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Let X be a smooth proper variety over a field k of characteristic zero. For any em-
bedding o of k into the field of complex numbers C, the C valued points of X ®, C
form a complex manifold denoted by X,. By base change for the de Rham cohomology
H},n(X/k) ®5C = H,p(X ®,C/C) and by the GAGA principle one has an isomorphism
I, from H},(X/k) ®, C to the Betti cohomology Hj(X,,C) ([5], p. 96).

An element of the Q@ Chow group CH(X) ®z Q has a de Rham class
a € F'HER(X/k) = HY(X, Q%)) € HpR(X/k)
such that for all embeddings o : k — C
I(a) € I, (F'Hy5(X/k) ®, C) N HE(X,, Q).

So « is an absolute Hodge cycle, a notion defined by Deligne [3], §2, which we slightly
modify, as we are only interested here in de Rham cohomology (see [3], open question
2.2).

Definition 1 A class a € F'HE(X/k) is said to be an absolute Hodge cycle if for all
embeddings o : k — C, I,(a) lies in H¥(X,, Q).

On the other hand, such an algebraic cycle has an absolute de Rham class in H? (X, Q)Z(’/Q)
In fact, there is an absolute differential

dlog : Oy — O3 [1]



inducing an absolute differential

dlog : K} — O3 1i]

where KM is the Zariski sheaf of Milnor K theory. As CHY(X) ®7 Q = H'(X,KM) ([9],
théoreme 5), dlog induces the absolute de Rham cycle class map

CH'(X) ®z Q - HY(X, Q%))

One composes this map with

(X, 03ig) — B2 (X,Q3%,) = FUHE(X/k)

to obtain the de Rham cycle class map. As we don’t have a reference for this, we indicate
how to prove it. By base change F'H3,(X/k)®,C = F'H# (X ®,C/C), so it is enough
to handle £ = C, in which case the compatibility is proven in [2], (2.2.5.1) and (2.2.5.2)
for : = 1. For ¢ > 1, resolving the structure sheaf of an effective cycle by vector bundles,
and for a given vector bundle, computing its Chern classes on the Grassmannian bundle
G 5 X, with 7% : FPH%,(X/C) — F'H%,(G/C), one reduces the compatibility to the
case 1 = 1.

Remark 2 The existence of the absolute de Rham cycle class is proven in great generality
in [10] when X is singular. In fact, this class is convenient to formulate some questions.
For example, its injectivity for a surface X over £ = C would imply Bloch’s conjecture
when H?*(X,Ox) = 0.

At any rate, the existence of 1) motivates the following

Definition 3 A class o € F'H,(X/k) is said to be an absolute de Rham cycle if it lies
in the image of H#,(X/Q) in H% ,(X/k).

We denote by V : H) (X /k) — Q0 @k HY,»(X/k) the Gauss-Manin connection for the
smooth morphism X — Spec k of schemes over Spec Q.

Proposition 4 The sequence
H}p(X/Q) — Hpp(X/k) = Qilq/@ ® H})p(X/k)
18 exact.
Proof. The sequence is obviously a complex.
Let ky C k be the field of definition of X. One has X = Xy ®, k, where X is smooth

proper over kg, and kg = Q(Sy) for a smooth affine variety Sy over Q, such that there is
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a smooth proper map fy : Xy — Sp with &) Rog, ko = Xo.
As H}»(Xo/ko) is a finite dimensional ky vector space, any
a € Hpp(X/k) = Hpp(Xo/ko) @k, k
lies in H}p(Xo/ko) @k, Q(S), where kg € Q(S) C k and S is a smooth affine variety
mapping to Sy. If x € KerV, then z lies in the kernel of

H p(Xo @k, Q(S)/Q(S)) — Q)0 ® Hpr(Xo @k, Q(S)/Q(S))

and to prove exactness, one has to see that

ae Tm (Hhp(Xo®k Q(S)/Q) — Hhr(Xo @k, Q(S)/Q(S))).

Denote by f: X = & xg, S — S the smooth proper morphism obtained by base change
S — Sy of fy. Making S smaller, one may assume that there is

B € Ker(Hpp(X/S) = Qo ® Hpr(X/5))

such that  ®o. Q(S) = a, and one wants to show that § € Im H}(X/Q).

On Q% one considers the filtration by the subcomplexes f*Qg/“Q A Q;(_/fé It defines
a spectral sequence
B = Q50 ® H)p(X/S)

converging to H% (X /Q), whose d; differential is the Gauss-Manin connection V. As S
is affine, one has

E5" = HY(S,Q%,g ® Hpgp(X/S)).
We now consider the analytic varieties S, = (S ®g C)an, Xan = (X ®g C)an. The
corresponding spectral sequence

Eab

2,an

H(San, 2, ® Hpp(Xan/San))
H*(San, 3, @ R f.Q%, /s..)
H%(Syn, RO f,C)

which abuts to H*™(X,,,, Q% ,.) = H*"*(X,,, C). This spectral sequence is, according to
Deligne ([11], (2.77) and (15.6)) the Leray spectral sequence, and by [2], (4.1.1) (i), it
degenerates at Fjs.

On the other hand, by the regularity of the Gauss-Manin connection, one has

Eg, =H(S ®qC, Qg c/c ® Hhr(X ®g C/S g C))
= Egb ®q C

([1], (6.2) and (7.9)).
This implies that (£, d;) ®g C degenerates at E,, and so does (E{®,d;). In particular

Hbp(X/Q) = HO(S, Q%0 Hhp(X/5)) |
— Ker(HO(S, Hjy(X/S)) — HO(S, QL0 © Hhn(X/S))).
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This proves the required exactness by base change to Q(S).

Remark 5 In fact, even if S is not affine, there is a Leray spectral sequence for the de
Rham cohomology [7] (3.3), which again degenerates at Es by the comparison between the
Leray spectral sequences for the Betti and the de Rham cohomologiesi, and the regularity
of Gauss-Manin. For more on this, see [§].

Corollary 6 If a is an absolute Hodge cycle, then it is an absolute de Rham cycle.

Proof. By [3] (2.5), we know that Va = 0, where V is as in (4) for j = 2i. Then we
apply (4).

Corollary 7 If « is an absolute de Rham cycle such that I,(a) € H¥(X,,Q) for some
embedding o : k — C, then « is an absolute Hodge cycle.

Proof.  In fact, this is [3] (2.6). More precisely, choose S as in the proof of 4 and
B € H2,(X/8) restricting to a. The embeddings Q(S) — k —— C define a C valued
point of S, which we still denote by o, such that 3(¢) € H*((X,n)o, Q) C H*((Xan)s, C).
The image (o) of § in

HO(‘Szma R%f*(c) = H%((sz)g, (C)Trl(s“"’o)

lies in | |
HO(San, B £.Q) = H? (Xan)r, @500,

Therefore f3|x,,), is rational for all s, in particular for those s coming from an embedding
o:k— C.

Remark 8 An advantage, if any, to adopt the language of absolute de Rham cycles con-
sists of dividing the question of wether « is absolute Hodge or not into two steps:

First of all & must be in
HEp(Xo/ko) @i, kiy® = KerHEp(Xo/ko) ®ky k — Qp iy ®ky Hpr(Xo/ko),

where k2" is the algebraic closure of kqy in k.
Secondly o must be in

Ker HEp(Xo/ko) @, ko® — Qi 1 @ro Hpg(Xo/ko) ©ro ko™

On the other hand, we have seen that if « € FPH%,(X/k) is the class of an algebraic cy-
cle, then not only it is an absolute de Rham cycle, but also it is coming from H% (X, Q)Z(’/Q)

Let f: X — 8, 3 € FiH,p(X/S) = H°(S,RIf.03)5), such that § @qs) k = a €
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F'H},(X/k) as in the proof of 4. Let fc : Az — Sc be the smooth proper morphism
obtained from f by base change Os ®q C, and ¢ be 3 ®¢ C. Let fc : Xc — Sc be a
compactification of fc such that ¥ =S¢ — S¢, D = %_1(2) are normal crossing divisors
and X is smooth.

Definition 9 A class a € F'H},(X/k) is said to be of moderate growth if for some (5, fc)
as above, it verifies

( ) 6@ € H’ (S(Caij(C* X Xc/Sc (log D)) - HO(SC’ijC*Q;ZC/SC)

Remark 10 The definition 9 does not depend on the couple (3, fc) choosen. In fact,
take (v,9) with g: Y — T, Q(T) C k, Y ®qm) k = X, v ®qr) k = a. Then considering
in k£ a function field Q(U) containing Q( ) and Q(T'), one has base changes 0 : U — S,
T:U =T, fu: Xy =XXxsU = U, gy : Yy =Y XprU — U, such that there is an
isomorphism ¢ : Xy — Yy, with gy ot = fu, (7 ®o, Ov) = 5 ®og Op, for U small
enough. As (¢ fulfills (*) on Sg, it fulfills (%) on any blow up o¢ : Uc — Sc such that a
commutative diagram exists L .

XU7@ — X¢

ﬂl lfc

Uc 2 5S¢

with the properties: o¢ '3, A = fyc “'5c1Y are normal crossing divisors, Xy ¢ and
Uc are smooth. Choose Uc such that 7 extends to 7¢ : Ugc — T, with a commutative
diagram

[ T PR
Xoe —— Ve

ﬂl l%

Ue o T
with the same properties as above. One has now

HO(7C> ijU,(C*Q;Z </Uc (log A)) = HO(%) R]gC*QT/T(log gjcil(Ti(: - T@))

6], 4.13.
This implies in particular that classes of moderate growth build a k subvectorspace of
F'HY, (X k).

Notation 11 We denote this subvectorspace by F'H7 (X, k)%, and by H/ (X, Q?/Q)k’g
its inverse image in HY (X Q;Z/Q)
Theorem 12 The sequence

HY (X, Q%

o) — F'H)o(X/k)5 =5 O o ® F'= ] (X k)
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15 exact.

Proof. We have to prove that if & € KerV, then it lies in the image of H/(X, Q?’/Q)
With the notations as above,

Bc € H'(Sc, Vi(log ¥) ® R Je.05- < (log D).

Xc/Sc

This group is the EY term of a spectral sequence converging to HY (X, Q=L (log D))

. Xc/Sc
and defined as in [7] (3.3) on the complex Qi—(’c/s—c(log D). One has

E5® = H*(Se, Q3 (log ©) ® R'Je. Q2% (log D).

By [6] (0.4) and its analogue in characteristic zero [4] (2.7), ES® injects into
H* (Sc, Q% (log ¥) ® R"fe. Q% 5 (log D)),

which is just H*(Sgn, R fc.C) by [1] II, §6. ‘
Thus the spectral sequence degenerates at Fy, and ¢ comes from HY (X, Qi—é(log D)).

In particular B¢ comes from HY (X, Q;’/Q) ®g C and the image of a in

Im H/(X,05,)®C  \Im H/(X, Q3

F'Hp(X/}) g C _( F Hpp(X/F) )M
X/0 x/0)

vanishes. Therefore « lies in the image of HY(X, Q)Z(Z/Q)

Remark 13 If the transcendence degree of k is < 1, then of course the sequence

j i iy v i—177]
H (X, Q%)q) — F'Hpr(X/k) == Q0 @ F' Hpp(X/k)
is trivially exact. But if the transcendence degree of k is higher, it is not clear why an
absolute Hodge cycle has to be a moderate absolute de Rham cycle.

More generally, one can consider a k subvectorspace V' of H s r(X/k), such that 1,(V®,C)
is a Hodge substructure of H},z(X,,C). In the light of the above results, one can examine
the following questions.

Question 14 Is V stable under the Gauss-Manin connection?

For this, one would like I;1[I,(V ®, C) N HL(X,, Q)] to lie in V and to be independent
of 0.

If so, then V' defines a vector bundle W with a flat connection on S, where S is defined
as in 4 such that V. = W ®qs) k, W C Hpr(Xo/ko) @k, Q(S). Then W, on S, is
generated by a local system F.



Question 15 In the above situation, is the monodromy representation associated to F
defined over Q7

Again, one can split up 14 into two parts as in 8. Moreover, the knowledge of 14 does not
imply the knowledge of 15.
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