gate g that is labelled L ∈ {x1, . . . , xn} ∪ {0,+1,−1}. Then
PIT(g) = 1 if and only if L = 0, MLIN(g) = 1 always, and ExistExtMon(g, x) = 1
if and only if L = x.

Now assume that for every gate u below the root gate of φ, the above func-
tions have been computed and stored as bits. Let f be the root gate of φ. We
show how to compute these functions at f . The order in which we compute
them depends on whether f is × or a + gate.

First, consider f = g × h. We compute the functions in the order given
below.

1. PIT(f): f is identically zero if and only if at least one of g, h is. Thus
PIT(f) = PIT(g) ∨ PIT(h).

2. MLIN(f): If f is identically zero, then it is vacuously multilinear. Oth-
erwise, for it to be multilinear, it must be the product of two (non-zero)
multilinear polynomials in disjoint sets of variables. Thus

MLIN(f) = PIT(f) ∨

MLIN(g) ∧MLIN(h)∧

(∧
x∈X

[¬ExistExtMon(g, x) ∨ ¬ExistExtMon(h, x)]

)]
Note that the PIT(f) term is necessary, since f can be multilinear even if,
for instance, g is not, provided h ≡ 0.

3. ExistExtMon(f, x): x appears in pf if and only if pf 6≡ 0 and x appears in
at least one of pg, ph. Thus

ExistExtMon(f, x) = ¬PIT(f) ∧ [ExistExtMon(g, x) ∨ ExistExtMon(h, x)]

Next, consider f = g + h. We compute the functions in the order given
below.

1. MLIN(f): Since f is read-twice, a non-multilinear monomial in g cannot
get cancelled by a non-multilinear monomial in h; that would require at
least 4 occurrences of some variable. Thus, f is multilinear only if both
g and h are. The converse is trivially true. Thus MLIN(f) = MLIN(g) ∧
MLIN(h).

7

2. ExistExtMon(f, x): This is the non-trivial part of this proof; we defer the
description to a bit later.

3. PIT(f): Once we compute the functions above, this is straightforward:

PIT(f) = [f(0) = 0] ∧
∧
x∈X
¬ExistExtMon(f, x)

Checking if f(0) = 0 is feasible; see Proposition 1.

We now complete the description for computing ExistExtMon(f, x) when f =
g + h. If x survives in neither g nor h, then it does not survive in f . But if it
survives in exactly one of g, h, it cannot get cancelled in the sum, so it survives
in f . Thus

ExistExtMon(g, x) ∨ ExistExtMon(h, x) = 0 =⇒ ExistExtMon(f, x) = 0

ExistExtMon(g, x)⊕ ExistExtMon(h, x) = 1 =⇒ ExistExtMon(f, x) = 1

So now assume that x survives in both g and h. We can write the polynomials
computed at g, h as pg = αx+α′ and ph = βx+ β′, where α′, β′ do not involve
x; and we know that α 6≡ 0, β 6≡ 0. We want to determine whether α+ β ≡ 0.

Since x appears in Vg and Vh, and since f is read-twice, we conclude that x
is read exactly once each in g and in h. Hence α, β also do not involve x.

We construct a formula computing α as follows: In the sub-formula rooted
at g, let ρ be the unique path from x to g. For each + gate u on the path
ρ, let u′ be the child of u not on ρ; replace u′ by the constant 0. Thus we
retain only the parts that multiply x; that is, we compute αx. Setting x = 1
gives us a formula G computing α. A similar construction with the formula
rooted at h gives a formula H computing β. Set F = G + H. Note that
F is also a read-twice formula, and it computes α + β. Thus in this case
ExistExtMon(f, x) = 1⇔ PIT(F) = 0, so we need to determine PIT(F).

Let Y denote the set of variables appearing in F ; Y ⊆ X \{x}. Partition Y :
A: variables occurring only in G; B: variables occurring only in H;
C: variables occurring in G and H.

If A∪B = ∅, then Y = C, and each variable in F appears once in G and once
in H. That is, both G and H are read-once formulas. We can now determine
PIT(F) in time polynomial in the size of F using Proposition 2.

If A ∪ B 6= ∅, then let y ∈ A. If y survives in G, it cannot get cancelled
by anything in H, so it survives in F and F 6≡ 0. Similarly, if any y ∈ B
survives in H, then F 6≡ 0. We briefly defer how to determine this and complete
the high-level argument. If no y ∈ A survives in G, and no y ∈ B survives
in H, then let F ′ = G′ + H ′ be the formula obtained from F,G,H by setting
variables in A ∪ B to 0. Clearly, the polynomial computed remains the same;
thus α + β = pF = pF |A∪B←0 = pF ′ . But F ′ satisfies the previous case (with
respect to F ′, A′ ∪ B′ = ∅), and so we can use Proposition 2 as before to
determine PIT(F ′) = PIT(F).

What remains is to describe how we determine whether a variable y ∈ A
survives in G. (The situation for y ∈ B surviving in H is identical.) We exploit

8

the special structure of G: there is a path ρ where all the + gates have one
argument 0 and the path ends in a leaf labeled 1. Let T = {T1, . . . , T`} be
the subtrees hanging off the × gates on ρ; let ui be the root of Ti. Note that
each Ti ∈ T is a sub-formula of our input formula φ, and hence by the iterative
construction we know the values of the functions PIT, MLIN, ExistExtMon at
gates in these sub-trees. In fact, we already know that PIT(ui) = 0 for all

i, since we are in the situation where α 6≡ 0, and α =
∏`
i=1 pui

. Hence, if y
appears in just one sub-tree Ti, then ExistExtMon(G, y) = ExistExtMon(ui, y). If
y appears in two sub-trees Ti, Tj , then ExistExtMon(G, y) = ExistExtMon(ui, y)∨
ExistExtMon(uj , y).

A question that arises naturally here is whether this algorithm is optimal, or
whether the PIT problem for read-twice formulas is in some class smaller than P.
Note that the input formula F can be re-structured into an equivalent log-depth
formula F ′, as described in [8, 9]. If the resulting formula is also read-twice,
then it appears that the above algorithm can be applied to F ′, with a careful
implementation to keep track of partial values, to yield an upper bound in
NC. However, we have not examined the possibility of such an implementation,
because it is not at all clear that the depth restructuring does actually preserve
the number of times a variable is read.

Read-3 Formulas

The algorithm in the previous section crucially uses the PIT algorithm from
[19] for k-sum-of-ROFs. A stronger result due to [5] gives PIT algorithms for
read-k formulas that compute multilinear polynomials at each node. Using
this algorithm instead of [19], we obtain poly-time PIT and MLIN tests for
read-thrice (as opposed to read-twice) formulas. However, we pay a cost: we
can no longer check at every node g whether a variable survives at g (the bit
ExistExtMon(g, x)). We can compute this information only at nodes g where
all descendants compute multilinear formulas. The fact that we can compute
ExistExtMon(g, x) everywhere in the read-twice case may be of independent
interest (it seems to be a useful fact where enumerating monomials is concerned).
In the following, we prove that for read-3 formulas, PIT and MLIN are in P:

Theorem 5. Given a read-thrice formula F with leaves labeled by variables from
X = {x1, . . . , xn} or constants from {−1, 0, 1} and nodes labeled + or ×, there
is an efficient deterministic algorithm that decides if F computes the identically
zero polynomial, and if not, whether it computes a multilinear polynomial.

Proof. Algorithm Idea: We proceed bottom-up, processing nodes of the formula,
collecting as much information as possible/necessary about the polynomial com-
puted at each node. The type of information collected for a node g could be:
MLIN(g),PIT(g),ExistExtMon(g, x) for x ∈ X.

For nodes g computing multilinear polynomials, we will compute all this
information.

9

For nodes where we detect non-multilinearity (and hence know that the poly-
nomial is not identically zero), we will not compute any additional information.

We repeatedly use collected information to prune the formula. For instance,
we ensure that no leaf is labeled 0 by moving the zeroes up (replace g + 0 by
g; g × 0 by 0). We ensure that for each non-leaf node g, var(g) 6= ∅ (replace a
node adding or multiplying constants by a leaf labeled with the resulting value).
Note that the resulting formulas can have any constants from Z at the leaves.

Further, for nodes g where we determine that the identically zero formula is
computed, we will cut away the subformula rooted at g, replacing it by a leaf
labelled zero, and then eliminate the zero-leaf as discussed above. Thus a node
that is processed and not deleted necessarily computes a non-zero polynomial.

We will also maintain the following property: for nodes g where we determine
that a multilinear formula is computed, the subformula rooted at g computes
multilinear formulas at each node.

Assume that we have a pruned formula. At a leaf, the required information is
trivial to compute. Consider a node f where the information has been computed
at the children of f .

Case 1: f = g × h. PIT(f) = PIT(g) ∨ PIT(h). However, by the pruning we
have described above, we know that g, h 6≡ 0 and so f 6≡ 0, PIT(f) = 0.

Since f 6≡ 0, if either of g, h is non-multilinear then so is f . If both g and
h are multilinear, then f is multilinear if and only no variable survives in
both g and h. Thus we can compute MLIN(f) from the information at
g, h:

MLIN(f) = MLIN(g)∧MLIN(h)∧
∧
x∈X

(¬ExistExtMon(g, x) ∨ ¬ExistExtMon(h, x))

When f is multilinear, we need to compute the auxiliary information as
well. Note that we have already ensured that all nodes below g and h com-
pute multilinear polynomials, so this property is already true for f . For
any x ∈ X, ExistExtMon(f, x) = ExistExtMon(g, x) ∨ ExistExtMon(h, x).

Case 2: f = g + h. Computing MLIN(f): Since the formula is read-thrice, if
any one of g, h (say g) is not multilinear and hence has an x2 term for
some x ∈ X, then this term cannot be cancelled by the other summand
(say h) since h has at most one occurerence of x. So f is not multilinear.
If g, h are both multilinear, then so is g + h. Thus

MLIN(f) = MLIN(g) ∧MLIN(h)

Computing PIT(f): If f is not multilinear, then f 6≡ 0 and so PIT(f) = 0.
In this case, we do not compute any further information abut f .

But if f is multilinear, we still need to check if f ≡ 0. We have already
ensured that all nodes in the sub-formulas rooted at g, h and hence in

10

the sub-formula rooted at f compute multilinear polynomials. And the
sub-formula is read-thrice. So using [5], we can test whether f ≡ 0.

Computing the remaining information: If we detect that a multilinear f
is identically 0, we replace the subformula rooted at f by 0 and move the
constants up as far as possible.

If we detect that f is multilinear but f 6≡ 0, then we need to compute
the bits ExistExtMon(f, x). By multilinearity, f(X) = Ax + B where
A,B do not use x. We want to know if A ≡ 0 (this is equivalent to
ExistExtMon(f, x) = 0). A is computed by the formula f |x=1− f |x=0. We
have already ensured that all nodes in the sub-formulas rooted at g, h and
hence in the sub-formula rooted at f compute multilinear polynomials.
Thus the formula for A is multilinear and reads every variable at most 6
times. Using [5], we can test whether A ≡ 0.

4 Counting Monomials

We now consider the MonCount problem. First we show that it is very hard even
for read-twice formulas. Then we consider ROFs and OBPs. In both ROFs and
OBPs, a monomial, once generated in a sub-formula/program, can be cancelled
only by multiplication with a zero polynomial. We exploit this fact to obtain
efficient algorithms for counting monomials in ROFs and OBPs.

4.1 Hardness of MonCount

We show that even for formulas that are monotone (no negative constants) and
are read-twice, and furthermore, are decomposable as the sum of two read-once
formulas, MonCount is as hard as #P.

Theorem 6. MonCount is #P complete for the sum of two monotone read-once
formulas.

Proof. First we show hardness. Valiant showed [21] that the problem of com-
puting the number of perfect matchings in a bipartite graph is #P hard. We
reduce this to the problem of computing the number of monomials common
to two monotone read-once alternation-depth two formulas. Then we reduce
the latter problem to computing the number of monomials in the sum of two
monotone alternation-depth two read once formulas.

Let G = (U, V,E) be a bipartite graph with |U | = |V | = n. Let X =
{xuv | (u, v) ∈ E}. Define two polynomials

f =
∏
u∈U

(∑
v:(u,v)∈E

xuv
)
; g =

∏
v∈V

(∑
u:(u,v)∈E

xuv
)

Clearly, both f and g are computable by alternation-depth two read-once
formulas. Consider a monomial m common to both f and g. Since m is in f , it

11

contains, for each u ∈ U , exactly one variable of the form xuv. Similarly, since
m is in g, it contains, for each v ∈ V , exactly one variable of the form xuv.
Thus the set {(u, v) | xuv ∈ m} is a perfect matching in G. Conversely, any
perfect matching M in G corresponds to a unique monomial

∏
(u,v)∈M xuv that

is common to both f and g. Therefore, the number of perfect matchings in G
is equal to the number of common monomials of f and g. Let #(f ∩ g) denote
the later number .

Since f and g are monotone formulas, adding them cannot result in any
monomial cancellations. Thus

#(f + g) = #f + #g −#(f ∩ g)

Since #f and #g are ROFs, #f and #g can be computed easily in P. (Theorem 7
below shows that in fact it can be computed in DLOG.) Hence, using the above
relation, computing #(f ∩ g) reduces to computing #(f + g), and the reduction
is computable in polynomial time (even logspace).

To see the #P upper bound, consider f + g, where f and g are monotone
ROFs. A monomial m appears in f + g if and only if it appears in at least
one of f , g. Now define a nondeterministic machine M as follows: M guesses
a monomial m, computes a = ZMC(f,m) and b = ZMC(g,m), and accepts if
a ∨ b = 1. The number of accepting paths of M is exactly #(f + g). Since f
and g are ROFs, a and b can be computed in polynomial time (Theorem 18
below shows that in fact it can be computed in DLOG). All potential monomials
are multilinear and so can be guessed in polynomial time. Hence M is an NP
machine, as required.

4.2 Counting Monomials in Read-Once Formulas

Theorem 7. Given a read-once formula F , MonCount(pF) can be computed
by an AC0 circuit with oracle gates for GapNC1 functions. Hence it can be
computed in DLOG.

We start with some notations. For any gate g in F , let #g denote the number
of monomials in the polynomial pg computed at g. (The constant term, even
if non-zero, does not count as a monomial.) Define a 0-1 valued bit NZ(g), to
indicate whether or not the constant term of pg is zero, as follows:

NZ(g) =

{
1 if pg(0) 6= 0

0 otherwise.

Lemma 8. The language L defined below is in C=NC1:

L = {〈F, g〉 | F is an arithmetic formula, g is a gate in F , and NZ(g) = 0}

Proof. Convert F to formula F ′ where all variables are set to 0, and g is the
output gate. Then F ′ evaluates to pg(0), so we need to check if F ′ evaluates to
0. By Proposition 1, this check can be performed in C=NC1.

12

Proof. (of Theorem 7) Since F is a read-once formula, we can compute the
value of #f for each gate f inductively, based on the structure of F beneath f .
When f is a leaf node, it is labelled 0 or ±1 or xi for some i.

#(0) = #(±1) = 0; #(xi) = 1.

Now assume f is not a leaf. Suppose f = g + h, then g and h are variable-
disjoint read-once formulas. Since the monomials of g and h are distinct,

#f = #g + #h; (1)

Finally, suppose f = g × h, then again g and h are variable-disjoint. Each
pair of monomials m in pf and m′ in pg gives rise to a monomial mm′ in pf . In
addition, if pg(0) 6= 0, then each m′ also appears as a monomial in pf ; similarly
for ph(0) and m. Thus

#f = [#g ×#h] + [#g × NZ(h)] + [NZ(g)×#h]. (2)

Using Equation 1 and Equation 2, we can transform the given read-once
formula F to a new formula F ′ over Z that computes MonCount(F). The trans-
formation is local, and can be done in AC0 with oracle access to C=NC1. For
each gate f in F the local transformation can be described as follows: If f is
a leaf gate, then relabel f by #f . If f = g + h, then apply Equation 1. If
f = g × h, using Equation 2 involves using #g and #h more than once, and so
we do not get a formula. However, we can modify Equation 2 so that #f gets
the structure of a formula, with oracle access to NZ. We use the identity

#(g × h) = (#g + NZ(g))× (#h+ NZ(h))− (NZ(g)× NZ(h)) .

The values NZ(g) and NZ(h) can be obtained with oracle access to the language
L defined in Lemma 8. Now #g and #h are used only once.

Thus, from F we construct a formula F ′′ where the leaves of F ′′ are labeled
by constants 0,±1 or by the outputs of C=NC1 oracle gates. Equivalently, in
AC0(C=NC1), we can transform F to formula F ′ whose leaves are labeled by
0,±1. By construction, F ′ is variable-free, and #pF = val(F ′). By Proposi-
tion 1, val(F ′) can be computed in GapNC1, completing the proof.

Remark 9. The AC0 circuit constructed above needs oracle access mainly to
C=NC1 gates, which check whether a GapNC1 function is zero or not. Only the
topmost oracle query requires the entire value of the GapNC1 function.

For any polynomial p, p ≡ 0 if and only if the constant term of p is 0 and
MonCount(p) is 0. Hence, from Theorem 7 and Lemma 8, we have the following:

Corollary 10. In the non-blackbox setting, PIT on ROFs is in the GapNC
hierarchy and hence in DLOG.

13

4.3 Counting Monomials in Occur-Once Branching Pro-
grams

We now show how to count monomials in OBPs. The approach used in Theo-
rem 7 does not directly generalize to OBPs, i.e., knowing MonCount at imme-
diately preceding nodes is not enough to compute MonCount at a given node in
an OBP. However, since every variable occurs at most once in an OBP, every
path generating a monomial should pass through one of these edges. This al-
lows us to keep track of the monomials at any given node of the OBP, given the
monomial count of all of its predecessors.

We begin with some notations. Let B be an occur-once BP on the set of
variables X, and u, v be any nodes in B. Let c(u, v) be the constant term in
p(u, v). We define the 0-1 valued indicator function that describes whether this
term is non-zero:

NZ(u, v) =

{
1 if c(u, v) 6= 0,

0 otherwise.

We cannot directly use the strategy we used for ROFs, since even in an OBP,
there can be cancellations due to the constant terms. For instance, in the figure
below, #p(s, b) = #p(s, c) = 1, but #p(s, t) = 0.

b

1

��
s

x // a

1

@@

−1 ��

t

c

1

@@

We therefore identify edges critical for a polynomial. We say that edge e = (w, u)
of B is critical to v if

1. label((w, u)) ∈ X; and

2. B has a directed path ρ from u to v consisting only of edges labeled by
{−1, 1}.

We have the following structural property for the monomials in p(s, v):

Lemma 11. In an occur-once OBP B with start node s, for any node v in B,

p(s, v) = c(s, v) +
∑

(w,u) critical to v

p(s, w) · label(w, u) · c(u, v) .

Proof. First, note that if edges (w, u) 6= (w′, u′) are both critical to v, then
the monomials in p(s, w) · label(w, u) and p(s, w′) · label(w′, u′) will be disjoint,
because P is occur-once. (The variables labeling (w, u) and (w′, u′) make the
monomials distinct.) Moreover, for any monomial m in p(s, v), there is exactly
one critical edge (w, u) such that the monomial m has non-zero coefficient in
the polynomial p(s, w) × label(w, u). The critical edge corresponds to the last

14

variable of the monomial to be “collected” en route to v from s. This completes
the proof.

For nodes w, u, v in B where (w, u) is an edge, define a 0-1 valued indicator
function that specifies whether or not (w, u) is critical to v. That is,

critical(〈w, u〉, v) =

{
1 if (w, u) is critical for v

0 otherwise

Using this and Lemma 11, we can show:

Lemma 12. In an occur-once OBP B with start node s, for any node v in B,

#p(s, v) =
∑

e=(w,u)

critical(〈w, u〉, v) ·
(
#p(s, w) + NZ(s, w)

)
· NZ(u, v).

Proof. Consider the expression p(s, w) × label(w, u), where (w, u) is an edge
critical to v. Then label(w, u) is in X, and multiplies every monomial in p(s, w).
Hence every monomial of p(s, w) contributes a monomial to p(s, w)× label(w, u).
Additionally, if c(s, w) 6= 0, then c(s, w)×label(w, u) too contributes a monomial.
Hence

#[p(s, w)× label(w, u)] = #p(s, w) + NZ(s, w) .

Using this observation along with Lemma 11 completes the proof.

If w is not in a layer to the left of v, then (w, u) cannot be critical to v, and
so #p(s, w) is not required while computing #p(s, v). Hence we can sequentially
evaluate #p(s, v) for all nodes v in layers going left to right, provided we have
all the values NZ(s, w) and critical(〈w, u〉, v).

Lemma 13. Define languages L1, L2 as follows:

L1 = {〈B, u, v〉 | B is an OBP, u, v are nodes in B, and NZ(u, v) = 0. }

L2 =

{
〈B, u, v, w〉 | B is an OBP, u, v, w are nodes in B, and

critical(〈w, u〉, v) = 1.

}
Then L1 and L2 are both in C=L.

Proof. Delete from B all edges with labels from X to get a variable-free BP
B′. Then pB′(u, v) = cB(u, v). Checking whether pB′(u, v) = 0 is the canonical
complete problem for C=L. Hence L1 is in C=L. To check membership in L2,
we need to check that label(w, u) ∈ X and that v is reachable from u in B′.
This can be done in NLOG, which is contained in C=L.

From Lemma 12, the comment following it, and Lemma 13, we obtain a
polynomial time algorithm to count the monomials in pB .

Theorem 14. Given an occur-once branching program B, the number of mono-
mials in pB can be computed in P.

15

With a little bit of care, we can obtain the following stronger result:

Theorem 15. Given an occur-once branching program B, the number of mono-
mials in pB can be computed in the GapL hierarchy and hence in NC2.

Proof. Starting from B, we construct another BP B′ as follows: B′ has a node
v′ for each node v of B. For each triple w, u, v where (w, u) is an edge in B,
we check via oracles for L1 and L2 whether (w, u) is critical to v and whether
NZ(u, v) = 1. If both checks pass, we add an edge from w′ to v′. We also check
whether NZ(s, w) = 1, and if so, we add an edge from s′ to v′. (We do this
for every w, u, so we may end up with multiple parallel edges from s′ to v′.
To avoid this, we can subdivide each such edge added.) B′ thus implements
the right-hand-side expression in Lemma 12. It follows that pB′(s′, v′) equals
#pB(s, v). Note that B′ can be constructed in logspace with oracle access to
C=L. Also, since B′ is variable-free, it can be evaluated in GapL. Hence #pB
can be computed in the GapL hierarchy.

As in Corollary 10, using Theorem 15 and Lemma 13, we have:

Corollary 16. In the non-blackbox setting, PIT on OBPs is in the GapL hier-
archy and hence in NC2.

5 Zero-test on a Monomial Coefficient (ZMC)

¿From [11], ZMC is known to be in the second level of CH and hard for the
class C=P. For the very restricted case of depth-3 read-3 formulas, ZMC is
known to be NP-hard. (In Proposition 13 of [20], hardness is shown for depth-3
degree-3 formulas. It can be verified that the hard formulas there are also read-
thrice.) For the case of multilinear BPs (i.e. MBPs), we show that ZMC exactly
characterizes the complexity class C=L.

Theorem 17. Given a BP B computing a multilinear polynomial pB, and given
a multilinear monomial m, the coefficient of m in pB can be computed in GapL.
Hence ZMC for multilinear BPs is complete for C=L.

Proof. We first show that ZMC, even for OBPs, is hard for C=L. A complete
problem for C=L is: does a BP B with labels from {−1, 0, 1} evaluate to 0? Add
a node t′ as the new target node, and add edge t→ t′ labeled x to get B′. Then
B′ is an OBP, and (B′, x) ∈ ZMC if and only if B evaluates to 0.

Now we show the upper bound. We show that given a branching program B
computing a multilinear polynomial pB , and given a multilinear monomial m,
the coefficient of m in pB can be computed in GapL. This will imply that the
zero-test is in C=L.

Let S ⊆ [n] be such that m = mS . Let pB =
∑
T⊆[n] coeff(pB ,mT)mT . We

are interested in coeff(pB ,mS). The idea is to construct a branching program
B′ computing a univariate polynomial, and a monomial m′, such that m ∈ pB
if and only if m′ ∈ pB′ . We obtain B′ by relabelling the edges of B as follows:

16

label in B constant c xi for i ∈ S xi for i 6∈ S
label in B′ constant c y 0

B′ now computes a univariate polynomial pB′ in y.
Observe that the coefficient cS of m in pB is equal to the coefficient of y|S|

in pB′ . To see this, note that

pB =
∑
T⊆[n]

coeff(pB ,mT)mT =
∑
T⊆S

coeff(pB ,mT)mT +
∑
T 6⊆S

coeff(pB ,mT)mT

The substitution described above sends the second sum to zero in B′. Hence,

pB′(y) =
∑
T⊆S

coeff(pB ,mT)y|T | =

|S|∑
j=0

∑
T⊆S
|T |=j

coeff(pB ,mT)

 yj

The only monomial in pB that generates y|S| in pB′ is
∏
i∈S xi = mS ; hence

coeff(pB′ , y|S|) = coeff(pB ,mS).
(This argument only requires that pB be multilinear; we do not need B to

be occur-once or even read-once.)
Thus the problem now reduces to computing the coefficient of y|S| in B′,

which is a branching program over just one input variable. A standard con-
struction allows us to explicitly construct all coefficients of pB′(y) in another
branching program B′′. For completeness, we describe the construction of B′′.
For each node v in B′, B′′ has |S|+ 1 nodes v0, . . . , v|S|, with the intention that
vi should compute the coefficient of yi in the polynomial pB′(s, v). The start
node of B′′ is the node s0, and the final node is t|S|. If edge (u, v) has label y
in B′, we include the edges (ui, vi+1) with label 1, for 0 ≤ i < |S|, in B′′. If
edge (u, v) has label ` 6= y in B′, we include the edges (ui, vi) with label `, for
0 ≤ i ≤ |S| , in B′′. By induction on the structure of B′, we see that the value
computed by B′′ at t|S| is the coefficient of y|S| in pB′(s, v).

The above transformation from B′ to B′′ can be done in DLOG. Since B′′

is variable-free, it can be evaluated in GapL. Composing these procedures, we
obtain a GapL procedure for computing the coefficient of m in pB .

The upper bound above, for ZMC on MBPs, also applies to ROFs, since
ROFs can be converted to OBPs by a standard construction. However, with a
careful top-down algorithm, we can give a stronger upper bound of DLOG for
ZMC on ROFs.

Theorem 18. Given a read-once formula F computing a polynomial pF , and
given a multilinear monomial m, the coefficient of m in pF can be computed in
DLOG. Hence ZMC for ROFs is in DLOG.

Proof. Let α(g, T) denote the coefficient of monomial mT in pg. (That is,
α(g, T) = coeff(pg,mT).) Let r be the output gate. Let S ⊆ [n] be such that
m = mS . The goal is to compute α(r, S). First, we observe some properties of
α:

17

1. For any gate g and any T ⊆ [n], if T 6⊆ varg, then α(g, T) = 0.

2. For a leaf g labelled xi, α(g, T) = 1 if T = {i}, 0 otherwise.

3. For a leaf g labelled by a constant c, α(g, T)=c if T = ∅, 0 otherwise.

4. For an addition gate that computes g+h, α(g+h, T) = α(g, T)+α(h, T).
And since F is an ROF, at least one of α(g, T), α(h, T) is zero.

5. For a product gate that computes g × h,

α(g × h, T) = α(g, T ∩ varg) · α(h, T ∩ varh) · [T ⊆ varg ∪ varh].

This is because α(g × h, T) =
∑
Z⊆T α(g, Z)α(h, T \ Z). But if either

Z 6⊆ varg or T \ Z 6⊆ varh, then α(g, Z) = 0 or α(h, T \ Z) = 0. Further,
F is a read once formula, so varg ∩ varh = ∅, and varg and varh partition
var(g×h). Hence T must also be similarly partitioned.

Now we construct a formula F ′ whose evaluation gives us α(r, S). F ′ will
recursively compute α(g, S ∩ varg) for each gate g. If g is a leaf, we just use
properties (2,3) to compute α(g, S ∩ varg). We show how to compute α(f, S ∩
varf) for an internal gate f with children g and h knowing the values for α(g, S∩
varg) and α(h, S ∩ varh):

• Case f = g + h:

α(f, S ∩ varf) = α(g, S ∩ varf) + α(h, S ∩ varf) from property (4)

= α(g, S ∩ varg)[S ∩ varg = S ∩ varf]

+ α(h, S ∩ varh)[S ∩ varh = S ∩ varf] from property (1)

• Case f = g × h:

α(f, S ∩ varf) = α(g, S ∩ varg) · α(h, S ∩ varh) from properties (1,5)

This gives us the formula F ′ that computes α(r, S) at the topmost gate. By
Proposition 1, F ′ can be evaluated in GapNC1. Constructing F ′ from F requires
a local transformation at + gates and computation of the predicates [S∩varf =
S ∩ varg]. By Proposition 3, these predicates can be computed in DLOG.

For ROFs, the lower bound proof in Theorem 17 can be modified to show
that ZMC on ROFs is hard for C=NC1. It is natural to ask whether there
is a matching upper bound. In our construction above, we need to compute
predicates of the form [x ∈ varg]. If these can be computed in NC1 for ROFs,
then the monomial coefficients can be computed in GapNC1 and hence the up-
per bound of ZMC can be improved to C=NC1. However, this depends on the
specific encoding in which the formula is presented. In the standard pointer

18

representation, the problem models reachability in out-degree-1 directed acyclic
graphs, and hence is as hard as DLOG. Perhaps, under some other encoding, an
upper bound of NC1 is possible. To see why this may be plausible, consider the
problem of testing whether two trees are isomorphic. (And note that the undi-
rected graph underlying a formula is a tree.) For trees encoded as pointer lists,
isomorphism testing is DLOG-complete, whereas for trees encoded as strings,
the same problem of isomorphism testing is complete for NC1 ([15]).

6 Checking existence of monomial extensions

We now address the problem ExistExtMon. Given a monomial m, one wants to
check if the polynomial computed by the input arithmetic circuit has a monomial
M that extends m (that is, with m|M). This problem is seemingly harder
than ZMC, and hence the bound of Theorem 17 does not directly apply to
ExistExtMon. We show that ExistExtMon for OBPs is in the GapL hierarchy.

Theorem 19. The following problem lies in the GapL hierarchy: Given an
occur-once branching program B and a multilinear monomial m, check whether
pB contains any monomial M such that m|M .

Proof. Let S ⊆ [n] be such that m = mS . If S = ∅, then this amounts to
checking if pB 6≡ 0. By Corollary 16, this is in the GapL hierarchy. So now
assume that S 6= ∅. We call an edge that is labelled by a variable from S a
“bridge”.

The algorithm is as follows:

if ∃i ∈ S such that xi does not appear in B at all then
Output NO and halt.

else if ∃ layer l with more than one bridge to layer l + 1 then
Output NO and halt.

else
For each layer l that has a bridge e to layer l + 1 in B, remove all edges
except e. Call the branching program thus obtained B′.

end if
Output PIT(pB′) and halt.

We now show that mS has an extended monomial in pB if and only if the
above algorithm outputs YES. If any of the variables of mS do not appear at
all in B, then clearly an extension to mS cannot exist. So the algorithm rejects
correctly. If there is a layer with more than one bridge to the next layer, then any
path can go through at most one of these bridges. Since B is occur-once, every
path would compute a monomial with at least one variable from mS missing. So
the algorithm correctly rejects. We are only interested in monomial extensions
of mS . So paths that do not go through all the bridges can be ignored. Hence
we can safely delete all non-bridge edges in layers which have a bridge to the
next layer. Thus pB′ is a polynomial where each monomial is an extension of
mS .

By Corollary 16, the above algorithm is in the GapL hierarchy.

19

With a little bit of care, the above bound can be brought down to DLOG for
the case of ROFs.

Theorem 20. The following problem is in DLOG: Given a read-once formula F
computing a polynomial pF , and given a multilinear monomial m, check whether
pF contains any monomial M such that m|M .

Proof. Let S ⊆ [n] be such that m = mS . If S = ∅, then this amounts to
checking if pF 6≡ 0. By Corollary 10, this is in DLOG. So now assume that
S 6= ∅. Similar to the case of branching programs, we transform F to a new
formula F ′ as follows:

if ∃xi ∈ S such that xi does not appear in F at all then
Output NO and halt.

else if ∃xi, xj ∈ S, i 6= j, with LCA(xi, xj) in F labeled + then
Output NO and halt.

else
For every xi ∈ S, and every + gate g on the unique leaf-to-root path γ
from xi, replace the input of g not on the path γ by 0.
Let F ′ be the resulting formula.

end if
Output PIT(F ′).

We show correctness of the above algorithm. Since F is read-once, if any of
the two variables in S have a + gate as their least common ancestor, then m
cannot appear as a monomial in F . If the algorithm reaches the else statement,
then all sub-formulas that are additively related to some variable xi in S are
removed. This implies that every monomial produced by F ′ has m as a factor.
Also, any monomial m′ of pF with m|m′ has the same coefficient in pF ′ as in pF .
Thus, the resulting formula F ′ computes a polynomial that contains exactly all
monomials m′ of pF such that m|m′. This proves the correctness.

For the complexity bound, we note that the transformation from F to F ′

can be done in DLOG (using Proposition 3). Then by Corollary 10, the overall
algorithm can be implemented in DLOG.

7 Conclusion

Our results show that for the restricted case of read-2 and read-3 formulas, PIT
and MLIN can indeed be decided efficiently in the non-black box setting. We feel
the techniques we use for read-2 should be helpful is attacking PIT for formulas
that read variables more often. We leave open the problem of deciding PIT for
formulas that read variables O(1), but 4 or more, times.

Although one would expect the complexity of MonCount to reduce drastically
for the case of severely restricted circuits, it remains #P hard for even read-twice
formulas. We note that the complexity of ZMC, and ExistExtMon does reduces
drastically for the case of restricted circuits as expected. Ideally, we would like
these problems to characterise complexity classes within P; we have partially
succeeded in this. We leave open the question of extending these bounds for

20

formulas and branching programs that are constant-read. It appears that this
will require non-trivial modifications of our techniques.

References

[1] M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits cir-
cuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3
transcendence degree-k circuits. In STOC, pages 599–614, 2012.

[2] E. Allender. Arithmetic circuits and counting complexity classes. In J. Kra-
jicek, editor, Complexity of Computations and Proofs, Quaderni di Matem-
atica Vol. 13, pages 33–72. Seconda Universita di Napoli, 2004.

[3] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and
feasible systems of linear equations. Computational Complexity, 8(2):99–
126, 1999.

[4] E. Allender and M. Ogihara. Relationships among PL, #L, and the deter-
minant. ITA, 30(1):1–21, 1996.

[5] M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing poly-
nomial identity testing for multilinear constant-read formulae. In IEEE
Conference on Computational Complexity, pages 273–282, 2011.

[6] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[7] V. Arvind and T. C. Vijayaraghavan. The orbit problem is in the GapL
hierarchy. J. Comb. Optim., 21(1):124–137, 2011.

[8] S. Buss. The Boolean formula value problem is in ALOGTIME. In STOC,
pages 123–131, 1987.

[9] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel al-
gorithm for formula evaluation. SIAM Journal of Computation, 21(4):755–
780, 1992.

[10] S. A. Cook and P. McKenzie. Problems complete for deterministic loga-
rithmic space. J. Algorithms, 8(3):385–394, 1987.

[11] H. Fournier, G. Malod, and S. Mengel. Monomials in arithmetic circuits:
Complete problems in the counting hierarchy. In STACS, pages 362–373,
2012.

[12] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits:
A chasm at depth three. In FOCS, 2013. To appear.

[13] W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. J. Comput. Syst.
Sci., 65(4):695–716, 2002.

21

[14] M. J. Jansen, Y. Qiao, and J. M. N. Sarma. Deterministic black-box iden-
tity testing π-ordered algebraic branching programs. In FSTTCS, pages
296–307, 2010.

[15] B. Jenner, P. McKenzie, and J. Torán. A note on the hardness of tree
isomorphism. In IEEE Conference on Computational Complexity, pages
101–105, 1998.

[16] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13(1-2):1–
46, 2004.

[17] P. Koiran and S. Perifel. The complexity of two problems on arithmetic
circuits. Theoretical Computer Science, 389(1-2):172–181, 2007.

[18] M. Mahajan, B. R. Rao, and K. Sreenivasaiah. Identity testing, multilin-
earity testing, and monomials in read-once/twice formulas and branching
programs. In MFCS, pages 655–667. Springer Berlin Heidelberg, 2012.

[19] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In
STOC, pages 507–516, 2008.

[20] Y. Strozecki. On enumerating monomials and other combinatorial
structures by polynomial interpolation. Theory of Computing Systems,
53(4):532–568, 2013.

[21] L. G. Valiant. The complexity of computing the permanent. Theor. Com-
put. Sci., 8:189–201, 1979.

22

	Introduction
	Preliminaries
	Multilinearity and identity tests
	Counting Monomials
	Hardness of MonCount
	Counting Monomials in Read-Once Formulas
	Counting Monomials in Occur-Once Branching Programs

	Zero-test on a Monomial Coefficient (ZMC)
	Checking existence of monomial extensions
	Conclusion

