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6. Algebraic Number Fields

We can look at the factorisation problem as the study of the group of non-zero
rationals; writing every element in terms of the generators (the prime numbers
and −1) and taking into account the relation (−1)2 = 1. The study of the unit
group in Z/NZ can be identified with the study of a suitable quotient of a suitable
subgroup (elements prime to N) of this group. We now ask how this group can
be generalised. One natural idea is to use algebraic number fields. An algebraic
number is an “object” (we will be more specific later) that satisfies a polynomial
equation with rational (equivalently integer) coefficients (we should actually insist
on irreducibility of the equation). We can represent such objects as we will see
below. However, it turns out that studying groups of algebraic numbers is not
quite the same as studying the generalised factorisation problem; that involves the
study of divisors or ideals and their groups.

6.1. Algebraic Numbers. How concisely can we specify an algebraic number?
Since every equation in one variable with complex coefficients can be solved com-
pletely with complex numbers as solutions (Gauss’s Fundamental theorem of alge-
bra), one way to specify an algebraic number is to specify it as a complex number.
However, a real (or complex) number is (in general) only specified by its entire
decimal expansion which cannot be stored in a finite space. On the other hand it is
enough to specify an algorithm that produces, on sufficient iteration, an arbitrarily
close approximation to the complex number that represents it.

Thus, one way to specify an algebraic number α is as follows. First we give
P (t) which is the non-zero polynomial (with rational or integer coefficients) of least
degree such that P (α) = 0 (by Euclidean division applied to polynomials it follows
that P divides any other Q for which Q(α) = 0). Further, we need to specify a
number x0 of the form r+s ·

√
−1 with r and s rational so that successive iterations

of Newton’s method

xk+1 = xk −
P (xk)

P ′(xk)

(where P ′(T ) denotes the (entirely formal) derivative of P (T ) with respect to T )
converge to the complex number representing α. There is some (minor) ambiguity
in this due the to the “choice” of

√
−1 (which we cannot “specify” by this method).

To quote Abhyankar “which is i and which −i, perhaps only a physicist can tell!”
Another way is to make use of Hensel’s lemma. We will define below the dis-

criminant DP for a polynomial P . For now it suffices that if a prime p does not
divide DP then for any n so that p divides P (n), we have that p does not divide
P ′(n). In other words DP is the least common multiple of gcd(P (n), P ′(n)) as n
varies over all integers. Now, for n sufficiently large it is clear that there is such
a prime p (i. e. not dividing DP ) so that p divides P (n). We can now specify α
by saying that is should be congruent to n modulo p. Because of Hensel’s lemma
(which is Newton’s iteration done modulo powers of p!) we can then produce nk so
that α−nk is divisible by pk for every k. In modern language, we are replacing the
approximation by complex numbers given above by a p-adic approximation. We
can actually, find a suitable p so that this can be done for all roots of the polynomial
P . (This is a particular case of Chebychev’s density theorem).

An entirely less obvious problem is how we can perform common arithmetic
operations on algebraic numbers when they are represented in this fashion. For
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that reason, and for the reason mentioned at the beginning of this section we now
turn to the matrix representation of algebraic numbers.

6.2. Algebraic Number Fields as Matrix Algebras. Let n be any positive
integer and consider a sub-algebra K of the algebra of n×n matrices with rational
entries; by this we mean that K contains scalar multiples of the identity matrix and
is closed under matrix addition, subtraction and multiplication. To handle division
we also insist that non-zero matrices in K are invertible (this actually implies that
the inverses are also in K but it is not entirely trivial to prove this). Finally,
one knows that the algebra of matrices is not commutative for n ≥ 2. So we put
in an additional hypothesis that matrix multiplication between elements of K is
commutative.

Now, consider the map α 7→ α · v where v is any (fixed) non-zero column vector
such as the transpose of (1, 0 . . . , 0). When α and β are an elements of K with
α · v = β · v, we obtain (α − β) · v = 0. But we have assumed that every non-zero
element of K is invertible so we must have α − β = 0. In other words this map is
one-to-one on K. Thus K is actually isomorphic to a vector space of rank at most n
over the rationals. By a suitable change of basis (and restricting to a submatrix) we
may as well assume that the space K · v contains all column vectors or equivalently
that K has rank n. Then K ·w is the space of all column vectors for any non-zero
vector w. We will henceforth make this additional assumption as well.

For any n × n matrix α we have (the Cayley-Hamilton theorem) that charac-
teristic polynomial chα(T ) of degree n and chα(α) = 0. (In the words of one
mathematician khudh kaa nahi satisfy karega to kiska satisfy karega? (Hindi); if it
doesn’t satisfy its’ own then whose will it satisfy?). On the other hand, we have the
minimal polynomial minα(T ), which is the polynomial of least degree with rational
coefficients that is satisfied by α. If minα(T ) = P (T )Q(T ), then P (α)Q(α) = 0.
Since, P (α) and Q(α) are in K at least one of them must be zero thus one of them
must be a constant; in other words the minimal polynomial is irreducible. It also
follows as before that it divides the characteristic polynomial. One can show that,
under the hypothesis of the previous paragraph (and the fact the we are working
over rationals; a perfect field), there is an element α in K whose characteristic
polynomial is irreducible, i. e. its characteristic polynomial equals its minimal poly-
nomial. In particular, the field K has a basis over the field Q of rationals of the
form 1, α, . . . , αn−1.

(Sketch of Proof). Let α1, α2, . . . , αn be a basis of K over the field Q. Consider
the characteristic polynomial of T1α1 + · · · + Tnαn as a function of the variables
T1, . . . , Tn. The condition that this is reducible will impose certain non-trivial
polynomial relations between the Tk’s. Thus all we need to do is to find rational
numbers rk that do not satisfy these relations. Then the characteristic polynomial
of α = r1α1 + · · · + rnαn will be irreducible (and of degree n. It follows that, the
elements 1, α, . . . ,αn−1 will be independent over Q. ¤

To summarise, we will henceforth think of an algebraic number field as a sub-
algebra of the ring of n × n matrices which is commutative, with all non-zero
elements being invertible. Moreover, this algebra contains an element α whose
characteristic polynomial P(T ) is equal to its minimal polynomial. An further
extension of the above argument then shows that any invertible matrix g that
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commutes with every element of K is contained in K; we will use this in later
sections.

As an example, let us consider the “construction” of the field associated with an
irreducible polynomial P (T ) = T n + a1T

n−1 + · · ·+ an. We consider the matrix

αP =











0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
−an −an−1 · · · −a1











This has minimal polynomial and characteristic polynomial equal to P (T ). The
sub-algebra of matrices generated by αP is the required field Q(αp), sometimes
also denoted by Q[T ]/(P (T )) (one uses Euclid’s algorithm for polynomials to show
that every non-zero element of this is invertible). The above discussion says that any
field under consideration is isomorphic to a field of this form for some irreducible
polynomial P (T ).

6.3. Orders and Maximal orders. We now look a the subring R of K consisting
of matrices with integer entries; R is called an order in K. Now, for any invertible
n × n matrix g it is clear that gKg−1 is isomorphic to K; but g or g−1 may have
entries with denominators. So the ring Rg consisting of matrices in gKg−1 with
integer entries need not be that same as R. Thus, one can look for a maximal order.
We will see below that one such exists and is unique. It is usually called the ring
of integers in K and is denoted by OK .

There is a natural symmetric pairing on n× n matrices given by

〈A,B〉 = Trace(A ·B)

We study the restriction of this to K. This pairing is non-degenerate; i. e. for
any non-zero A there is a B so that < A,B >6= 0. For example, if α in K,
then 〈α, α−1〉 = Trace(1) = n which is non-zero! (Clearly, a different argument is
required when the base field is not Q but a finite field). From the non-degeneracy
it also follows that for any additive map from K to the rationals Q there is an α in
K so that the map is precisely β 7→ 〈α, β〉.

Now, R is a subgroup of the finitely-generated free abelian group of n×nmatrices
with integer coefficients; thus R is a finitely-generated free abelian group as well.
If α is any element of K we can clear denominators to find an integer d so that
dα is a matrix with integer entries. It follows that R contains a basis of K as
a vector space over Q. Thus R is of the form Z · w1 + · · · + Z · wn; moreover,
K = Q · w1 + · · · + Q · wn. Let Ř denote the collection of all elements α in K so
that < α, β > is an integer for all β in R. Finding such an α is clearly equivalent
to solving the system of equations

r1 · 〈w1, w1〉 + · · · + rn · 〈wn, w1〉 = p1

...
...

...
r1 · 〈w1, wn〉 + · · · + rn · 〈wn, wn〉 = pn

By Cramer’s rule, this requires the inversion of the matrix (〈wi, wj〉)n,ni=1,j=1. The
determinant of this matrix is called the discriminant of the order R and is denoted
by DR. Note that if v1, . . . , vn is another basis for R and A is the matrix that
gives the “change of co-ordinates”, then the determinant of (〈vi, vj〉)n,ni=1,j=1 differs

from the earlier determinant by det(A)2. Since A and A−1 have integer entries,
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det(A) = ±1. Hence DR is independent of the choice of basis. Clearly, R ⊂ Ř and
Ř/R is a finite group with |DR| elements.

Now suppose R ⊂ S, where S is another order (i. e. an Rg for some g). We

clearly have the sequence of inclusions R ⊂ S ⊂ Š ⊂ Ř. It follows that DS divides
DR; by decreasing induction we see that there is a maximal order. We also note
that by duality, S/R and Ř/Š have the same order, so that DR is the multiple
of DS by the square of an integer. Let OK be the collection of all elements of K
whose characteristic polynomials have integer coefficients; one can show that this is
closed under addition and multiplication. It is clear that OK contains R since very
matrix with integer entries has a characteristic polynomial with integer coefficients.
By the above, we see that OK is contained in Ř, hence it is finitely generated; let
Ok = Z · u1 + · · · + Z · un. Let v be any non-zero column vector and consider the
basis ui · v of the space of column vectors. With this change of basis, each each
element of OK is represented by a matrix with integer entries. Thus OK is an order
and the unique maximal order.

An extension of the example we looked at for fields is to associate an order with an
irreducible polynomial P (T ) = T n+a1T

n−1+ · · ·+an where the ai are all integers.
We continue the notation of the previous subsection. It follows that αP is a matrix
with integer coefficients; with a little effort one can also show that the natural
order RP in Q(αP ) is precisely the collection of all integer linear combinations of
the powers 1, αP , . . . , α

n−1
P . The discriminant of this order is also the discriminant

of the polynomial P (T ) and is denoted as DP . Unlike the case of fields, however,
it is not true that every order has the form RP for some polynomial P (T ).

6.4. Lattices and ideals. To generalise one step further, we can consider any
finitely-generated subgroup M of K which contains a basis of K over Q; such
an M is called a lattice. Standard arguments then show that M is of the form
Z ·m1+ · · ·+Z ·mn for some basis mi of K. For any fixed column vector v, let g be
the invertible matrix that makes mi · v the standard basis of the space of column
vectors. Then after applying g, we see that M · v becomes the standard lattice of
column vectors with integer entries. The collection R(M) of all matrices in K that
take M to itself, is thus identified with the ring which we denoted as Rg above. In
the following paragraphs we assume that we have made this change of co-ordinates
(i. e. that g is the identity matrix). In that case R = R(M) is precisely the order
consisting of integer matrices. Moreover, there is a non-zero vector v so that M is
precisely the collection of all α so that α · v is a vector with integer entries.

By collecting the denominators of the generators of M we can find a non-zero
integer d so that d ·M is contained in R. Since this is a subgroup of R that is closed
under multiplication by R, it is an ideal I in R. Thus M = d−1I is a fractional
ideal for R. It is clear that R(d ·M) = R(M) = R. More generally, for any non-zero
α in K, we have R(α ·M) = R. Moreover, α ·M is obtained by replacing the v in
the previous paragraph by α−1v, which is just another non-zero vector.

Conversely, let I be a non-zero ideal in the ring R. Let α be a non-zero element
of I. Then α−1 is in K and by collecting the denominators we find a non-zero
integer d so that d · α−1 has integer coefficients so is in R. But then d = dα−1 · α
is in I; thus I contains d · R. In particular, I contains a basis of K and is a free
group of rank n; in other words I is a lattice. Clearly R is contained in R(I) but
in general the latter could be bigger.
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Now, for any non-zero ideal in R we have the restriction I ∩ Z = aZ. By the
above discussion this is a non-zero ideal in Z. We also see that R/I is a quotient
of the finite group R/aR; the latter group has order an. The order of R/I is called
the norm of the ideal and denoted as Nm(I). The norm of an element α is det(α);
these two definitions are related since Nm(α ·R) = |det(α)| (Exercise).

Now, we noted above that Nm(d · R) = dn for any positive integer d so we
can extend the above definition by defining for M = d−1I, Nm(M) = d−nNm(I).
Similarly, the restriction of d · R is clearly d, so we define the restriction of M to
be d−1(I ∩ Z). When M is contained in (i. e. M is an ideal) R, the two definitions
are consistent.

6.5. Groups of invertible fractional ideals. The above definitions depended
on a choice of ring R ⊂ R(M), but the following definition does not. As before, let
M̌ denote the collection of all α in K for which 〈α, β〉 is an integer for every β in
M . Now, the non-degeneracy of the pairing 〈, 〉 means that for every additive map
from K to Q there is an α in K so that the additive map is given by β 7→ 〈α, β〉. It
follows that M̌ can also be identified with the collection of all additive maps from
M to Z. By the usual double-duality result it follows that M = (M̌ )̌. In particular,
we see that M̌ is also a lattice and R(M̌) = R(M).

Let [M : R] denote the collection of all α in K so that α ·M is contained in R.
Clearly, d · R is contained in [M : R]. On the other hand M̌ = [M : Ř] was shown
above to contain all α that send M into Ř. The latter contains R so we see that
[M : R] is contained in M̌ . Thus [M : R] is also a lattice. Specifically, we define
CR as [Ř : R].

Definition 3. Let M be a lattice in K and R ⊂ R(M). Then we say that M is
projective over R if M · [M : R] = R. When R = R(M) and we have [M : R] =
CR · M̌ then we say that M is a Gorenstein R module. Here the product of lattices
L1 ·L2 is the collection of all linear combinations of products αβ with α in L1 and
β in L2.

Armed with this result, we now consider the collection of all lattices M with the
property that R(M) = R for a fixed Gorenstein order R. This collection of lattices
includes R, Ř and CR. For any suchM , the above lemma says thatM ·[M : R] = R.
If we define the product ofM and N asM ·N , then this shows that we have a group
with R playing the role of identity. It is further clear thatM and α·M are naturally
isomorphic for any non-zero α in K. We may further consider lattices modulo such
isomorphisms. This gives us the class group of invertible fractional ideals modulo
isomorphism which is denoted by Cl(R). We noted above that there could be ideals
(and fractional ideals) M for R such that R is a proper subring of R(M). In this
case we do not necessarily have M [M : R] = R; we do not include such M in the
class group. However, since R(M) is an order as well, this situation cannot arise if
R is the maximal order OK . The corresponding class group is sometimes loosely
referred to as the class group of K and denoted Cl(K).

6.6. Minkowski’s Geometry of Numbers. In order to decide whether or not a
lattice M is of the form α ·R (and hence trivial in the class group) we need to find
elements α in M whose norm is as close as possible to that of M . This is achieved
in the following section.
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We now want to give a “measure” associated with an order R. The space of n×n
matrices with rational entries is naturally contained in the space of n× n matrices
with real entries. Thus we can consider the ring R ·K of real linear combinations of
elements of K. This is an n-dimensional vector space over R. Thus, for any lattice
M , the space TM = R ·K/M is an n-dimensional torus. Taking some translation
invariant measure on R · K gives us a notion of volume for the tori TM with the
property that vol(TM ) = vol(TR)Nm(M). Now, if A is any (compact measurable)
subset of R ·K with the property that vol(A) > vol(TM ) then the map A → TM
cannot be one-to-one (with a little thought it is clear that this is actually also true
if vol(A) ≥ vol(TM )). The difference between two points with the same inverse
image will give a non-zero element of M .

Now, one natural way to identify R ·K with Rn (and thus put a measure on it)
is to use “simultaneous diagonalisation”. As seen above K is generated by a single
n× n matrix α whose characteristic polynomial P (T ) is irreducible over rationals.
This means that this has distinct roots and so over real numbers can be brought
into a “diagonal” form as below by a suitable change of co-ordinates.

































α(1) 0 . . . 0 0 0 . . . 0 0
0 α(2) . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
0 0 . . . α(r1) 0 0 . . . 0 0
0 0 . . . 0 Re α̃(1) Im α̃(1) . . . 0 0
0 0 . . . 0 − Im α̃(1) Re α̃(1) . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 . . . Re α̃(r2) Im α̃(r2)

0 0 . . . 0 0 0 . . . − Im α̃(r2) Re α̃(r2)

































Here α(i) denote the real roots of P (T ), while (α̃(j), α̃(j)) are the pairs of conjugate
complex roots of P (T ). Now, every element of K is a linear combination of powers
of α so that it too is brought into the above form by the same change of co-ordinates.
For simplicity of notation we write the matrix associated with an element β of K
as [β(1), . . . , β(r1), β̃(1), . . . , β̃(r2)]. More generally, for any element x in R · K we
have a representation [x(1), . . . , x(r1), x̃(1), . . . , x̃(r2)]. This representation gives us
an identification of R · K with Rn. If R = Z · w1 + · · · + Zwn, then the volume
of TR, with respect to this identification is the determinant of the n× n matrix Ω
given by

Ω =
(

w
(1)
i , . . . , w

(r1)
i ,Re w̃i

(1), Im w̃i
(1), . . . ,Re w̃i

(r2), Im w̃i
(r2)
)n

i=1

Let the matrix Ω̃ (complex entries) be given by

Ω̃ =
(

w
(1)
i , . . . , w

(r1)
i , w̃

(1)
i , w̃

(1)
i , . . . , w̃

(r2)
i , w̃

(r2)
i

)n

i=1

Standard rules for column operations on determinants show that the determinant
of Ω̃ is 2r2 times the determinant of Ω. On the other hand the (i, j)-th entry of the

matrix Ω̃ · Ω̃t is
r1
∑

p=1

w
(p)
i w

(p)
j +

r2
∑

q=1

w̃
(q)
i w̃

(q)
j +

r2
∑

q=1

w̃
(q)
i w̃

(q)
j
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which we immediately recognise as Trace(wi · wj) when it is expressed in the
form given above. Combining these observations we obtain the identity vol(TR) =

(1/2r2)
√

|DR|.
Now consider the region A consisting of all x in R · K so that |x(i)| ≤ ai and

|x̃j | ≤ bi for some positive constants ai and bj . We have

vol(A) = 2r1πr2
r1
∏

i=1

ai

r2
∏

j=1

b2j

Thus, in order to obtain a pair (v1, v2) in A so that v = v1−v2 is a non-zero element
of M we need the condition

2r1πr2
r1
∏

i=1

ai

r2
∏

j=1

b2j = (1/2r2)
√

|DR|Nm(M)

Now the norm of the element v is the product

Nm(v) =

r1
∏

i=1

|v(i)
1 − v

(i)
2 | ·

r2
∏

j=1

|ṽ(j)
1 − ṽ

(j)
2 |2 ≤ 2r1

r1
∏

i=1

ai × 22r2

r2
∏

j=1

b2j

Hence, we have the following

Lemma 14. For any ideal I of an order R in K there is a non-zero element v in
I so that

Nm(v) ≤
(

2

π

)r2
√

|DR| · |R/I|

Here we have written |R/I| instead of Nm(I) in order to make the dependence on
R clear.

Proof. We just combine the inequality above with the condition that needs to be
satisfied in order to obtain such a v. ¤

In particular, if I is an invertible ideal, then vR = I · J where J = vR · I−1

and Nm(J) ≤ (2/π)r2
√

|DR|. Now, for any element of the class group Cl(R), let I
represent the inverse of this class. The above argument produces a representative
J of the class which has norm no more than (2/π)r2

√

|DR|. In particular, we have
shown than the class group is finite (an ideal J of norm n is a quotient of cardinality
n the group R/nR; there are at most finitely many such quotient groups).

While it is not too difficult to use this procedure to write all the ideals J satisfying
the above condition, it is much harder to write the “multiplication table” for the
group Cl(R) on the basis of what has gone so far. If J1 and J2 are two ideals as
above and the product no longer satisfies the above condition, then we need to find
the element v in (J1 · J2) that the lemma guarantees. But the proof of the lemma
gives us no way to find such elements!

6.7. Prime ideals. Another way to write generators of groups of ideals is to use
prime ideals. An ideal P of R is prime if for every a and b in R so that ab lies in P
at least one of a and b lies in P ; an equivalent assertion is that R/P is a domain—
non-zero elements give non-zero products. It is clear that the restriction P ∩ Z

satisfies the same conditions for integers a and b. In other words P ∩Z is generated
by a prime number p. Thus P determined by the ideal P/pR in R/pR. Now, if
R = Z ·w1 + · · ·+Z ·wn, then R/pR is a vector space of rank n over the finite field
Z/pZ. Instead of solving this specific problem, we can ask for a structure theorem
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for commutative rings with identity with underlying additive group a vector space
of rank n over Z/pZ.

Lemma 15. Any ring with underlying additive group a finite dimensional vector
space over Z/pZ is a direct sum of rings of the form (Z/pZ)[T ]/(P (T )m), where
P (T ) is an irreducible polynomial over the field Z/pZ.

This result follows from the Chinese Remainder theorem and Euclidean division
applied to the polynomial ring in one variable (Z/pZ)[T ]. If we use the symbol Fq
to denote the field with q elements (where q is a prime power), then this result can
be refined further as follows

Lemma 16. The ring (Z/pZ)[T ]/(P (T )m), where P (T ) is an irreducible polyno-
mial of degree d, is isomorphic to the ring Fpd [h]/(hn).

This result follows by constructing (using Newton’s method of successive approx-

imations) a polynomial T̃ of the form T + P (T )Q1(T ) + · · ·+ P (T )n−1Qn−1(T ) so

that P (T̃ ) is divisible by P (T )n. Then h = T̃ −T . Combining these results, we see
that R/pR has the form

Fpf1 [h1]

(he11 )
⊕ · · · ⊕

Fpfg [hg]

(h
eg
g )

Corresponding to each factor we get a surjective ring homomorphism R/pR→ Fpfi .
The kernel of this has the form Pi/pR for a prime ideal Pi whose restriction is p.
The number fi is called the residual degree (or more simply the degree) of Pi over
p, while the number ei is called the ramification degree (or order of ramification)
of Pi over p.

Now, let I be any ideal. Suppose first that the restriction i of I is of the form
i1i2, with i1 and i2 co-prime. We can apply the Chinese Remainder theorem to
write R/I as a direct sum of R/I1 and R/I2, where I1 = I + i1R and I2 = I + i2R.
Thus I = I1 ∩ I2; if I is invertible one easily shows that I = I1 · I2. Thus we can
reduce our study of groups of ideals to the study of ideals Q so that the restriction q
is the power of a prime p. Now, R/(Q+ pR) is a quotient of the ring studied above
and is not zero. Thus there is a prime Pi as above so that Q is contained in Pi.
By successively removing such Pi (if Q is invertible) we can write Q as a product
of various powers of the Pi considered above. Thus we have written any invertible
ideal as a product of (invertible) prime ideals. It is not difficult to show that any
such product expression is unique. Thus, we obtain the unique factorisation of
ideals in terms of prime ideals.


