
SOME SPECTRAL SEQUENCES FOR FILTERED COMPLEXES
AND APPLICATIONS

K. H. PARANJAPE

Abstract. We construct a heirarchy of spectral sequences for a filtered com-

plex under a left-exact functor. As applications we prove (1) the existence of
a Leray spectral sequence for de Rham cohomology, (2) the equivalence of this

sequence with the “usual” Leray spectral sequence under the comparison iso-

morphism and (3) the isomorphism of the Bloch-Ogus spectral sequence with
the Leray spectral sequence for the morphism from the fine site to the Zariski

site.

1. Introduction

We construct a series of spectral sequences for the hypercohomology of a filtered
complex. The basic constructions used are the shift (dècalée) operation of Deligne
and its inverse [3].

Theorem 1.1. Let D : C → C′ be a left exact functor between abelian categories.
Assume that C has enough injectives. For any good filtered complex (K, F ) of objects
in C we have natural spectral sequences for each r ≥ 1.

Ep,q
r = Dp+q(Er−1,p,q(K, F )) =⇒ Dp+q(K)

For r = 1 this coincides with the spectral sequence for the hypercohomology of a
filtered complex ([3]; section 1.4.5). For r = 2 and the trivial filtration F this
coincides with the Leray spectral sequence for hypercohomology (see [3]; section
1.4.7).

Here Di’s denote the hyperderived functors associated with D and Er−1,p,q de-
notes the complex of Er−1 terms of the spectral sequence (see [3] section 1.3.1) for
a filtered complex which contains Ep,q

r as the (p + q)-th term.
As applications, we provide proofs of some facts which are apparently well known

to experts but are not well-documented in the literature (see however [7],[4]; the
proof of the latter two applications is attributed to P. Deligne in [4] and [1]). The
first is the existence of a Leray spectral sequence for de Rham cohomology. The
second is the comparison of this spectral sequence with the Leray spectral sequence
for singular cohomology. The third is the isomorphism of the Bloch–Ogus–Gersten
spectral sequence with the Leray spectral sequence from E2 onwards.

In Section 2 we recall some facts and definitions due to Deligne ([3] sections 1.3
and 1.4). In Section 3 we generalise some of these ideas to get the main results.
The applications are elementary corollaries of the lemmas from section 3 and are
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proved in Section 4. In appendix A we recapitulate the required material from [3]
and in appendix B we redo the main result using the language of derived categories.

I am grateful to V. Srinivas for advice and encouragement. I followed up his
suggestion that the problem of the Bloch-Ogus spectral sequence and that of the
Leray spectral sequence for de Rham cohomology could be related. J. Biswas and
Balaji Srinivasan have had to listen to half-baked versions of the results and also
had to correct my wrong impressions about the existence of connections for proper
submersions.

2. Recapitulation some facts from [3]

We recall some facts proved by Deligne in ([3]; 1.3 and 1.4) with slightly different
notations. The details can also be found in the appendix A. Let C be an abelian
category. All objects, morphisms, etc. will be with reference to this category.

Definition 2.1. We say (K, F ) is good filtered complex in C if K is a co-chain
complex in C which is bounded below and F is a filtration on it which is compatible
with the differential and is finite on Kn for each integer n.

We will always work with good filtered complexes in this paper. For any co-chain
complex K let Hn(K) denote its n-th cohomology.

Fact 2.2 ([3]; 1.3.1). For any good filtered complex (K, F ) there is a spectral
sequence

Ep,n−p
0 = Ep,n−p

0 (K, F ) = grp
F Kn =⇒ Hn(K)

such that the filtration induced by this spectral sequence on Hn(K) is the same as
that induced by F .

Fact 2.3. The definitions of Ep,q
r (K, F ) given in (loc. cit. ) make sense for all

integers r (not only positive integers r). The equalities Ep,q
r = Ep,q

0 for r ≤ 0 hold
and the differentials dr are 0 for r < 0 due the compatibility of the filtration F
with the differential on K.

Next Deligne defines various shifted filtrations associated with the given one.
First of all we define ([3]; proof of 1.3.4)

Bac(F )pKn := F p−nKn

Deligne shows that (loc. cit. ),

Ep,n−p
r (K, Bac(F )) = Ep−n,2n−p

r−1 (K, F )

for all integers r. By induction on l we obtain

(1) Ep,n−p
r (K, Bacl(F )) = Ep−ln,(l+1)n−p

r−l (K, F ); for all integers r

Moreover, Deligne notes the following fact about renumbering spectral sequences
(actually he only notes it for s-r=1).

Fact 2.4. Let Ep,q
a be the terms of a spectral sequence which starts at a = r, then

we can obtain another spectral sequence E′
p,q
b starting at the term b = s by setting

E′
p,q
b = E

p−(s−r)(p+q),q+(s−r)(p+q)
b−(s−r)
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Next we consider the dual shifted filtration ([3]; section 1.3.5),

Dec∗(F )pKn := im(F p+n−1Kn−1 → Kn) + F p+nKn = Bp+n−1,1−p
1 (K, F )

Deligne shows (loc. cit. ) that

Ep,n−p
r (K, Dec∗(F )) = Ep+n,−p

r+1 (K, F )

for all r ≥ 1. By induction on l we obtain

(2) Ep,n−p
r (K, (Dec∗)l(F )) = Ep+ln,(1−l)n−p

r+l (K, F ); for all integers r ≥ 1.

Combining the results for Bac and Dec we see that

(3) Ep,n−p
r (K, Bacl((Dec∗)l(F ))) = Ep,n−p

r (K, F ); for all r ≥ (l + 1).

Definition 2.5 ([3]; 1.3.6). A morphism f : (K, F ) → (L,G) of good filtered
complexes is said to be a filtered quasi-isomorphism if the morphisms grp(f) :
grp

F (K) → grp
G(L) is a quasi-isomorphism, i. e. Ep,q

1 (f) are isomorpisms for all
integers p and q.

Definition 2.6 ([3]; 1.4.5). A filtered injective resolution of a good filtered complex
(K, F ) is a filtered quasi-isomorphism (K, F ) → (L,G) such that the terms grp

L Gn

are injective for all integers p and n.

A similar definition can be given with the property injective replaced by the
property D-acyclic in the context of a left-exact functor D : C → C′ as in ([3];
1.4.1).

The following well-known fact is used in ([3]; 1.4.5)

Fact 2.7. If C has sufficiently many injectives then any good filtered complex
(K, F ) has a filtered injective resolution.

If D : C → C′ is a left-exact functor and C has enough injectives, then we have
the hypercohomologies Di(K) in C′ associated with any bounded below cochain
complex K

Fact 2.8 ([3]; 1.4.4). The Di(K) are computed as the cohomologies of the complex
D(L) for any quasi-isomorphism K → L where the terms of L are D-acyclic.

We will also need the following well-known fact.

Fact 2.9. If K is a bounded below cochain complex such that Hp(K) are all D-
acyclic then Dp(K) = D(Hp(K)).

3. Extensions to [3]

We now extend the definition ([3]; 1.3.6) slightly. Let us first introduce the
notation Er,p,q(K, F ) for the complex of Er terms which contains the term Ep,q

r (K, F )
at the p+q-th position. When the integers p and q are irrelevant we will abbreviate
this to Er(K, F ). Note that we have the equality of complexes Er,p,q = Er,p+r,q−r+1.

Definition 3.1. A morphism f : (K, F ) → (L,G) of good filtered complexes is
said to be a level-r filtered quasi-isomorphism if the morphisms Er−1(f) induce
quasi-isomorphisms Er−1(K, F ) → Er−1(L,G), i. e. Ep,q

r (f) are isomorpisms for all
integers p and q.
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A level-1 filtered quasi-isomorphism is what was earlier (2.5) called a filtered
quasi-isomorphism.

We extend the definition ([3]; 1.4.5) in a similar way.

Definition 3.2. A level-r filtered injective resolution of a good filtered complex
(K, F ) is a level-r filtered quasi-isomorphism (K, F ) → (L,G) such that the terms
Ep,q

r′ (L,G) are injective for all r′ < r and all integers p and q.

A similar definition can be given with the property injective replaced by the
property D-acyclic in the context of a left-exact functor C → C′ as before. A level-
1 filtered injective resolution is what was earlier (2.6) called a filtered injective
resolution.

Example 3.3. Let K be any complex on objects in C. We put the trivial filtration
F on K by defining F 0K = K and F 1K = 0. Then we note as in ([3]; 1.4.6) that

Dec∗(F )pKn =


0 if n > 1− p

d(K−p) if n = 1− p

Kn if n < 1− p

Thus, grp
Dec∗(F ) K is the complex concentrated in degrees −p and 1− p.

K−p/d(K−p−1) → d(K−p)

There is a natural morphism to this from the single term complex H−p(K) concen-
trated in degree −p which is clearly a quasi-isomorphism.

Fact 3.4. Let L denote the total complex of a Cartan–Eilenberg resolution [2] I
of K. Let Gp(L) be the total complex of the subcomplex I≥p. Let F be the trivial
filtration on K. Then the natural morphism (K, F ) → (L,G) is a level-2 filtered
injective resolution.

Proof. As noted above we have

E0,n
2 (K, F ) = E−n,2n

1 (K, Dec∗(F )) = Hn(K)

and the remaining E2 terms are 0. We have the identity Ep,n
0 (J,G) = Ip,n and so

we deduce Ep,n
1 (J,G) = Hn(Ip). Since I is a Cartan-Eilenberg resolution these E1

terms give an injective resolution of Hn(K). Thus we have the result. �

We use the fact (2.7) to prove

Lemma 3.5. If C has sufficiently many injectives then any good filtered complex
(K, F ) has a level-r injective resolution for any r ≥ 1.

Proof. Let (K, (Dec∗)r−1(F )) → (L, G) be a (level-1) filtered injective resolution
(which exists by (2.7)). Consider the composite morphism

(K, F ) → (K, Bacr−1(Dec∗)r−1(F )) → (L,Bacr−1(G))

By (3) we see that the first morphism is a level-r quasi-isomorphism. Also by (1) we
see that the second morphism is a level-r quasi-isomorphism. Hence the composite
is also a level-r quasi-isomorphism. Now by (1) and (2.3) we have for r′ < r

Er′(L,Bacr−1(G)) = Er′−r+1(L,G) = E0(L,G)

By assumption the latter terms are injective. �

Next we note the naturality of such a resolution.
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Lemma 3.6. Suppose (K, F ) is a good filtered complex such that Ep,q
r′ (K, F ) are

injective for all r′ ≤ r and all integers p and q. Let f : (K, F ) → (L,G) be a
level-r injective resolution then there is a morphism g : (L,G) → (K, F ) such that
Er−1(f ◦ g) and Er−1(g ◦ f) are homotopic to identity.

Proof. Note that Er−1(f) : Er−1(K, F ) → Er−1(L,G) is a quasi-isomorphism of
complexes of injectives. Hence there is a morphism gr−1 : Er−1(L,G) → Er−1(K, F )
such that Er−1(f)◦gr−1 and gr−1 ◦Er−1(f) are homotopic to identity. By induction
we assume that we are given the morphism gr′ : Er′(L,G) → Er′(K, F ). We wish to
find a morphism gr′−1 : Er′−1(L,G) → Er′−1(K, F ) such that it induces gr′ on the
cohomology of the Er′−1 terms (which is Er′). This is possible since the Er′−1,p,q’s
are bounded below complexes of injectives. Thus we obtain g0,p : grp

G L → grp
F K.

Again we have that K and L are bounded below complexes of injectives and so we
obtain the required morphism g which satisfies grp(g) = g0,p. �

We have the following modification of ([3]; 1.4.5):

Lemma 3.7. Let D : C → C′ be a left-exact functor and assume that C has enough
injectives. Let Di denote the associated hypercohomology functors and let (K, F ) be
a good filtered complex in C. Then for any r ≥ 1 we have a natural spectral sequence

Ep,q
r = Dp+q(Er−1,p,q) =⇒ Dp+q(K)

Proof. Let (K, F ) → (L,G) be a level-r filtered D-acyclic resolution (for example
we can take a level-r filtered injective resolution by lemma (3.5)). Consider the
good filtered complex (D(L), D(G)) in C′. The associated spectral sequence is

Ep,q
0 = grp

D(G) D(L)p+q =⇒ Hp+q(D(L))

Now, by (2.8) the latter term is Dp+q(K). Since grp
G(Ln) are D-acyclic for all inte-

gers p and n and the filtrations are finite, we see that grp
D(G)(D(L)) = D(grp

G(L)).
Now by definition Ep,q

l = Hp+q(El−1,p,q). Thus we obtain

Ep,q
1 = Hp+q(D(grp

G(L))) = Dp+q(grp
G(L))

since grp
G(Ln) are D-acyclic. We now claim by induction that

Ep,q
r′ = Dp+q(Er′−1,p,q(L,G)); for r′ ≤ r

Assume this for r′ − 1. Now since r′ − 1 < r we have Er′−1(L,G) consists of
D-acyclics. Thus we see by (2.9) that

Ep,q
r′−1 = Dp+q(Er′−2,p,q(L,G)) = D(Hp+q(Er′−2,p,q(L, G))) = D(Ep,q

r′−1)

But then by definition of Di’s we have

Ep,q
r′ = Hp+q(Er′−1,p,q) = Hp+q(D(Er′−1,p,q(L,G))) = Dp+q(Er′−1,p,q)

This proves the claim by induction.
Now we have Er−1,p,q(K, F ) → Er−1,p,q(L,G) is an D-acyclic resolution. Thus

Dp+q(Er−1,p,q(K, F )) = Dp+q(Er−1,p,q(L,G))

Hence we obtain the required spectral sequence. The naturality of this spectral
sequence easily follows from the lemma (3.6) by the usual techniques. �
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Now we note that for r = 1 this spectral sequence is exactly the one constructed
by Deligne in ([3];1.4.5). For r = 2 we see that this is the Leray spectral se-
quence for hypercohomology by applying the level-2 injective resolution given by
Cartan-Eilenberg (3.4). From the above proof we see that we obtain our “new”
spectral sequence. On the other hand the E2 spectral sequence associated with the
Cartan-Eilenberg resolution is precisely what is called the Leray spectral sequence
for hypercohomology. This completes the proof of the main theorem (1.1).

4. Applications

We have the following corollary of Lemma (3.7).

Corollary 4.1. Let X → S be a proper smooth morphism of varieties. Then there
is a spectral sequence

Ep,q
2 = Hp(S, Ω∗S ⊗ Rq

dR(X/S)) =⇒ Hp+q
dR (X)

Here, the complex Ω∗S ⊗ Rq
dR(X/S) is the one arising from the Gauss–Manin con-

nection.

Proof. Let Ω∗X → K′ be the Godement resolution of sheaves of abelian groups on
X. The direct image K of K′ is a differential graded module for the sheaf Ω∗S of
diferential forms on S. The irrelevant ideal Ω≥1

S induces an ideal theoretic filtration
F on K. Since the morphism X → S is proper and smooth we see that

Ep,q
1 (K, F ) = Ωp

S ⊗ Rq
dR(X/S)

Furthermore, the d1 differential of this sequence can be identified with the mor-
phism arising out of the Gauss–Manin connection (see [5]). Now by applying the
lemma (3.7) we have the required spectral sequence. �

We have the following corollaries of Theorem (1.1).

Corollary 4.2. The Leray spectral sequence for a proper submersion of smooth
(C∞) manifolds coincides with the E2-spectral sequence arising out of the Gauss-
Manin local system from Lemma (3.7).

Proof. Let f : X → S be a proper submersion of C∞-manifolds. Let AX (resp. AS)
be the sheaf of differential forms on X (resp. S). These are sheaves of differential
graded algebras and f∗(AX) is in addition a sheaf of differential graded modules
for AS . The irrelevant ideal A≥1

S thus gives rise to a filtration F on f∗(AX). The
E1 terms for the spectral sequence (2.2) for this complex give us a complex

0 → Hq(f∗(AX)) → E0,q
1 (f∗(AX), F ) → E1,q

1 (f∗(AX), F ) → · · ·
Now as above we can show that

Ep,q
1 (f∗(AX , F ) = Ap

S ⊗CS
Rq f∗(CX)

And the d1 differential can be identified with the morphism arising out of the Gauss-
Manin connection on the vector bundle associated with the local system Rq f∗(CX).
But then the above complex becomes an exact sequence

0 → Rq f∗(CX) → A0
S ⊗CS

Rq f∗(CX) → A1
S ⊗CS

Rq f∗(CX) → · · ·
Now the sheaves Ap

S are fine and hence are acyclic for the functor of global sections.
Thus if G denotes the trivial filtration on f∗(AX) we have a level-2 Γ(S, ·)-acyclic
resolution (f∗(AX), G) → (f∗(AX), F ). We can apply the theorem (1.1) to conclude
that the two E2 spectral sequences coincide by naturality. �
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The algebro-geometric version of the above uses the regularity of the Gauss-
Manin connection [4]. Note that the latter spectral sequence has a purely algebraic
construction as in (4.1).

Corollary 4.3. The Leray spectral sequence for a proper submersion of complex
algebraic manifolds coincides with the E2-spectral sequence arising out of the Gauss-
Manin connection from Lemma (3.7).

Proof. Let f∗(AX) be the complex with the natural filtrations as in the proof of the
previous corollary. By the Poincaré lemma we have a quasi-isomorphism ΩX → AX

of complex on X. Thus we have a quasi-isomorphism i : Rf∗(ΩX) → f∗(AX). The
former is a sheaf of differential graded algebras which is a differential graded module
for ΩS . Thus we have a filtration on Rf∗(ΩX) induced by the irrelevant ideal Ω≥1

S .
This makes the above morphism i a morphism of filtered complexes on S. This
gives a morphism of spectral sequences constructed using Lemma (3.7):

Ep,q
2 (Ω) = Hp(S, Ω∗S ⊗ Rq

dR(X/S)) → Ep,q
2 (A) = Hp(S,A∗S ⊗ Rq f∗(CX))

By the regularity of the Gauss-Manin system this is an isomorphism. Now we
combine this with the previous corollary to obtain the result. �

Corollary 4.4. The Bloch-Ogus spectral sequence for any Poincaré duality theory
coincides with the Leray spectral sequence for the morphism from the fine site to
the Zariski site.

Proof. We will use the exactness of the Gersten complex as proved by Bloch and
Ogus [1]. Let Y denote a fine site associated with a variety X. Let K′ be a complex
of injective sheaves which computes the cohomology of Y in a suitable Poincaré
duality theory. Let K be the resulting complex of sheaves on X obtained by taking
direct image. Then for any Zariski open set U in X the global sections K(U) give
a complex that computes the cohomology on the fine site associated with U . We
have a natural filtration F on K by the codimension of support.

Let Z be a subset of U which is of pure codimension p and W ⊂ Z be a subset
which is pure of codimension p + 1 in U . Then we have the complexes KZ(U) =
ker(K(U) → K(U − Z) and KW (U) = ker(K(U) → K(U −W ) which compute the
cohomology of U with supports in Z and W respectively. We see that the quotient
complex KZ(U)/KW (U) is naturally isomorphic to KZ−W (U −W ) = ker(K(U −
W ) → K(U − Z)). Now as we take direct limits over pairs (Z,W ) we obtain
F pK(U) = lim

→
KZ(U) and F p+1K = lim

→
KW (U). Furthermore, we see that the

cohomology of the complex grp
F K at the q-th place is the term ⊕x∈Xp(ix)∗Hq(k(x))

which is a flasque sheaf and hence in particular is Γ(X, ·)-acyclic. Thus if G denotes
the trivial filtration on K we have a level-2 acyclic resolution K, G) → (K, F ) by
applying the result of Bloch and Ogus (loc. cit. ; Theorem 4.2). Thus we see that
the conditions of the theorem (1.1) are satisfied and the two spectral sequences
coincide. �

Appendix A. Spectral sequences and filtered complexes

We reproduce some facts proved by Deligne in ([3]; 1.3 and 1.4) with slightly
different notations. Let (K, F ) be a filtered co-chain complex which is bounded
below and such that the filtration is finite on each term of the complex. Moreover,
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we assume that the differential on K is compatible with the filtration. We define
for each integer r,

Zp,n−p
r (K, F ) := ker(F pKn → Kn+1/F p+rKn+1)
Bp,n−p

r (K, F ) := im(F p−r+1Kn−1 → Kn) + F p+1Kn

Ep,n−p
r (K, F ) := Zp,n−p

r /(Zp,n−p
r ∩ Bp,n−p

r )

Note that Er = E0 for all r ≤ 0 because the differential is compatible with the
filtration. One easily shows that the Ep,q

r ’s are the terms of a spectral sequence

Ep,n−p
0 = Ep,n−p

0 (K, F ) =⇒ Hn(K)

such that the filtration induced by this spectral sequence on Hn(K) is the same as
that induced by F .

Next we define various shifted filtrations associated with the given one. First of
all we define

Bac(F )pKn := F p−nKn

One then computes that for all integers r,

Zp,n−p
r (K, Bac(F )) = ker(F p−nKn → Kn+1/F p+r−n−1Kn+1)

= Zp−n,2n−p
r−1 (K, F )

Bp,n−p
r (K, Bac(F )) = im(F p−r−n+2Kn−1 → Kn) + F p+1−nKn

= Bp−n,2n−p
r−1 (K, F )

Ep,n−p
r (K, Bac(F )) = Ep−n,2n−p

r−1 (K, F )

In particular, we see that Er(K, Bac(F )) = E1(K, Bac(F )) = E0(K, F ) for all r ≤ 1.
Next we consider the dual shifted filtration,

Dec∗(F )pKn := im(F p+n−1Kn−1 → Kn) + F p+nKn = Bp+n−1,1−p
1 (K, F )

One computes the following equations for all r ≥ 0,

Zp,n−p
r (K, Dec∗(F )) = ker(Bp+n−1,1−p

1 (K, F ) → Kn+1/Bp+r+n,1−r−p
1 (K, F ))

= im(F p+n−1Kn−1 → Kn) + Zp+n,−p
r+1 (K, F )

Bp,n−p
r (K, Dec∗(F )) = im(Bp+n−r−1,r−p

1 (K, F ) → Kn) + Bp+n,−p
1 (K, F )

= Bp+n,−p
r+1 (K, F )

Now for r ≥ 1 we have F p+n+rKn ⊂ Bp+n,−p
r+1 . Hence one deduces that

Ep,n−p
r (K, Dec∗(F )) = Ep+n,−p

r+1 (K, F )

for all r ≥ 1.

Appendix B. Filtered derived categories

We re-prove the main results using the language of derived categories ([6]).
Let C be an abelian category. Let FK denote the category whose objects are pairs

(K, F ) where K is a cochain complex with terms in C and F is a filtration on K such
that K is bounded below and the filtration F is finite on each term of K. Moreover,
we assume that the differential on K is compatible with the filtration. The group
HomFK((K, F ), (L,G)) is the group of morphisms of complexes compatible with
the filtration modulo the subgroup of homotopically trival morphisms. We call
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FK the Homotopy category of filtered complexes in C. One checks that this is a
triangulated category.

A morphism f : (K, F ) → (L,G) in FK is called a filtered quasi-isomorphism if
it induces quasi-isomorphisms grp

F (K) → grp
G(L) for every p. It is well known that

filtered quasi-isomorphisms form a saturated multiplicatively closed set and hence
we can form the localised category DF with a functor FK → DF which is universal
for the property that all filtered quasi-isomorphisms become isomorphisms under
this functor.

In section (3) we defined level-r filtered quasi-isomorphisms and the Dec shift
operation on filtrations. The result of ([3]; section 1.3.4) can then be restated as
follows:

Lemma B.1 (Deligne). The functor Dec : FK → FK carries level-r filtered quasi-
isomorphisms to level-(r− 1) filtered quasi-isomorphisms for all r ≥ 2. Conversely,
if Dec(f) is a level-(r − 1) filtered quasi-isomorphism then f is a level-r filtered
quasi-isomorphism.

Let us apply this to the composite functor

FK Decl

−−−→ FK → DF

By the lemma we see that the set of level-(l + 1) filtered quasi-isomorphims is
precisely the set of morphisms that become isomorphisms under the composite.
Since Dec is clearly a triangulated functor we can apply the results of [6] to conclude
that level-(l+1) filtered quasi-isomorphisms form a saturated multiplicatively closed
set. Hence we can form the quotient category of FK by inverting such morphisms.
We denote this category by DFl+1. Note that DF and DF1 are identical.

The operation Bac on filtrations also gives a functor Bac : FK → FK which car-
ries level-r filtered quasi-isomorphmisms to level-r + 1 filtered quasi-isomorphisms.
It thus induces a functor Bac : DFr → DFr+1.

Let D denote the derived category of bounded below co-chain complexes with
terms in C. We have natural forgetful functorsDFr → D by forgetting the filtrations
(note that a level-r filtered quasi-isomorphism is in particular a quasi-isomorphism
of the underlying complexes). We also have for each integer p a functor grp : DF →
D. More generally, for each integer r ≥ 1 and each p we have Er−1,p,0 : DFr → D.

Let T : C → A be a left-exact functor with values in an abelian category A.
Moreover, let us assume that C has sufficiently many injectives. Then we have the
hypercohomology functors RT i : D → A. The spectral sequence for the hyperco-
homology of a filtered complex is then

Ep,q
1 = RT p+q(grp

F K) =⇒ RT p+q(K)

which is naturally associated with any element (K, F ) of DF . We can also write
the E1 terms as Ep,n−p

1 = RTn(E0,p,n−p(K, F )).
We then construct a level-r spectral sequence for the hypercohomology of a

filtered complex

Ep,n−p
r = RTn(Er−1,p,n−p(K, F )) =⇒ RTn(K)

One way to construct such a sequence is as follows. We have a natural spectral
sequence

Ep,n−p
1 = RTn(E0,p,n−p(K, (Dec∗)r−1(F ))) =⇒ RTn(K)
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But we use (2.4) to re-write this as an Er spectral sequence by setting

Ep,n−p
r = RTn(E0,p+(r−1)n,(2−r)n−p(K, (Dec∗)r−1(F )))

= RTn(Er,p,n−p(K, Bacr−1(Dec∗)r−1(F )))

Now the natural morphism (K, F ) → (K, Bacr−1(Dec∗)r−1(F )) is a level-r quasi-
isomorphism in DFr and so we have

RTn(Er−1,p,n−p(K, F )) → RTn(Er−1,p,n−p(K, Bacr−1(Dec∗)r−1(F )))

is an isomorphism. This gives us the required spectral-sequence which is natural
for elements of DFr.
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