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7. Quadratic fields

We now specialise the results of the previous section to the case of extensions of
Q of degree 2. Such a field is of the form Q[T ]/P (T ) where P (T ) is an irreducible
polynomial of degree 2. An order in such a field is generated by 1 and a non-rational
element α that satisfies an equation of the type P (T ) = T 2 − bT + c. Thus every
order has the form R[T ]/P (T ). Now, it is clear that Trace(α) = b and Nm(α) = c.
Moreover, Trace(α2) = Trace(bα − c) = b2 − 2c. Thus the discriminant DR of R

is the determinant of
(

2 b
b b2−2c

)

which is b2 − 4c (as expected). In particular, we
see that DR = b2 (mod 4); i. e. the discriminant must be 0 or 1 modulo 4. In the
first case, we can replace α by α + (b − 1)/2 so that we get an element with trace
1. In the second case, we can replace α by α + b/2 to get an element with trace
0. Thus we can assume that the equation takes the form T 2 − T + N in the first
case and T 2 + N in the second case. An alternative normalisation is to replace α
by ωD = (DR +

√
DR)/2 in both cases; this can be done since DR + b is even in

both cases. We thus have a natural basis for R. There is also a natural involution
on R which sends

√
DR to −

√
DR or equivalently ωD to DR − ωD.

7.1. Prime ideals. By the earlier analysis, we see that every prime ideal is either
ramified (to order 2) or of degree 1 or of degree 2. If the prime lies over 2 then
it is not ramified when DR is odd since, in that case the equation takes the form
T 2 + T or T 2 + T + 1 modulo 2; both these equations have distinct roots. When
DR is even, the prime over 2 is ramified. When the prime lies over an odd prime
p, it is clear that the prime is ramified when the discriminant is divisible by p.
Thus the ramified primes are precisely those that lie over primes p that divide the
discriminant. (This is also true for any field extension of Q that is normal in the
sense that it contains all the roots of the polynomial that defines it).
If DR is odd and in the above notation N is even, then the primes lying over 2

and Z ·2+Z ·α and Z ·2+Z ·(1−α). When N is odd, then the only prime lying over
2 is 2R. Now, if p is an odd prime that does not divide the discriminant then either
Fp[T ]/(P (T )) is isomorphic to Fp2 or it splits into two Fp factors. The former case
occurs when DR is not a square modulo p and in this case the prime lying over p
is just the ideal pR; which is principal. In the second case DR is a square modulo
p and we obtain two primes Pp and Qp, lying over p; both these have norm p and
their product (and intersection) is pR. Let cp be a number between 1 and p − 1
so that c2p = DR (mod p); then ap = (1 + cp)/2 satisfies the equation modulo p in
the DR odd case and ap = (cp)/2 satisfies the equation modulo p in the DR even
case. Thus we can pick a solution ap of the equation modulo p in each case and
declare that Pp = Z · p+ Z · (α − ap). The primes Pp and Qp are interchanged by
the involution.

7.2. Naive computation of the class group. As shown earlier, each element of
the class group of the order R is represented by an invertible ideal J with Nm(J) ≤
δR; here δR =

√

|DR| if DR > 0 and δR = (2/pi)
√

|DR| if DR < 0. Now, if J
is the image of J under the involution, then we have seen above (by writing J as
a product of primes) that J · J = Nm JR. Thus the involution acts on the class
group by group inversion (which is a group homomorphism for abelian groups!). In
particular, we know how to represent inverses in this set of representatives.
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From the above discussion we see that one natural set of generators is to pick
one prime ideal Pp lying over each split prime p and for each ramified prime p. We
only need to consider primes satisfying the criterion p ≤ δR; let S denote the set
of such primes. Now we need to write relations. Suppose that T is the (finite)
set of all integers n such that (1) n is a multiple of elements of T (2) For each
prime divisor p of n, n/p ≤ δR. Each such n can be written uniquely as the norm
of an ideal Jn that is a product of the ideals Pp. If we find an element αn in Jn

so that Nm(αn) ≤ n · δR·, then αn = Jn · In, where Nm(In) ≤ δR. We can thus
write a natural factorisation of the ideal αn in terms of Pp and Qp. Note that
when n ≥ δR, the existence of such an α is guaranteed by the lemma proved in the
previous section. To write these relations, it is sufficient find all numbers less than
max(T )δR which are products of primes in S and write these elements as norms.
Now suppose we have a relation

∏

p∈S P
np

p = αR with np ≥ 0. If Nm(α) ≥ δR,

then we can find a factor
∏

p∈S P
mp

p which has norm n larger than δR, but lying in
T . Then, we can replace the above relation by

In ·
∏

p∈S

Pnp−mp

p = (α/αn)Nm(In)R

Now the left hand side has integral norm and so we have obtained another relation.
Moreover, the norm of the left hand side is smaller than the earlier norm. Thus we
can always reduce any relation to a product of relations of the type given above.
To write the relations associated with elements of T as above we note that for

each n in T we can construct a candidate for αn as follows. First of all we use
Chinese Remainder theorem to find an integer an so that an = ap (mod p) for
every p dividing n (if necessary we can actually use Hensel’s lemma to replace ap

by the root of the equation modulo the maximal power of p that divides n). Then,
elements of the form x+yα are candidates where y is some number less than n and
x is the reduction modulo n of an ·y. In addition, we can impose the condition that
x+ yα lies in a specified region in R ·K with volume nδR (this region is a rectangle
in the case DR > 0 and a circle in the case DR < 0). These conditions make the
search for αn effective.
Now the numbers in T could be just short of δ2

R, so that the norm of αn could
be just short of δ3

R. This is in general too big a collection of relations to handle.
One way to simplify the approach is to make reductions to the set S on the basis
of relations found. Thus, if we find that Pp has order k based on relations already
found then we do not consider numbers n that are divisible by powers of p larger
than k − 1. Similarly, if we found a relation expression Pp in terms of smaller
primes in the set S, then we can drop multiples of p from further choices for n in
T . Finally, we can use a “Class Number formula” to give an estimate in terms of
lower and upper bounds for the size of the group. Once we find a group that is the
correct range then there are techniques to verify that there are no more relations
to be considered.
Thus the techniques described above could be used to compute the class group

even for large DR. However, the main aim of this section was to show the possibility

of making the computation. We will need some more effective techniques to deal
with finite abelian groups before we can make the computation more efficient.
As a demonstration we now compute the class group of the discriminant 257.

The associated polynomial is T 2 − T − 64. The initial candidates for the set S
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consist of the primes ≤ 16, i. e. the set {2, 3, 5, 7, 11, 13}. Now, the polynomial
becomes T 2 + T modulo 2 so that 2 is split so it is in S. Now we have

257 ≡ 2 (mod 3) and 257 ≡ 2 (mod 5)

which shows that 3 and 5 are non-split and thus not in S. The squares modulo 7
are 1, 4 and 2, while 257 ≡ 5 (mod 7); thus 7 is not in S either. We also check that

257 ≡ 4 ≡ 22 (mod 11) and 257 ≡ 10 ≡ 62 (mod 13)

so that 11 and 13 are in S. We then see easily that T is

{22 = 2 · 11, 26 = 2 · 13, 32 = 25, 121 = 112, 143 = 11 · 13, 169 = 132}
We now compute the relations in succession. We lift the above roots 0 (mod 2) and
7 (mod 11) (of the equation T 2 − T − 64) to the root 18 ≡ −4 (mod 22). Thus a
candidate for α22 is α+4, which has norm 44 = 2

2 ·11. Thus we obtain the relation
P 2

2 · P11. Next we lift the roots 0 mod 2 and 10 mod 13 to the root 10 mod 26.
Thus a candidate for α26 is α− 10 which has norm 26 = 2 · 13. Thus we obtain the
relation P2 · P13. Next we have α32 = α, which has norm 64 = 26, which gives the
relation P 6

2 . Next, we lift (using Hensel’s lemma) the root 7 (mod 11) to the root
18 (mod 121) which gives α121 = α− 18 which has norm 242 = 2 · 112 so we have a
relation P2 ·P 2

11. Now, we could calculate further but we notice that this says that
the class group is a quotient of a group of order 3 that is generated by P2. Since it
is clear that this ideal is not principal, it follows that the class group in this case
is Z/3Z. Note that we did not use the rectangular bounds for the sizes of αn in
this computation since all the numbers were “small” in any case, but in general we
would need to use these restrictions as well.

7.3. Binary Quadratic Forms. Gauss’s approach to ideals (which were not de-
fined in his time!) was to represent elements of the class group (groups were also
not defined in his time!) by equivalence classes of quadratic forms. The idea is to
make use of the fact that for each ideal I we are actually interested in objects like
Nm(α)/Nm(I) for some element α in I. As seen above, the ideal class is represented
by some ideal J with Nm(J) = Nm(α)/Nm(I).
To fix notation, let the quadratic order R be given as Z + Z · ω, where ω =

(D +
√
D)/2 with D = DR the discriminant of the order R; then ω satisfies the

equation

ω2 −D · ω + D2 −D

4
= 0

Any non-zero ideal I in R is then of the form Z ·a+Z · (b+ cω), where I ∩Z = Z ·a
is the restriction of I to Z; we can assume that a > 0. Moreover, by Euclidean
division we can subtract a multiple of a from b to ensure that 0 ≤ b < a. Now the
fact that I is an ideal gives us

a · ω = p · a+ q · (b+ cω)

(b+ cω) · ω = r · a+ s · (b+ cω)

For some integers p, q, r and s. From this we deduce

a = qc and 0 = pa+ qb

b+ cD = sc and −D2 −D

4
= ra+ sb
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Hence a = qc and b = −pc are multiples of c. Moreover, the quadratic expression

b2+bcD+c2 D2
−D
4 = −rac is divisible by ac. Now, it is clear that c is determined by

the condition that (I+Z)/Z is the subgroup Z · (cω) of R/Z ∼= Z ·ω; or equivalently
that Nm(I) = ac, with a determined as before. It follows that any tuple (a, b, c)
that satisfies the above conditions uniquely determines an ideal and vice versa.
Now, it is clear that the ideal c−1I = Z · q + Z(−p+ ω) is equivalent to I in the

class group. Thus, we say the ideal is primitive if the representative tuple (a, b, c)
satisfies c = 1. Clearly, we only need to look at primitive ideals for the purpose of
computing the class group; but there are more equivalence relations.
We write a general element of I as ax + (b + cω)y; its norm is a multiple of

Nm(I) = ac. Thus,

QI(x, y) =
Nm(ax+ (b+ cω)y)

Nm(ac)
= qx2 + sxy − ry2

(with notation as above) is a form with integer coefficients. Moreover, it is invariant
(by construction) under the replacement of I by a rational multiple. We easily check
the identity s2 + 4qr = D. Conversely, given any form Q(x, y) = qx2 + sxy − ry2

satisfying this identity, we note that s ≡ D (mod 2). Thus we can consider the ideal

Z · q+Z(s+
√
D)/2. When Q(x, y) = QI(x, y), s = −2p+D so that (s+

√
D)/2 =

−p + ω; hence we recover the primitive ideal associated with I. However, we not
that for a general quadratic form Q(x, y) the integers q and (s−D)/2 need not be
positive unless we impose this as an additional requirement on the quadratic forms
under consideration.
Now, if I = Z · u1 + Z · u2, for some elements u1, u2 in R, then the quadratic

form Qu1,u2
(x, y) = Nm(xu1 + yu2)/Nm(I) is (in general) different from QI(x, y).

However, it is obtained from QI(x, y) by a substitution (x, y) 7→ (Ax+By,Cx+Dy)
where ( A B

C D ) is an integer matrix with integer inverse. One way to obtain a new
basis is to consider I = α · J for some ideal J in R and some α in K. Then, we
write J = Z · a′ + Z · (b′ + c′ω) as before. Clearly u1 = a′α and u2 = (b

′ + c′ω)α is
another basis of I.
Conversely, given a basis u1 and u2 of the ideal I, let d be a denominator of

u2/u1; i. e. d is a positive integer so that du2/d1 lies in R. Consider the ideal
J = (d/u1) · I, we see that J = Z · d + Z · (du2/u1) and J ∩ Z = Z · d. Thus, as
above we can find e and f so that 0 ≤ e < d and (du2/u1) = nd± (e+fω) for some
integer n. Thus J = Z · d + Z · (e + fω). Putting α = u1/d we see that u1 = dα
and u2 = (nd± (e+ fω))α; in particular, I = α · J . Moreover, we have

Qu1,u2
(x, y) = Qd,(du2/u1)(x, y) = QJ(x, nx± y)

the latter form being clearly equivalent to QJ .
Thus we have shown that QI(x, y) and QJ(x, y) are equivalent under an integer

change of co-ordinates for the variables (x, y) if and only if the corresponding ideals
are equivalent in the class group. The problem of finding representatives of ideal
classes can be replaced by the problems of finding quadratic forms that represent
equivalence classes.
We now separate the cases D < 0 and D > 0. In the first case, we restrict

our attention to quadratic forms Q(x, y) = qx2 + sxy − ry2 (continuing the above
notation) such that q > 0. Since D = s2 + 4qr < 0, we see that r < 0. In fact
Q(x, y) > 0 for all (x, y) 6= (0, 0). Pictorially, the region Q(x, y) ≤ r is bounded by
an ellipse. Thus, among lattice points we can choose u1 to be an element where
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the Q(u1) takes its minimum (non-zero) value. Now, we can complete u1 to a
basis by picking a suitable vector u2. The only possible alternative choices for
u2 are nu1 ± u2 for some integer n. Let u2 be so chosen that the value Q(u2) is
minimum in this collection. It is not too difficult to show that the expression for
Q in this basis is independent of the finitely many choices available. (In fact for
D| > 4 the choices of u1 and u2 are unique upto sign). Now, in this basis we get
Q(x, y) = Ax2 + Bxy + Cy2 with A ≤ C and |B| ≤ A. Moreover, if one of these
is an equality (which can only happen if |D| ≤ 4), we have B ≥ 0 as well. A
quadratic form with negative discriminant is said to be reduced if it has this special
form. Clearly, there are only finitely many such forms for a given D; one for each
equivalence class of quadratic forms. Thus we have found representatives for the
class group.
When D > 0, the quadratic forms are indefinite. The locus Q(x, y) = r repre-

sents a hyperbola. Now the value 0 is not attained at non-zero (x, y) (else D would
have a square root in integers) and the values are all integers. Thus, the absolute
value of Q attains a minimum at some point u1 on the lattice. But this u1 is far
from unique (in fact there are infinitely many points where Q takes this value. One
can show that upto a finite number of choices these are related by an integer change
of co-ordinates. Now, as before, u1 can be completed to a basis by a choice of u2.
The alternatives for this choice are nu1±u2 as earlier. Again, there are only finitely
many of these with sign opposite to that of Q(u1) (since the term n2Q(u1) in the
expansion of the quadratic form will dominate for n large). Among this finite set
we choose u2 so that the absolute value of Q is minimum (again with only finitely
many options for this choice). Thus, each equivalence class of quadratic forms has
been represented upto a finite ambiguity. Moreover, one can bound the ambiguity
depending on DR.


