
Counting paths in planar width 2 branching programs

Meena Mahajan, Nitin Saurabh, Karteek Sreenivasaiah

Institute of Mathematical Sciences, Chennai 600113, India.
Email: {meena,nitin,karteek}@imsc.res.in

Abstract

We revisit the problem of counting paths in width-2
planar branching programs. We show that this is hard
for Boolean NC1 under ACC0[5] reductions, complet-
ing a proof strategy outlined in [3]. On the other
hand, for several restricted instances of width-2 pla-
nar branching programs, we show that the counting
problem is TC0-complete. We also show that non-
planar width-2 programs can be planarized in AC0[2].
Using the equivalence of planar width-2 programs
with the reduced-form representation of positive ra-
tionals, we show that the evaluation problem for this
representation in the Stern-Brocot tree is also NC1

hard. In contrast, the evaluation problem in the con-
tinued fraction representation is in TC0.

1 Introduction

Barrington’s celebrated theorem [5] shows that
branching programs (BPs) of bounded width and
polynomial size characterize the class NC1 of lan-
guages accepted by Boolean polynomial-size formu-
las. A natural question to ask is whether this re-
sult arithmetizes. That is, does counting paths in
bounded width polynomial size branching programs
characterize counting proof trees in NC1 circuits?
More generally, do bounded width polynomial size
algebraic branching programs characterise arithmetic
NC1? The result of [7] shows that this is indeed the
case over rings, and even width 3 suffices; see also
[8]. And this result is tight: a very recent result
in [4] shows that over arbitrary fields, width 2 alge-
braic branching programs (ABPs) are not universal;
there are efficiently computable polynomials that are
provably not computable by width 2 ABPs of any
size. For the path-counting version, we are inter-
ested in natural numbers, and the operations +,×,
so we do not have a field or even a ring structure.
We may even assume that the inputs are Boolean
(zero-one-valued). Even in this setting, while paths in
bounded width polynomial size branching programs
can be counted in arithmetic NC1 (usually stated as:
#BWBP⊆#NC1), the converse is not known.

Some special cases of this question have been ad-
dressed in the literature. In [3], it is shown that in
a restricted type of planar BWBP, where the edge
connections between adjacent layers must come from

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 18th CATS Computing: the Australasian
Theory Symposium, Melbourne, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
.., Julian Mestre, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

a specified set of patterns (call such restricted pla-
nar programs rGPs: restricted grid programs), path
counting is in fact possible with arithmetic circuits
of polynomial size and constant depth #AC0, and
hence even the bit representation of the number of
paths can be computed in in TC0, a subclass of
Boolean NC1. It is also shown that without this
grid restriction, path-counting even in width-2 pla-
nar BPs is hard for Boolean NC1 under ACC0 (mod
5) reductions. In [16, 13], the rGP restriction is ex-
plored further. It is shown that Boolean/arithmetic
NC1 is characterized by Boolean/algebraic polyno-
mial size rGPs of any width (this construction works
over fields/rings/naturals), and the equivalence holds
even if the width is restricted to be logarithmic.

Such fine distinctions between what is possible in
AC0, in TC0 and in NC1 are important because the
currently known machinery for proving circuit lower
bounds stops precisely in this region. We have lower
bounds against AC0, against uniform TC0 ([2]), but
none against NC1.

In this note, we return to the width 2 case. Count-
ing paths in width k BPs is equivalent (under the
weakest possible uniform reductions, projections) to
multiplying sequences of k × k matrices over 0,1.
(Each matrix is the adjacency matrix of connections
between vertices at consecutive layers of the BP.)
At width-2, planar BPs correspond to 2 × 2 matri-
ces where at least one of the off-diagonal elements is
zero. We refer to such matrices as planar matrices.
Two planar matrices are of special importance: L =(

1 0
1 1

)
and U =

(
1 1
0 1

)
. Products over these ma-

trices are equivalent to planar
width-2 BPs where the inter-
connections between layers is
one of the forms shown along-

◦ // ◦ ◦

��@
@@

@@
// ◦

◦ //

??~~~~~
◦ ◦ // ◦

side.
Products over L and U have nice connections to

many special numbers. For instance, for n ≥ 1,

(UL)n =
(
F2n+1 F2n
F2n F2n−1

)
, where Fn is the nth Fi-

bonacci number. (Hence, by the result of [17] that in-
teger matrix powering for constant-order matrices is
in TC0, and the fact that Bit-Count is in TC0, there
is a family of multi-output TC0 circuits such that Cn,
on input x, outputs the binary representation of Fj ,
where j is the number of 1s in x.) Products over L
and U are also intimately connected with the question
of representing positive rationals without repetition.
The positive rationals are in bijection with and hence
can be represented in the following two forms:

1. Reduced form: 〈m,n〉, where m,n are relatively
prime positive integers (or using notation from

[11], m ⊥ n), uniquely represents the rational
m
n .

2. Continued fractions form: 〈a0, a1, . . . , ak−1〉,
where each ai is a non-negative integer, a0 ≥ 0,
ai ≥ 1 for i ≥ 1, ak−1 ≥ 2 unless k = 0 in which
case a0 ≥ 1, uniquely represents the rational

a0 +
1

a2 + 1

. . .+ 1
ak−1

.

We can consider the computational complexity of con-
version between the two representations. This is best
handled via the Stern-Brocot tree, a well-studied bi-
nary search tree in which the vertices are in bijec-
tion with the positive rational numbers, and also with
products of sequences over the matrices L, U . (See
Sections 4.5 and 6.7 in [11]; see also [9].)

Our contributions in this note are as follows:

• We identify and fix a small but subtle flaw
in Theorem 16 of [3], which shows that path-
counting even in planar width-2 BPs is hard for
Boolean NC1 under ACC0 (mod 5) reductions.
(Section

2 Definitions and Preliminaries

A branching program is a directed acyclic graph
in which the vertex set is partitioned into layers
V0, V1, . . . , Vm, and the edge set E is contained
in ∪m

i=1Vi−1 × Vi. Edges are labeled by variables
x1, . . . , xn or their negations or the constant 1.
There are special nodes s ∈ V0 and t ∈ Vm.
The branching program is said to accept an input
a ∈ {0, 1}n if there is a path from s to t where all
edge labels take the value 1 under the assignment
x = a. A family of branching programs {Bn}n≥0
accepts a language L if each Bn accepts exactly
L=n. BWBP denotes the class of (languages
accepted by) branching program families where
each Bn has width c and size O(nc), for some
fixed constant c. (Note that in this definition, the
branching programs are non-deterministic. Note
also that the graphs are required to be layered,
since otherwise width does not make sense.)

NCi denotes the class of (languages accepted by)
circuits of polynomial size and O((log n)i) depth
using bounded fan-in gates. We are concerned
with only NC1 and NC0 here.
AC0 denotes the class of (languages accepted by)
circuits of polynomial size and O(1) depth us-
ing unbounded fan-in ∨ and ∧ gates and nega-
tion gates. ACC0[p] denotes the class of (lan-
guages accepted by) circuits of polynomial size
and O(1) depth using unbounded fan-in ∨ and ∧
gates, negation gates, and MODp gates that out-
put a 1 if and only if the number of 1s in their
input is non-zero modulo p. The union ACC0[p]
is denoted ACC0.
TC0 denotes the class of (languages accepted by)
circuits of polynomial size and O(1) depth using
unbounded fan-in Majority gates and negation
gates. A Majority gate outputs a 1 if and only if
at least half if its inputs are 1.

It is known that NC0 ⊆ AC0 ⊆ ACC0 ⊆ TC0 ⊆
NC1 = BWBP. Further, if the circuit / branch-
ing program families are uniform, then NC1 lan-
guages can be accepted in logarithmic space.
Arithmetic versions of NC1 and AC0 are circuits
with + and × gates instead of ∨ and ∧ and the
same size-depth bounds. It is known that uni-
form arithmetic NC1 functions (that is, the bit
representations of numbers computed by arith-
metic circuits) can be computed in logarithmic
space.
Arithmetic versions of BPs (that is, BPs com-
puting functions from strings to numbers) can
be defined in many ways. The simplest way is
counting paths. A more generalised way is where
edges in the BP may be labeled by literals or by
integer constants. Such a BP computes the func-
tion that adds up the total weight of all paths
between two designated nodes. (The weight of a
path is the product of the weights of edges on the
path.) Path-counting in width-k BPs is equiva-
lent to iterated multiplication, over integers, of
k × k matrices with (0,1) entries. The length of
the BP translates to the number of matrices to
be multiplied.
(Remark: The “path-counting”model described
above is less general than algebraic BPs, defined
by Nisan in 1991 ([18]). In that model, the BP
computes polynomials over an underlying field;
edges can be labeled by arbitrary linear forms.
It is also somewhat different from the arithmetic
BPs defined by Beimel and Gal [6], which actu-
ally decide languages rather than compute func-
tions, but with an acceptance criterion that de-
pends on the path count. It is known folklore
that the path-counting model captures classes
of counting functions based on nondeterministic
machine classes.)
We say that a problem A reduces to a problem B
via AC0 reductions if there is an AC0 circuit fam-
ily augmented with oracle gates for B that cor-
rectly solves A. Other reductions (ACC0, TC0)
are analogously defined.
A projection is a mapping Σ∗ → ∆∗ where each
output symbol depends on at most one input
symbol. In particularly, over binary alphabets,
a circuit computing the projection merely dupli-
cates and re-routes wires from the inputs to the
output.
See for instance [1, 20] for a detailed treatment
of these topics.

3 Fixing a flaw in Theorem 16 of [3]

Theorem 16 in [3] (ICALP 1999) says that com-
puting the number of paths in planar width-2
BPs is complete for NC1 under ACC0 (mod 5)
reductions.
Though the Theorem claims completeness, as is
clear from the proof, only hardness is established.
In private correspondence, the authors of [3] clar-
ified that the completeness claim is an oversight
and they only show hardness. In fact, as far as we
know, whether paths in planar width 2 branch-
ing programs can be counted in Boolean NC1 is
still open.
The hardness proof as stated is flawed, but fix-
able. Here is the way the proof is stated.

(a) The 2x2 integer matrices with determi-
nant 1 mod 5, with the binary opera-
tion of matrix multiplication in Z5, form
a non-solvable group (commonly denoted
SL(2,5)). So, by Barrington’s result ([5]),
the word problem over this group is com-
plete for NC1.

(b) By [12] (FOCS 99 Theorem 3.1), every ma-
trix over non-negative integers with deter-
minant 1 can be written as a product of a
sequence over the matrices L and U . So
the word problem over SL(2,5) reduces uni-
formly to evaluating products over L, Uand
I. This product is a width-2 planar BP.

(c) Hence every NC1 language can be reduced
to counting paths mod 5 in a width 2 planar
BP.

The flaw is in step (b). The matrices U and L
have determinant 1 over the integers. Thus any
product over U and L will have determinant 1
over the integers. It cannot produce a matrix
with determinant, say, 6 or 11. But such matri-
ces are present in SL(2,5). One cannot produce

matrices like
(

3 3
1 3

)
or
(

0 2
2 0

)
using U , L.

So to use Gurevich’s construction, one first needs
to show that for every matrix M in SL(2,5), there
is a matrix N with non-negative integers, with
determinant 1 over integers, such that each entry
of N is equivalent, modulo 5, to the correspond-
ing entry in M . It turns out that this statement
is indeed true, but it is not needed at all. Even
Gurevich’s construction is not needed. Just re-
place step (b) in the proof by the following:

(b’) Dickson’s theorem for finite groups (see for
instance [10]; see also the Appendix) tells us
that SL(2,5) is exactly the group generated

by
(

1 0
2 1

)
and U . But the first matrix is

just L2, so L and U generate SL(2,5).

Remark: The group SL(2,5) is a perfect group; it
equals its commutator subgroup. Hence, follow-
ing Barrington’s construction, when reducing an
NC1 language to the word problem over SL(2,5),
any element of SL(2,5) can be chosen as the ac-
cepting element. If we choose, say, the matrix
L, which differs from I only in the [2, 1] entry,
then the hardness result above can be restated
as follows:

Theorem 1 (Theorem 16 of [3]) For
every language A in NC1, there is
a uniform polynomial-sized projection
r : Σ∗ −→ {L,U, I}∗ such that for every
x ∈ Σ∗, if r(x) = M1M2 . . .Mn, then

x ∈ A =⇒

(
n∏

i=1

Mi

)
[2, 1] ≡ 1 mod 5

x 6∈ A =⇒

(
n∏

i=1

Mi

)
[2, 1] ≡ 0 mod 5

4 Planarizing width-2 BPs

Theorem

We first recall that a simpler reduction (without
post-computation) is known (see for instance [1])
in the generalised model where edges are labeled
by {−1, 0, 1}. Robinson [19] showed that every
language in NC1 reduces to the 2-sided Dyck lan-
guage with two generators. Lipton and Zalcstein
[15] showed that the free group on two gener-
ators, say g1, g2, is isomorphic to the group of
invertible matrices over rationals, with the iso-
morphism taking g1 to L2 and g2 to U2. Since

over rationals, L−1 = L−1 =
(

1 0
−1 1

)
and

U−1 =
(

1 −1
0 1

)
, we can put these together to

obtain the following:

Proposition 2 ([19], [15]) For every language
A in NC1, there is a uniform polynomial-sized
projection r : Σ∗ −→ {L,U, L−1, U−1, I}∗ such
that for every x ∈ Σ∗, if r(x) = M1M2 . . .Mn,
then

x ∈ A⇐⇒
n∏

i=1

Mi = I

(All arithmetic is over integers.)

Note that for 2 × 2 matrices over inte-
gers, we can consider restrictions of differ-
ing degrees: (1) Only (0,1) entries, (pure
path-counting) (2) Only non-negative integers,
(3) Only {−1, 0, 1} entries, or (4) Any integers.
And for each of these cases, we have planar and
non-planar matrices. (Recall that we say a 2× 2
matrix is planar if it has at least one off-diagonal
entry that is zero.) Theorem

Here, we observe that such a reduction from NC1,
if one exists, will need a different technique, since
we provably cannot planarize such products via
a pure projection (without post-computation).
The reasons are simple: firstly, all planar (0,1)
matrices have determinant 0 or 1, and secondly,
their products have non-negative integers. Hence
products over them cannot generate the matri-

ces
(

0 1
1 0

)
and

(
2 1
0 1

)
, with determinants −1

and 2 respectively. In fact, planar non-negative
matrices have non-negative determinants, and
planar {−1, 0, 1} matrices have determinant in
{−1, 0, 1}, so we cannot trade off planarity for
different restrictions on the entries.
We show below that we can planarize (0,1) ma-
trix products without post-computation, pro-
vided we relax the requirement that the reduc-
tion be a projection. That is, we allow more
pre-computation, and we piece together the final
matrix via a projection. This is good enough in
the computational settings we are interested in.

planar(0, 1) //

''PPPPPPPPPPPP

��

planarN

��

%%KKKKKKKKKK

planar(0,±1) //

��

planarZ

��

(0, 1) //

''PPPPPPPPPPPP N

%%KKKKKKKKKKKKK

(0,±1) // Z

Figure 1: Different cases for width-2 BPs. Arrows denote “special case of”. Dotted lines denote incomparability.

Theorem 3 Path-counting in width 2 BPs re-
duces to Path-counting in planar width-2 BPs via
uniform AC0[2] reductions.
More precisely, there is an AC0[2] circuit fam-
ily {Cn} such that given any sequence of 2 ×
2 (0, 1) matrices 〈M1,M2, . . . ,Mn〉, Cn out-
puts a sequence of 2 × 2 (0, 1) planar matrices
〈U1, U2, . . . , U2n+1〉, and two more (0, 1) planar
matrices U (1) and U (2), satisfying the following
∀u, v ∈ {1, 2}:(

n∏
i=1

Mi

)
[u, v] =

2n+1∏
j=1

Uj

U (v)

 [u, v]

Proof. We use the following equivalences:(
0 1
1 1

)
= LX;

(
1 1
1 0

)
= UX(

1 1
1 1

)
=
(

0 1
0 1

)(
0 0
1 1

)
;

In the first stage, replace each matrix Mi by
the pair A2i−1, A2i, where, if Mi = X, then
(A2i−1, A2i) = (I,X), if Mi equals any of
the other non-planar matrices, use one of the
equivalences above, and if Mi is planar, then
(A2i−1, A2i) = (Mi, I). This gives a sequence
of length 2n where the only non-planar matrices
are all X. Further, set A2n+1 = A2n+2 = X.
Since X2 = I, we have

∏n
i=1Mi =

∏2n+2
j=1 Aj .

The idea now is to pair up the Xs and
let them demolish each other. Note that
if D1, . . . , Dt are planar matrices, then
X
(∏t

i=1Di

)
X = IX

(∏t
i=1(DiXX)

)
XI =

I
(∏t

i=1(XDiX)
)
X2I. So in the sequence of

matrices (Ai), we can locally replace the Ais
that occur between the pairs by XAiX, and the
Xs by Is. Since there may be an odd number
of Xs to begin with, we pad the sequence with
the two Xs at the end, and use one of them if
necessary to complete the pairing. Detecting
whether an Ai occurs between a pair rather than
between pairs requires a parity computation;
hence the reduction is an AC0[2] reduction. The
last crucial observation is that for planar D, the
matrix XDX is also planar. The details follow.

For j = 1, . . . , 2n+ 1 define bits bj , cj as follows:

bj =
{

1 if Aj = X
0 otherwise

cj =
j∑

i=1

bj mod 2

For j = 1 . . . 2n, define matrices Bj as follows:

Bj =

{
I if Aj = X
Aj if Aj 6= X and cj = 0
XAjX if Aj 6= X and cj = 1

Further, if c2n = 0 then B2n+1 = B2n+2 = I,
otherwise B2n+1 = I and B2n+2 = X. (c2n = 1
means that A2n+1 will be paired to its left, so
A2n+2 remains X.) It follows that

∏n
i=1Mi =∏2n+2

j=1 Bj .

If B2n+2 = I, then we have obtained a planar
product. The reduction outputs Uj = Bj for
j = 1, . . . , 2n+ 1, and U (1) = U (2) = B2n+2.

If B2n+2 = X, we define U (1) and U (2) such
that we can separately extract the columns of the
product matrix, and eliminate B2n+2. It suffices

to choose U (1) =
(

0 0
1 0

)
and U (2) =

(
0 1
0 0

)
�

5 Some special cases of 2×2 iterated ma-
trix multiplication over non-negative inte-
gers

For a width 2 planar BP, the interconnections
between adjacent layers may be from any of the
11 patterns shown in Figure
Let C be the set of 8 matrices corresponding to
planar interconnections other than I, L, U . Our
first bound shows that over C ∪ {I}, that is if
neither L nor U appear, then path-counting is
easy.

Lemma 4 Path-counting in width-2 planar BPs
where neither of the interconnection patterns
L,U appears is in TC0.

Proof. Assume there is no I in the intercon-
nection patterns; if there are, we preprocess the
sequence and move all occurrences of I to the

Theorem 5 Path-counting in width-2 planar
BPs is hard for TC0 even if both of the inter-
connection patterns L,U do not appear. That is,
Computing products of sequences of matrices
from the set C is hard for TC0.

Proof. The canonical complete problem for
TC0 is checking whether at least half of the input
bits are 1. Given a sequence b1, . . . , bn, construct
the sequence of matrices M1, . . . ,M2n where

M2i−1,M2i =


I, I if bi = 0(

1 1
0 0

)
,

(
1 0
1 0

)
otherwise

Let M =
∏
Mi, and let anan−1 . . . a0 be the bi-

nary representation of M [1, 1]. Then
∑

i bi ≥
n/2⇐⇒ ∨n

j=n/2aj = 1. �

Next we show that computation is easy even if
both L and U appear, provided they are always
“well-separated”.

Theorem 6 Path-counting in width-2 planar
BPs where occurrences of the interconnection
patterns L,U are separated by at least one matrix
that is not in {L,U, I} is in TC0.

Proof. Assume there is no I in the inter-
connection patterns; if there are, we preprocess
the sequence in TC0 and move all occurrences of
I to the end. Let the sequence of matrices be
M1, . . . ,Mn.
Imagine a boundary placed after each Mi satis-
fying any one of the following conditions:

1. Mi = L and Mi+1 6= L,
2. Mi = U and Mi+1 6= U ,
3. Mi 6= L and Mi+1 6= U .

(Assume Mn+1 = I for testing this condition.)
Now mark alternate boundaries starting from the
beginning.
Recall that C is the set of 8 matrices correspond-
ing to planar interconnections other than I, L, U .
Between any two marked boundaries, the sub-
sequence of matrices has the form AB where
A,B ∈ C ∪ {Lk, Uk | k ∈ Z>0} and at least one
of A,B is in C. For each such subsequence, the
product AB is a matrix of one of the following
forms:(

0 0
α β

)
,

(
α β
0 0

)
,

(
0 α
0 β

)
,

(
α 0
β 0

)
,

(
1 1
α α

)
,

(
α α
1 1

)
,

(
α 1
α 1

)
,

(
1 α
1 α

)
where α and β are non negative integers. Each
of these can thus be decomposed as follows.(

0 0
α β

)
=
[
0
1

]
[α β];

(
α β
0 0

)
=
[
1
0

]
[α β];

(
0 α
0 β

)
=
[
α
β

]
[0 1];

(
α 0
β 0

)
=
[
α
β

]
[1 0];

end. This involves only counting the number of
occurrences of I to the left of each position, and
hence can be done in TC0.
The matrices corresponding to other 8 patterns
can be decomposed as follows:(

1 1
0 0

)
=
[
1
0

]
[1 1];

(
0 0
1 1

)
=
[
0
1

]
[1 1];

(
1 0
1 0

)
=
[
1
1

]
[1 0];

(
0 1
0 1

)
=
[
1
1

]
[0 1];

(
1 0
0 0

)
=
[
1
0

]
[1 0];

(
0 0
1 0

)
=
[
0
1

]
[1 0];

(
0 0
0 1

)
=
[
0
1

]
[0 1];

(
0 1
0 0

)
=
[
1
0

]
[0 1].

Now we show how to construct a TC0 circuit fam-
ily to evaluate an iterated product of a sequence
over the above 8 matrices. Each matrix in the
sequence is given as a 4-bit string. Let the ith

matrix be decomposed as
[
vi1
vi2

]
· [vi3 vi4]. Re-

grouping the terms in the product, we want to
compute

M1M2 . . .Mn

=
([
v11
v12

]
· [v13 v14]

)([
v21
v22

]
· [v23 v24]

)
. . .

([
vn1
vn2

]
· [vn3 vn4]

)
=

[
v11
v12

]
·
(

[v13 v14]
[
v21
v22

])(
[v23 v24]

[
v31
v32

])
. . . [vn3 vn4]

=
{(

[v13 v14]
[
v21
v22

])(
[v23 v24]

[
v31
v32

])
. . .

}
{[
v11
v12

]
· [vn3 vn4]

}
= (a1 × a2 × . . .× an−1)A

Layer 1 (Decomposition): Obtain from each
matrix Mi the corresponding row and column
vectors. This can be done in NC0.
Layer 2 (Inner product): For each 1 ≤
i < (n − 1), compute the product ai =

[vi3 vi4]
[
v(i+1)1

v(i+1)2

]
. Since each vik is 0 or 1, this

can be done in NC0, and gives a sequence of inte-
gers a1 . . . an−1 each in the range {0, 1, 2}. Also

compute the 2× 2 matrix A =
[
v11
v12

]
· [vn3 vn4];

this can also be done in NC0. Each entry in A is
0 or 1.
Layer 3 (Iterated multiplication): Compute
a = a1 × a2 × . . . × an−1. This can be done in
TC0.
Layer 4 (Scalar product): Finally, compute
aA. Since A is a 0-1 matrix, this requires only
NC0 circuitry. �

It is easy to see that this upper bound is tight:

(
1 1
α α

)
=
[

1
α

]
[1 1];

(
α α
1 1

)
=
[
α
1

]
[1 1];

(
α 1
α 1

)
=
[
1
1

]
[α 1];

(
1 α
1 α

)
=
[
1
1

]
[1 α].

Now the strategy is similar to that used in prov-
ing Lemma
To see that all these operations can be done in
TC0, note that

1. Delineating alternate boundaries requires
only counting modulo 2.

2. To obtain products within a subsequence,
we count the maximal number of consecu-
tive L’s or U ’s (in TC0) and then perform
integer addition (in AC0).

3. All products have O(log n) bit entries, so
the decomposition can be done in AC0.

4. For the same reason, inner products can also
be computed in AC0.

5. Multiplying the obtained scalars is a TC0

operation.
6. The remaining O(1) multiplications of 2×2

matrices is also a TC0 operation.

�

Observe that the above operations continue to be
in TC0 even for numbers represented with O(n)
bits. Thus

Corollary 7 Products of sequences of matrices
from the set C ∪ {Lk, Uk | k ∈ Z>0} can be com-
puted in TC0.

Finally we observe that if both L and U appear,
not well-separated but in a “regular” fashion,
then computation is easy.

Lemma 8 Products of the form (LaU b)m can be
computed in TC0.

Proof. This follows from the facts that

LaU b =
(

1 b
a ab+ 1

)
, and that powering of

O(1)-sized matrices is in TC0 ([17]).

(Note that computing ab is not an issue: from
the input sequence, we can compute a and b in
TC0, and these numbers are implicitly given in
unary representation in the input.) �

6 Locating rationals in the Stern-Brocot
tree

The problem of path-counting in planar width-
2 BPs is closely connected with that of locat-
ing positive rationals in the well-studied Stern-
Brocot tree. We describe the tree and the con-
nection below.
The Stern-Brocot tree is an infinite binary tree
whose nodes are in bijection with the set of pos-
itive rationals. The labeling of nodes with ratio-
nals is such that the tree forms a binary search

tree. The labeling is constructive (see sections
4.5 and 6.7 of [11]); however, the complexity of
computing the labeling depends on the represen-
tation chosen for the rationals. The bijection be-
tween the tree itself and the positive rationals
can be described as follows: Each node of the
tree is associated with an (open) interval and a
“centre”, or a mediant. The interval is described
by a 4-tuple 〈a, b, c, d〉 and is the set of all positive
rationals q such that a

b < q < c
d . The rational

a+c
b+d is associated with the node; we refer to it as
the mediant for the interval. A node with inter-
val 〈a, b, c, d〉 has as its children the nodes with
intervals 〈a, b, a+ c, b+ d〉 and 〈a+ c, b+ d, c, d〉
respectively. The root of the tree is associated
with the interval 〈0, 1, 1, 0〉 and has 1 as the me-
diant. It is well-known that the representation
of the mediant so obtained is already in reduced
form.
The following computational question concern-
ing locating rationals in the Stern-Brocot tree
is intimately connected to the question of path-
counting in planar width-2 BPs:
Stern-Brocot Evaluation: Given a binary
string w denoting a path from the root of the
Stern-Brocot tree, find the representation of the
positive rational at the node reached.
We describe the connection in Lemmas
It is known that every 2 × 2 matrix over non-
negative integers with determinant 1 can be writ-
ten as a product of a sequence over L,U (see
for instance [12] Thm 3.1). And every sequence
over L,U gives such a matrix. These sequences
are also exactly the sequences that arise in com-
puting the reduced form representation of a ra-
tional. Thus path counting in width-2 planar
BPs allows us to solve the Evaluation problem
for the reduced form representation of rationals;
a Boolean NC1 circuit for the former implies one
for the latter. More formally,

Lemma 9 The Stern-Brocot Evaluation prob-
lem, where the output is required to be in reduced
form, can be solved by AC0 circuits with oracle
gates for counting paths in planar width-2 BPs.

Proof. The circuit is constructed as follows:
convert each bit in w to an instance of L or U
to obtain a sequence of matrices M1, . . . ,M|w|,
and feed this sequence to oracle gates that com-
pute the bits of the planar width-2 Path Count-
ing problem. The outputs of the oracle gates
are the binary representations of the 4 numbers

m,m′, n, n′ in the product matrix
(
n n′

m m′

)
.

The desired rational (the mediant at the node
of the tree specified by path w) is then given by
m+m′

n+n′ , and (m+m′) ⊥ (n+ n′); see [11] for de-
tails. So placing appropriate AC0 circuitry above
the oracle gates yields the desired reduced form
representation. �

We now show the converse: the Evaluation prob-
lem for the reduced form representation can be
used to perform path counting in planar width-2
BPs.

Lemma 10 The bit representation of the num-
ber of paths in planar width-2 BPs can be com-
puted by TC0 circuits with oracle gates for the

Stern-Brocot Evaluation problem where the ratio-
nals are output in reduced form.

Proof. As described in Section
Use the equivalence between planar path-
counting and multiplying planar matrices. Let
M1,M2, . . . ,Mn be the given sequence of matri-
ces to be multiplied; each Mi is one of L,U, I.
Since sorting is in TC0, we can sift out all oc-
currences of I to the end, getting the sequence
N1, N2, . . . , Nk followed by n − k occurrences of
I. Now each Ni is either L or U . Encode
L as 1 and U as 0 to obtain a binary string
w = w1 . . . wk, which is fed to the oracle gate for
Evaluation. Let 〈m,n〉 be the output of Eval-
uation on w. As described in Equation 4.34 in

[11], if
∏
Ni =

(
A B
C D

)
, then m = C+D and

n = A + B. To retrieve C,D from m and A,B
from n, let 〈m′, n′〉 be the output of Evaluation
on w1 . . . wk−1. Assume wk = 0, the other case
is handled identically. Then(
A B
C D

)
=

(
E F
G H

)
×
(

1 0
1 1

)
=(

E + F F
G+H H

)
,

and m′ = G + H and n′ = E + F . Thus we
can construct the required output:

∏k
i=1Ni =(

A B
C D

)
=
(

n′ n− n′
m′ m−m′

)
. Since addition

and subtraction are in AC0, this part is an AC0

reduction.
One minor detail is that the number k of non-
trivial matrices is a variable, whereas the oracle
gate has a fixed number of inputs. To handle this,
use oracle gates for all values of k from 1 to n,
and use additional circuitry to determine which is
the correct value. This additional circuitry only
needs to obtain the correct count k, and hence
can be implemented in TC0. �

¿From Lemma
The other commonly used representation for pos-
itive rationals is the continued fraction repre-
sentation. In this representation, however, the
Stern-Brocot Evaluation problem is significantly
easier:

Lemma 11 The Stern-Brocot Evaluation prob-
lem, where the output is required in the continued
fraction representation, is in uniform TC0.

Proof. We follow the presentation from [11];
the only additional thing is the observation that
the required computations are in TC0.
We are given w ∈ {0, 1}∗. For w = ε, the
rational is 1, with representation 〈1〉. Other-
wise, let w be a string of length n ≥ 1, written
as 1a00a11a2 . . . 0ak−1 where k is even, a0 ≥ 0,
ak−1 ≥ 0, and all other ai ≥ 1. Then the ratio-
nal at the node reached is

a0 +
1

a1 + 1

. . .+ 1
ak−1+ 1

1

.

So the continued fraction representation is
〈a0, a1, . . . , ak−1 + 1〉 if ak−1 ≥ 1, and

〈a0, a1, . . . , ak−2 + 1〉 if ak−1 = 0. We fix
an encoding where the output has n numbers
a1, . . . , an, each log n bits long, and a control
block of length log n that tells us how many of
these numbers are useful. Constructing the en-
coding only requires counting how many blocks
precede a bit position; since Bit-Count is in TC0,
the encoding can be computed in TC0. �

Thus in a concrete computational setting the
reduced form representation is computationally
harder to work with than the continued fraction
representation.
One can also ask the the following computational
question which is in some sense the inverse of the
Evaluation problem:
Stern-Brocot Path-search: Given the repre-
sentation of a positive rational r, and given an
index i, find the ith bit of the path from the root
of the Stern-Brocot tree leading to r. (The path
may be described as a sequence of moves left,
right starting from the root. Or, coding these
as 0 and 1, the path can simply be described as
a binary string w.)
Note that the length of the path from a node to
the root of the tree is polynomial in the value of
the rational, not in the bit size. (eg. the rational
N = 2n with bit size n in both representations
appears along the rightmost path at distance N
from the root.) So in looking for feasible com-
putation, we specify an index position as above
and ask for the bit there, rather than asking for
the entire path.
For this question too, the reduced form represen-
tation seems harder. For the continued fraction
representation, we have a TC0 upper bound:

Lemma 12 In the continued fraction represen-
tation, Stern-Brocot Path-Search is in uniform
TC0.

Proof. Essentially invert the process described
in Lemma
Given 〈a0, a1, . . . , ak−1〉, the path is
1a00a11a2 . . . 0ak−1−1 if k is even, and is
1a00a1 . . . 1ak−1−1 if k is odd. Note that the
the length of the path is at most n, but its
actual length depends on the blocks. So the
circuit family we design simply computes all the
prefix sums

∑j
i=0 ai and locates i in the correct

block with comparisons. Computing the block
lengths, checking whether k is even or odd, and
comparing numbers can all be done in TC0. �

For the reduced form representation, however,
we have no upper bound other than P . The
problem is related to the Extended Euclidean
greatest-common-divisor (gcd) algorithm but
could well be easier. Recall that given two
numbers a, b, the extended Euclidean gcd algo-
rithm performs a number of steps proportional
to max{dlog ae, dlog be}, and finally yields not
only g = gcd(a, b) but also integers such that
as+bt = g. At each step j, it subtracts some mul-
tiple mj of the smaller number from the larger. If
m,n are co-prime, then these multiples precisely
describe the path: m1 moves left, m2 moves right
and so on. Thus any upper bound for imple-
menting the extended Euclidean gcd algorithm
also yields an upper bound for the Stern-Brocot

Path-Search problem in reduced form represen-
tation. Note that to date we do not even know
whether the gcd of two integers can be com-
puted in NC,not just by the extended Euclidean
method, but by any method whatsoever. How-
ever, the instances arising here are somewhat eas-
ier in the sense that the numbers are known a
priori to be co-prime. it is conceivable that for
such instances, the extended Euclidean method
has a parallel implementation that yields the in-
termediate multiples.
Another question to which also we do not know
the answer concerns conversion between the two
representations of positive rationals. An obvious
way is to go from a representation to the path in
the Stern-Brocot tree via Path-Search, and from
the path to the other representation via Evalua-
tion. This approach, however, does not work be-
cause not only do we not have good upper bounds
for Path-Search, but we also know that the path
itself can be exponentially long. Generating it as
a sub-computation is not a feasible option.

7 Open questions

Several questions are still open.
Regarding Stern-Brocot trees: What is the com-
plexity of these problems?

1. Given m,n in binary with m ⊥ n, and given
an index i, find the ith bit of the path w in
the Stern-Brocot tree leading to the node
labeled m/n.
The path can be found by repeatedly apply-
ing the steps of the gcd algorithm, but this
process seems inherently sequential.

2. Given m,n in binary with m ⊥ n, given
an index i, and also given proof that m ⊥
n via non-negative integers s, t such that
ms = nt + 1, find the ith bit of path w in
the Stern-Brocot tree leading to the node
labeled m/n.
Same problem as above, but now we have
additional information in s, t.

The most intriguing question in this context, of
course, is pinpointing the complexity of comput-
ing greatest common divisors.
Regarding path counting, too, there are several
open problems:

1. Is #BWBP equal to #NC1? That is,
can arithmetic formulas over literals be
expressed as path counting problems in
constant-width BPs? (We know this to be
the case if we allow negative constants, [7].)

2. Can path counting in width 2 BPs be done
in NC1? That is, is width-2 #BWBP in
Boolean NC1?

3. Is all of #NC1 in Boolean NC1? Note
that the gap here is very small; it is known
([14], see also [1]) that bits of #NC1 func-
tions can be computed by polynomial size
bounded fan-in Boolean circuits of depth
O(log n log∗ n). The O(log∗ n) gap has not
been closed for the last 25 years.

Acknowledgements

The development of this note was heavily influ-
enced by discussions the first author had with
Eric Allender and Samir Datta. Discussions with
Kristoffer Hansen first indicated the planariza-
tion for width-2 BPs.

References

[1] E. Allender. Arithmetic circuits and count-
ing complexity classes. In Jan Krajicek,
editor, Complexity of Computations and
Proofs, Quaderni di Matematica Vol. 13,
pages 33–72. Seconda Universita di Napoli,
2004. An earlier version appeared in the
Complexity Theory Column, SIGACT News
28, 4 (Dec. 1997) pp. 2-15.

[2] Eric Allender. The permanent requires large
uniform threshold circuits. Chicago Journal
of Theoretical Computer Science, 1999(7),
August 1999.

[3] Eric Allender, Andris Ambainis, David Mix
Barrington, Samir Datta, and Huong
LêThanh. Bounded depth arithmetic cir-
cuits: Counting and closure. In Automata,
Languages and Programming ICALP, LNCS
1644, pages 702–702, 1999. full version at
ECCC; TR99-012.

[4] Eric Allender and Fengming Wang. On the
power of algebraic branching programs of
width 2. In ICALP, LNCS 6755, pages 736–
747, 2011.

[5] David Mix Barrington. Bounded-width
polynomial size branching programs rec-
ognize exactly those languages in NC1.
Journal of Computer and System Sciences,
38:150–164, 1989.

[6] Amos Beimel and Anna Gál. On arithmetic
branching programs. J. Comput. Syst. Sci.,
59:195–220, 1999.

[7] M. Ben-Or and R. Cleve. Computing al-
gebraic formulas using a constant number
of registers. SIAM Journal on Computing,
21:54–58, 1992.

[8] H. Caussinus, P. McKenzie, D. Thérien, and
H. Vollmer. Nondeterministic NC1 com-
putation. Journal of Computer and Sys-
tem Sciences, 57:200–212, 1998. Preliminary
version in Proceedings of the 11th IEEE
Conference on Computational Complexity,
1996, 12–21.

[9] Jeremy Gibbons, David Lester, and Richard
Bird. Functional pearl: Enumerating the
rationals. J. Funct. Program., 16:281–291,
May 2006.

[10] D. Gorenstein. Finite groups. Harper and
Row, New York, 1968.

[11] Ronald L. Graham, Donald E. Knuth,
and Oren Patashnik. Concrete Mathemat-
ics: A Foundation for Computer Science.
Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 1994.

[12] Y. Gurevich. Matrix decomposition problem
is complete for the average case. In SFCS
’90: Proceedings of the 31st Annual Sympo-
sium on Foundations of Computer Science,
pages 802–811 vol.2, 1990.

[13] M Jansen, M Mahajan, and B V Raghaven-
dra Rao. Resource trade-offs in syntactically
multilinear arithmetic circuits. Computa-
tional Complexity, page to appear, 2011.

[14] Hermann Jung. Depth efficient transfor-
mations of arithmetic into boolean circuits.
In Fundamentals of Computation Theory,
FCT ’85, pages 167–174, London, UK, 1985.
Springer-Verlag.

[15] Richard J. Lipton and Yechezkel Zalcstein.
Word problems solvable in logspace. J.
ACM, 24:522–526, July 1977.

[16] Meena Mahajan and B. V. Raghavendra
Rao. Arithmetic circuits, syntactic multilin-
earity and skew formulae. In MFCS, LNCS
vol. 5162, pages 455–466, 2008. full version
in ECCC TR08-048.

[17] C. Mereghetti and B. Palano. Threshold cir-
cuits for iterated matrix product and pow-
ering. Theoretical Informatics and Applica-
tions, 34:39–46, 2000.

[18] Noam Nisan. Lower bounds for non-
commutative computation. In Proceedings
of the twenty-third annual ACM symposium
on Theory of computing, STOC ’91, pages
410–418, 1991.

[19] David Hill Robinson. Parallel algorithms for
group word problems. PhD thesis, University
of California at San Diego, La Jolla, CA,
USA, 1993.

[20] H. Vollmer. Introduction to Circuit Com-
plexity: A Uniform Approach. Springer-
Verlag New York Inc., 1999.

Appendix

A self-contained constructive proof of
Dickson’s theorem for SL(2,p)

Let X =
(
a b
c d

)
be an element of SL(2,p);

ad − bc = 1 mod p. Then X can be expressed,
mod p, as the product of a sequence of 4(p −
1) matrices from L,U, I as follows: (Sequences
below are of length at most 4(p − 1); pad with
Is.)

1. If a = d = 1, then bc = 0. So X is one of I,
Lc, U b.

2. If c 6= 0, then

X =
(
a b
c d

)
=

(
1 e
0 1

)(
1 0
c 1

)(
1 f
0 1

)
where e = (a−1)c−1 and f = b−(a−1)c−1d.
The corresponding width-2 program has

length at most 3(p − 1), since each of the
matrices on the right above is of the form
Lk or Uk for some k ≤ (p− 1).

3. If c = 0, then a 6= 0. Now write

X =
(
a b
0 d

)
=
(

1 0
(p− 1) 1

)(
a b
a b+ d

)
and then use the above step. The cor-
responding width-2 program has length at
most 4(p− 1).

	Introduction

