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As this is a Millennium Prize Problem there are many ways to

find out.
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What is the Hodge Conjecture?:
As this is a Millennium Prize Problem there are many ways to
find out.

For example, from the Clay Math Institute web site:

• Dan Freed’s telegraphic and very loose description at
http://www.claymath.org/Millennium Prize Problems/

Hodge Conjecture/

Or,

• Pierre Deligne’s longer (but mildly inaccurate)
Official Problem Description at
http://www.claymath.org/Millennium Prize Problems/

Hodge Conjecture/ objects/Official Problem Description.pdf

http://www.claymath.org/
http://www.claymath.org/Millennium_Prize_Problems/Hodge_Conjecture/
http://www.claymath.org/Millennium_Prize_Problems/Hodge_Conjecture/
http://www.claymath.org/Millennium_Prize_Problems/Hodge_Conjecture/_objects/Official_Problem_Description.pdf
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What we are interested in is:

The Hodge Conjecture for an Abelian Variety.

This is the easiest unsolved case . . .

. . . Fields’ Medal level easy!

So what is an Abelian Variety?



Some examples may help non-mathematicians as motivation:
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Some examples may help non-mathematicians as motivation:

• An abelian variety of dimension 1 is an elliptic curve—an
object now famous for its relation to Fermat’s Last Theorem
and Cryptography.

• An abelian variety of dimension 2 is the closure of a trajectory
(in phase space) of the asymmetric top. Abelian varieties of
dimension 2 were also used by Adleman-Huang in the first
sub-exponential algorithm for primality testing.

Moral: If you don’t know enough about Abelian varieties

. . . find out!

Morallory: You never known enough about Abelian varieties.



We now offer a more detailed geometric example of an Abelian

variety.
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We now offer a more detailed geometric example of an Abelian

variety.

Start with a curve X, by which we mean,

or a projective algebraic curve



which we can also think of as a plane curve
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which we can also think of as a plane curve . . . with singularities

. . . after removing singularities of course!

Which can be done in many ways.
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The r-tuples of points on a curve X form a variety

Sr(X) = X ×X × · · · ×X/ symmetric group action

We say two r-tuples are equivalent if they lie on a line, i. e. a
parametric curve∗ on Sr(X).

∗Warning: Curves in algebraic geometry are parametric only when the



Pick some base point p on X. Concatenating this with an r-tuple

gives us an r + 1-tuple; i. e. a map Sr(X) → Sr+1(X).

parametrising functions are polynomials.
Most curves cannot be parametrised!
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Pick some base point p on X. Concatenating this with an r-tuple

gives us an r + 1-tuple; i. e. a map Sr(X) → Sr+1(X).

Fact: For a suitable r the image meets all equivalence classes.

The Jacobian variety can then be obtained as the quotient

J(X) = Sr(X)/ equivalence relation

The group structure is obtained by concatenating two r-tuples to

get a 2r-tuple which is then reduced to an r-tuple via equivalence.

parametrising functions are polynomials.
Most curves cannot be parametrised!



Fact: Every Abelian variety A occurs as a connected subgroup

of J(X) for a suitable curve X.

If f : X → Y is a map of curves we get an induced map f∗ :

J(X) → J(Y ).

When the map f of curves is 2-to-1 the (connected part of the)

kernel of f∗ is called a Prym variety.
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The Hodge Conjecture for an Abelian Variety A can be re-stated

group-theoretically. Specifically, one defines the Mumford-Tate

group G(A), which occurs as a subgroup of the symplectic group∗.
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The Hodge Conjecture for an Abelian Variety A can be re-stated

group-theoretically. Specifically, one defines the Mumford-Tate

group G(A), which occurs as a subgroup of the symplectic group∗.

Moreover, the possible subgroups G(A) are completely known

(due to Shimura) and can be used to classify Abelian varieties.

∗ The symplectic group consists of 2g × 2g matrices M such that

M t ·


0 . . . 0 −1 . . . 0
... . . . ... ... . . . ...
0 . . . 0 0 . . . −1
1 . . . 0 0 . . . 0
... . . . ... ... . . . ...
0 . . . 1 0 . . . 0

 ·M =


0 . . . 0 −1 . . . 0
... . . . ... ... . . . ...
0 . . . 0 0 . . . −1
1 . . . 0 0 . . . 0
... . . . ... ... . . . ...
0 . . . 1 0 . . . 0





Fact: If the Hodge Conjecture is known for A and B is another

abelian variety such that G(B) = G(A) then the Hodge Conjecture

follows for B as well.

The Hodge Conjecture for Abelian varieties can thus be studied

class by class.
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Let L be the list of those subgroups G(A) of the symplectic group
which are associated with an A for which the Hodge conjecture
is known.

There are two ways of proving the Hodge conjecture for a given
Abelian variety A:

• Easy Way

• Hard Way
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Let L be the list of those subgroups G(A) of the symplectic group
which are associated with an A for which the Hodge conjecture
is known.

There are two ways of proving the Hodge conjecture for a given
Abelian variety A:

• Easy Way Show that G(A) is in L.

• Hard Way Add to the list L.

. . . and get a Fields’ Medal if you add infinitely many elements.



One should remark that essentially the only work that falls in

the Hard category was done by Schoen in the early 1980’s. He

added a handful (and that is precise!) of groups to L.
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One should remark that essentially the only work that falls in

the Hard category was done by Schoen in the early 1980’s. He

added a handful (and that is precise!) of groups to L.

Our result is in the Easy category.

As a start we must understand the list L.



Now L contains large groups as well as small ones.
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Now L contains large groups as well as small ones.

In particular, the full symplectic group belongs to L, i. e. the

Hodge Conjecture for A is trivial if Mumford-Tate group G(A) is

the full symplectic group.

. . . and this happens for the general Abelian Variety!

So Prym varieties should be special, or our result would be trivial.

On the other hand we are proving the result for the general Prym

variety.

. . . sounds confusing!



Let’s de(con)fuse the situation.

An Abelian variety is (the locus of zeroes of) a system of alge-
braic equations in many variables like∗

24/6 x4
0 + 33 x5

1 +
√

131 x5
2 + ζ(3) x5

3 = 0
34/57 x0x4

1 + e x1x4
2 + 14.1 x2x4

3 + 1171/7 x3x4
4 = 0

π x2
5x

3
0 + e2π

√
−1/5 x2

1x
3
2 + γ x5

2x3 + 102 x2
3x

3
4 = 0

The coefficients of these equations could be:

• constants i. e. rational or algebraic numbers. Or,

• transcendental.

∗This is a sample of equations and may not define an Abelian variety at all!
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A more general set of equations

a1 x4
0 + a2 x5

1 + a3 x5
2 + a4 x5

3 = 0
b1 x0x4

1 + b2 x1x4
2 + b3 x2x4

3 + b4 x3x4
4 = 0

c1 x2
5x

3
0 + c2 x2

1x
3
2 + c3 x5

2x3 + c4 x2
3x

3
4 = 0

is one where the coefficients in the equations above are replaced

by new variables; call these new variables parameters.

We then obtain family of varieties depending on a set of parame-

ters (or moduli). Each actual variety is obtained by substituting

values for the parameters—this is called specialising.

For example, the equation y2 = x3 − 1 is a specialisation of the

equation y2 = x3 + ax + b obtained by putting a = 0 and b = −1.
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Algebraically, there is no distinction between transcendental num-

bers and parameters—so we can substitute the transcendental

numbers which occur as coefficients with constants while spe-

cialising.
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Algebraically, there is no distinction between transcendental num-

bers and parameters—so we can substitute the transcendental

numbers which occur as coefficients with constants while spe-

cialising.

So we can specialise the equation y2 = x3 +πx+ e by putting any

values in place of π and e that we like∗.

∗We can even be perverse and replace π by 22
7
—or 3!



The general system of equations will not define an Abelian variety

for every set of values of the parameters.
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The general system of equations will not define an Abelian variety
for every set of values of the parameters.

The condition that the equations define an Abelian variety can
be written as a system of equations

f1(a1, . . . , c4) = 0

. . .

fp(a1, . . . , c4) = 0

in the parameters. Let us assume that a minimal such system
of equations has been found.

An Abelian variety A is general if the actual coefficients of the
equations defining A satisfy no equations other these.

An Abelian variety A is special otherwise.



We can write down an additional collection of conditions

g1(a1, . . . , c4) = 0

. . .

gq(a1, . . . , c4) = 0

that the coefficients of the equations need to satisfy in order

that the Abelian variety be a Prym variety.

A Prym variety is said to be general the coefficients in its defining

equations satisfy no further conditions.

19



We can write down an additional collection of conditions

g1(a1, . . . , c4) = 0

. . .

gq(a1, . . . , c4) = 0

that the coefficients of the equations need to satisfy in order
that the Abelian variety be a Prym variety.

A Prym variety is said to be general the coefficients in its defining
equations satisfy no further conditions.

Hence we have explained the result.


