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1. Introduction

Last year at the International Congress of Mathematicians (ICM ‘94) in
Zürich, Switzerland one of the four recipients of the Fields Medal was a
mathematician from the former Soviet Union—Prof. Efim Zelmanov, now
at the University of Wisconsin, USA. He has used techniques from the theory
of non-commutative rings to settle a problem in group theory known as the
Restricted Burnside Problem. In the following article I attempt to give a
flavour of this Problem and the method of its final resolution. The material
is largely based on the talk given by Zelmanov given at the ICM ‘90 held in
Kyoto, Japan[13].

2. Groups

For basic definitions and results of group theory please see a standard
text such as [2] or [8].

In a finite group G every element g satisfies gn = e for some least positive
integer n called the order of g and denoted by ◦(g). This leads us to,

Problem 1 (General Burnside Problem). Let G be a finitely generated
group such that for every element g of G there is a positive integer Ng so
that gNg = e. Then is G finite?

When G arises as a group of n× n matrices (or more formally when G is
a linear group) it was shown by Burnside that the answer is yes (a simple
proof is outlined in Appendix A). However, in 1964 Golod and Shafarevich
[3] showed that this is not true for all groups. Thereafter, Alyoshin [1],
Suschansky [12], Grigorchuk [4] and Gupta–Sidki [5] gave various counter-
examples.

We can tighten the above conjecture since we know that, ◦(g) divides ◦(G)
the number of elements of the set of elements of G. Thus we can formulate,

Problem 2 (Ordinary Burnside Problem). Let G be a finitely generated
group for which there is a positive integer N such that for every element g
we have gN = e. Then is G finite?

(We call the smallest such integer N the exponent of G.) In 1968 Novikov
and Adian [10] gave counter-examples for groups of odd exponents for the
Ordinary Burnside Problem.
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If we are primarily interested only in finite groups and their classification
then we can again restrict the problem further. Thus Magnus [9] formulated
the following problem.

Problem 3 (Restricted Burnside Problem). Is there a finite number A(k, N)
of finite groups which are generated by k elements and have exponent N?

Alternatively one can ask if the order of all such groups is uniformly
bounded. Hall and Higman [6] proved that the Restricted Burnside prob-
lem for a number N which can be factorised as pn1

1 · · · pnr
r follows from the

following three hypothesis:
(1) The Restricted Burnside Problem is true for pni

i .
(2) There are at most finitely many finite simple group quotients which

are k-generated and have exponent N .
(3) For each finite simple group quotient G as above the group of outer

automorphisms of G is a solvable group.
Thus modulo the latter two problems which have to do with the Classifica-
tion of Finite Simple groups, we reduced to a study of the Restricted Burn-
side Problem for p-groups. We note that a key step in the Classification
of Finite Simple groups was the celebrated theorem of Feit and Thompson
which won a Fields Medal in 1970. According to this theorem if N is odd
then there are no finite simple groups in items (2) and (3) above.

3. p-Groups

For our purposes a p-group is a finite group such that it has pa elements
for some non-negative integer a. The Restricted Burnside problem for such
groups can be stated as follows.

Problem 4 (Restricted Burnside Problem for p-groups). Let G be a finite
group with exponent pn which is generated by k elements. Then G has pa

elements for some integer a. Is there a uniform bound a(k, n) for a?

To study p-groups we first note that these are nilpotent. We define the
Central series for G

G1 = G and by induction on i, Gi = [G, Gi−1]

Recall that G is nilpotent if Gi is the trivial group of order 1 for some i.
Now if G is a p-group then the abelian groups Gi/Gi+1 have order a power
of p. Thus we can construct a finer series called the p-Central series for G a
p-group

G1 = G and Gi+1 is the subgroup generated by [G, Gi] and the set Gp
i

By the above discussion it follows that Gi becomes trivial for large enough
i; in addition, each Gi/Gi+1 is a vector space over Z/pZ for all smaller i.
The Z/pZ-vector space L(G) is defined as

L(G) = ⊕iGi/Gi+1
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The non-commutative structure of G can be caught by a Lie algebra struc-
ture on L(G). We recall the definition of a Lie algebra.

Definition 1. A vector space L over a field k is said to be a lie algebra if
there is a pairing [, ] : L× L → L with the following properties

[x, y] = −[y, x] and [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

The Lie algebra structure on L(G) is given by

Gi/Gi+1 ×Gj/Gj+1 → Gi+j/Gi+j+1

where the map is (x, y) 7→ xyx−1y−1 (Check that this is well-defined!).
The above lie algebra has some additional structure. First is an identity

proved by Higman [7]. If G has exponent pn then∑
σ∈Spn−1

ad(aσ(1)) ◦ ad(aσ(2)) ◦ · · · ◦ ad(aσ(pn−1)) = 0

as a map L(G) → L(G); here ad(a) : L → L for any element a in a Lie
algebra is the map b 7→ [a, b].

The second identity is proved by Sanov [11]. Let xi be the elements of
G0/G1 ⊂ L(G) corresponding to the finitely many generators gi of G. Then
for any ρ a commutator on the xi we have ad(ρ)pn

= 0.
The main result of Zelmanov can formulated as follows.

Theorem 1 (Zelmanov). Let L be any Lie algebra over Z/pZ which is
generated as a Lie algebra by k elements xi such that we have the Higman
and Sanov identities.Then L is nilpotent as a Lie algebra.

The interested reader can find this proof outlined in [13].

4. The Proof of the Problem

Now we claim that the Restricted Burnside Problem has an affirmative
answer for exponent pn. Let us examine this claim. To prove the Restricted
Burnside Problem we need to show that the order pa of a k-generated p-
group G of exponent pn is uniformly bounded by some constant pa(k,n). Now
we have dimZ/pZ L(G) = a. Thus it is enough to bound the dimension of
the Lie algebra L(G). As in the case of the free group we can construct a
universal Lie algebra L which is generated by k elements and satisfies the
Higman and Sanov identities. Assuming the above theorem L is nilpotent.
But then the abelian sub-quotients of the central series of L have a specified
number of generators in terms of the generators of L and are thus finite
dimensional. Thus L is itself finite dimensional, say of dimension a(k, n).
Since any L(G) is a quotient of L its dimension is also bounded by a(k, n)
and this proves the result.

The rest of the Restricted Burnside Problem now follows since we have
the result of Hall and Higman and also a complete Classification of Finite
Simple groups by Feit, Thompson, Aschbacher et al.
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Appendix A. A proof for Linear groups

Let G be a finitely generated subgroup of the group of invertible n × n
matrices over complex numbers. We give a proof for the Ordinary Burnside
problem first.

Let R be the collection of complex linear combinations of elements of G.
The R is a finite dimensional vector space over the field of complex numbers
spanned by the elements of G; thus there are elements g1, . . . , gr of G which
form a basis of R.

Now suppose r is an element of R such that the traces Trace(gi · r) = 0
all vanish. Then we obtain Trace(rn) = 0 for all positive integers n by
expressing rn−1 as a linear combination of the gi. But then these identities
imply that r = 0. Thus an element g of G is uniquely determined once we
know Trace(gi · g) for all i (if Trace(gi · g) = Trace(gi · h) then apply the
above argument to r = g − h).

Now we are given that each element of G satisfies gN = e. Thus the trace
of any element of G is a sum of n numbers of the form exp(2π

√
−1 ·k/N) for

k = 1, . . . , N . But there are only finitely such sums. Thus by the previous
paragraph there are only finitely many elements in G. (Exercise: use the
above argument to provide an explicit bound).

We now show how to reduce the General Burnside Problem to the Ordi-
nary Burnside Problem in this case. Let K be the field generated (over the
field Q of rational numbers) by the matrix coefficients of the finite collection
of generators of G. Let L be the subfield of K consisting of all algebraic
numbers (elements satisfying a polynomial with rational coefficients). Since
K is finitely generated L is a finite extension of Q.

Now any element g of G has finite order. Hence the eigenvalues of g are
roots of unity. Moreover, the characteristic polynomial of g has coefficients
in the field K; since its roots are algebraic numbers the coefficients are in
L. Thus the eigenvalues are roots of unity satisfying a polynomial of degree
n over L; hence if d is the degree of the field extension L of Q we have roots
of unity of degree at most n · d over Q. There are only finitely many such
roots of unity. Thus the order of G is bounded.
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