
20 KAPIL HARI PARANJAPE

5. Factorisation and Certificates

After running the Miller-Rabin test we are either armed with the “certainty”
(as far as internal error-checking mechanisms within the computer permit us to be
certain!) that some number N is composite or a very high probability that it is
indeed prime. For some situations neither of these is enough. We wish to offer an
explicit “proof” by way of a factorisation of the number in the composite case; or
by a certificate or “witness” to its primality in the second case. Such certificates
may also be required if we wish to prove that the factorisation we have obtained is
complete!

5.1. Pollard’s ρ. We saw that the trial division technique was undermined by the
requirement of a large number of primes and the number of trials that need to
be performed. While this made it slow for “testing” primality or compositeness,
we have not offered any alternative to it (so far) for the purpose of finding prime
factors. The method now presented is quite a practical alternative; this speed has
some theoretical basis as well; unfortunately, that theoretical basis is incomplete,
so the algorithm may be slower than trial division in some cases.

The idea behind this method is that iterated self-maps of finite sets must cycle.
Let S be a finite set, f : S → S be any map and x0 ∈ S be some starting point.
We define xk+1 = f(xk) for k ≥ 0. By the finiteness of S there is some pair (p, q)
so that xp+q = xp; but then by applying f repeatedly to both sides it is clear that
xr+q = xr for all r ≥ p. The smallest p so that xp is repeated is called the pre-
period M ; the smallest q is called the period T (these depend to some extent on x0

as well as f and S). The points x0, . . . , xM are the “tail” and the points xM+r,
r ≥ 0 are the “head” the Pollard’s ρ (the name is given for the shape of the letter).
Clearly, determining M and T (given S, f and x0) is an interesting computational
problem. Before that let us see what this has to do with factoring.

Now suppose S = S1 × S2 and f = (f1, f2), then f1 (respectively) f2) will have
its own (M1, T1) (respectively (M2, T2)) as pre-period and period. Each will (in
general) be less than that for S; certainly those for S are upper bounds.

In particular, let us look at the case where S = Z/NZ, when N is composite;
we know that there are S1 = Z/aZ and S2 = Z/bZ, where N = ab with a and
b co-prime. Thus we should look for T1 (or T2). We know we will have found a

period when gcd(xp+q−xp, N) > 1. If this GCD is less than N then we have found
a factor (and T1 is a multiple of q) otherwise we have only found a multiple of T ;
hopefully we will not be so unlucky!

Another aspect to examine is what kind of maps f are “good” from the point of
view of finding M and T . Clearly, we can divide S into the set of repeating points
Scyclic and the set of transients Stransient (which are never repeated). If the latter
set is very large, then M is likely to be very large. On the other hand if the former
set is very large it is also likely that T is large. Heuristic analysis asserts that for
a “randomly chosen map” f (i. e. a “random” element of Hom(S, S)) M and T are

bounded by the condition M + T ≤
√

#(S) for #(S) large.
Randomly chosen maps may not be good for us since we need the map to have

the form (f1, f2). In the case when S = Z/NZ this condition f = (f1, f2) can be
easily ensured by taking f to be a polynomial map (Chinese Remainder Theorem
once again!). However, every map on S is a polynomial map when N is prime so
we can expect that polynomial maps are adequate for our purposes.



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 21

Now let us see how we can determine M and T (actually we are looking for T1

but that aspect has been explained earlier so we will ignore it here). Clearly, storing
all the iterates xk and comparing them until we find a match is impractical when
M and T are large.

The original method suggested by Pollard and Floyd was as follows. Let us
compute also the sequence y0 = x0 and yk+1 = f(f(yk)). It is clear, by induction
that yk = x2k. Thus, if k is a multiple of T , we will get yk = xk. By checking for
this identity at each iterative step we can find a multiple of T . Of course, because of
the transient M it is unlikely that we will find T , but if M and T are of comparable
size then we will find a small multiple of T this way. Another problem with this
approach is that we need to compute the function f three times at each iterate and
that can sometimes be considered expensive.

Another approach was suggested by Brent. Let us first try to look for the “size”
of M and T . Thus, if M and T have n bits, then we should find a repetition for
k = 2n − 1 and k + T = 2n + T − 1, the latter being less than 2n+1 − 1. Thus,
we store yn = x2n−1 and compare it with xk when k lies between 2n and 2n+1 − 2.
It is clear how we can iterate over this procedure. This procedure has only one
computation of f for each iteration. On the other hand, we are over-estimating
M by a (worst-case) factor of about 2, which means we are making twice as many
tests as in the Pollard-Floyd method. Clearly, the choice between the two methods
depends on which is more time consuming—function computation or comparison.

A further improvement to the Brent method is possible if we note that when
we are checking for repetitions between k = 2n − 1 and some k between 2n and
2n+1− 2, we have already checked for periods of size n− 1 bits (ignoring M for the
moment). Thus we can start making comparisons only after we cross the half-way
mark 2n + 2n−1 − 1. Because of M (transients again!) we may actually not have
checked the periods and so we will only obtain multiples of T if we do this; but we
will have saved exactly half the comparisons in return!

This observation also fits in well with Pollard’s idea of reducing the number of
comparisons in his factorisation method as follows. Instead of computing gcd(xk −
yn, N) at each iteration, he takes the product of xk − yn over (say) 10 iterations of
k and computing GCD only in time in 10. This reduces the number of comparisons
as well.

To make an algorithm we must choose algebraic self-maps f on Z/NZ. It is clear,
that linear maps will have periods equal to the size of the prime factors so we may
as well have used trial division. We take the next thing that comes to hand which is
a map like f(x) = x2 +1 and hope it is a “random enough” choice! Powering maps
like x 7→ x2, are better studied via the (p− 1) method which we will see later—in
particular, the periodicity of these maps has to do with a factorisation of (p − 1)
when p is a factor of N . Thus, we will stick with quadratic maps and hope that
this is good enough2; this is similar to the choice of “small” numbers as a base in
the Miller-Rabin test with one crucial difference—the outcome of the Pollard ρ will
be a “real” factorisation, not a probabilistic one. Finally, if we are unsuccessful (in
finding a factorisation) with a given f and x0 we need to vary both and not just x0.

After all that verbiage (which is used to disguise the fact that we are not really
sure of the justifications!), let us come to the algorithm. Pick a small constant

2However, note that x 7→ x2
− 2 is in fact a powering map in disguise. If we put x = y + 1/y

then this is the same as y 7→ y2



22 KAPIL HARI PARANJAPE

c other than 0 and 2 and consider the function f(x) = x2 − c. Pick a point x0

in Z/NZ (usually one of small size). Pick a small number s of steps (usually
s = 20). Let y0 = 0, e = 0 and P = 1 (e will count the number of bits in M and
T ). While k is between 2e and 2e + 2e−1 − 1, we set xk+1 = f(xk). While k is
between 2e +2e−1 and 2e+1 − 2, we set xk+1 = f(xk) and multiply P by (xk − ye).
Every s steps we compute gcd(P,N). If this is greater than 1, then we have found
a period (somewhere in the last s steps); otherwise we set P to be 1 again and
continue. If we found a GCD, we set z0 = ye and iteratively compute (at most s
times) zl+1 = f(zl) and gcd(xk − zl, N). We will find a non-trivial GCD for some
l between 0 and s − 1. If this GCD is less than N then we have found a factor;
else we have been unsuccessful, so we change c and x0. If we found a factor a then
we can continue, replacing N with N/a, starting with the given tuple (e, k, xk, ye);
we need not start at the beginning since periods smaller than the one found have
already been (essentially) excluded. Note that all arithmetic operations (except
GCD and subscript arithmetic!) are to be done modulo N/a in this continuation.

5.2. Group theoretic method. In the Miller-Rabin test we used the group of
units in Z/NZ (and we will continue to do so) but in fact any algebraic group
scheme G can be used to study the factorisation or primality of N . Such a scheme
assigns a group G(N) to an integer N . By an application of the Chinese Remainder
theorem (to Z/NZ and not to the group!) one can show that G(N) is a product
of the groups G(a) and G(b) if N = ab with a and b coprime. Another aspect is
that Hensel’s lemma allows us to write (for all but a finite set of “small” primes
p) G(pe) as a product of G(p) and a group naturally isomorphic to a direct sum of
Z/pe−1Z’s. The group theoretic method for factorisation depends on the possibility
that G(p) has a particularly simple structure for some prime p that divides N . One
such criterion for simplicity is smoothness.

Definition 1. Let B be an integer. An integer N is said to be B-powersmooth if it
is a product of coprime numbers less than B. Equivalently, N of product of prime
powers, each of which is less than B.

Definition 2. Let B be an integer. An integer N is said to be B-smooth it is a
product of primes less than B.

We note that a number N is B-powersmooth if and only if it divides the least
common multiple lB = lcm(1, . . . , B) of all numbers less than B, whereas a B-
smooth number can be arbitrarily large when B > 1 (for example 2n is B-smooth
in this case).

The claim is that there are quick procedures to factor N if it has a prime factor
so that G(p) is B-powersmooth or more generally has a “large” B-smooth number
as factor. We now restrict ourselves to the case when G is the group of units to
understand this procedure.

Let us now assume that N has a prime factor p so that p−1 (which is the order of
the group of units in Z/pZ) is B-powersmooth. We want to find this prime factor.
The technique is to take a “random” x in Z/NZ and calculate gcd(xa − 1, N) for
a dividing B. Whenever this is not 1 or N we have hit on a factorisation of N . As
usual, we use Pollard’s idea of accumulating numbers to avoid computing GCD too
often.

Let L = (l1, . . . , lk) be a list of all primes less than or equal to B. We pick an
x in Z/NZ (which is usual taken to be “small”). We also a pick an s which is the



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 23

number of steps over which we will accumulate. We initialise our accumulator P as
1. We also initialise by setting i = 1 so that we pick the first prime. We now loop
over the following steps.

We first keep a y and j so that we can backtrack over these s steps; these are
initialised as x and i. We compute the largest power pi of li that is less than B
and replace x by xpi . We multiple P by x− 1. We then increment i. Every s steps
(or if i becomes k), we compute gcd(P,N). If this is 1, then we re-initialise y and
j to be the current values of x and i respectively and set P = 1 and loop (unless i
is k in which case we have proved that N is not divisible by a p so that p − 1 is a
B-powersmooth number!). Otherwise, we have found a non-trivial GCD, for some
power of y which divides the powers pj ,. . . ,pi (here i is at most j + s).

Now, we set P = 1, and starting with m = j do the following. Replace y by its
pm-th power y and check gcd(y − 1, N). We increment m and continue. We know
that for some k ≤ i, we will find a non-trivial GCD. If this is N , then we know
that N does have a factor p so that p− 1 is B-powersmooth so we should try again
with some other choice of x. What has happened in this case is that the order of
the chosen x has coincided in the group of units modulo different factors of N ; so
a different choice of x should do the trick.

Even when the above computation proves that N has no B-powersmooth factors,
the above computation should not be thrown away! There is a second stage process
which examines the case when N has a factor p so that p − 1 is the product of a
B-powersmooth number and a prime number less than B2 (in other words p− 1 is
completely factored by trial division upto B). More specifically, let us assume the
p − 1 is of the form fq where q is a prime less than C and f is B-powersmooth
(where C >> B). We keep the list D = (dk+1, . . . , dl) of successive differences for
primes between B and C (i. e. dk+1 = lk+1 − lk and so on). One we have exited
from the previous algorithm, we put b = x and compute the list of powers bdj . We
replace x by xlk and set i = k and then loop as follows.

We set our accumulator P to 1, y to x and j to i (which are for backtracking as
before). We increment i and multiple x by bdi , (which we have already computed).
Then we multiple P by (x − 1). Every s steps (or if i becomes l), we compute
gcd(P,N). It this GCD is 1, we loop back (or if i = l then we have shown that N
does not have a prime facor of the required form). Otherwise, there is some prime
between pj and pi which is like q above.

We continue the analysis at this level as follows. We start at m = j and multiply
y by bdm and check gcd(y − 1, N). If this is 1, then we increment m and continue
(we will do this at most s times). Otherwise we have found a non-trivial GCD. If
this is not N , then we have a factor. On the other hand, if this is N , then as before
we must take a different starting x at stage 1 and repeat the process, because we
have shown that there is a factor p of the reuqired form.

We can replace the B-powersmooth-ness condition above by B-smoothness since
we have an upper bound

√
N for the powers in any case. Thus an appropriate

modification to stage 1 (call it stage 1 1
2
!) will alow us to incorporate B-smooth

factorisations as well. This approach will replace a constant (essentially log(B)) in
the complexity (number of steps in terms of log(N)) by log(N). Thus the order of
complexity is increased by 1.

5.3. Primality Certificates. We now examine the situation where N is almost
certainly prime (having passed the Miller-Rabin test many times with flying colors!).



24 KAPIL HARI PARANJAPE

In such a situation, we wish to provide a “certificate” that N is a prime. In unison
with Knuth, we could ask “Why?”. After all, it is really so highly improbable that
N is not a prime that this is not worth considering. One situation that one can
think of is where an “oracle” produces keys for us. While we trust the oracle not to
“leak” a key, we are not so sure that the oracle (in order to save time and money)
may be using some quick and dirty method to generate the modulus, which may
be weak. Then we would ask the oracle to “provide proof” that it has given us a
prime number. Another situation is that someone “pays” us to factor a number—
we would need to certify that the factorisation is complete. The certificate should
be very “easy” to check.

From this point of view, it is no use saying “it passed the Miller-Rabin test for
me why don’t you try it”. In fact (somewhat more surprisingly perhaps) it is no

use saying “I have tried all divisors upto
√
N”. Thus even if you are “convinced”

that you have a prime; how can you convince someone else without asking the other
person to perform an identical computation!

Again group theoretic methods are very useful. In the situation of the group
scheme as above, suppose we find an non-trivial element g in G(N) whose order m

is larger than the order of G(p) for any prime less than
√
N (recall that we have a

good estimate of the order of G(p)). Let d < m, then there is some “co-ordinate”
of gd which differs from the same coordinate for the identity element of G; this is
what one means by saying that gd is not the identity element of G(N). Thus, this
difference must be a unit of Z/NZ (since we are morally certain that N is a prime!).
In particular, for every prime factor q of m we provide a co-ordinate of gm/q and
its inverse xq in Z/NZ. This is a certificate of primality.

The person receiving this certificate would argue as follows. Suppose p is the a
prime factor of N that it is less than

√
N . Then some power gd for d = m/q must

become trivial in G(p) (since a this group cannot have an element of order large than
it!). But the given co-ordinate of gd differs from the same co-ordinate of identity
by a unit in Z/NZ (we have given a proof of this by providing xq). Thus this
co-ordinate cannot be zero. Hence there are not such prime prime factors—hence
N is prime.

Thus a primality “certificate” would be the tuple (G, g,m, {xq}q|). Of course,
the correct-ness of this certificate depends on the primality of various q’s, so we
would need a certificate for those as well!

To make this explicit, suppose we find an element a in Z/NZ so that am = 1

but am/q 6= 1 and q ≥
√
N ; for some integer m and a prime factor q. Then, N is

prime; for if p is a factor of N , then the gcd(am/q − 1, p) divides gcd(am/q − 1, N)
and thus am/q 6= 1 in Z/pZ. But that means q divides p − 1. On the other hand,

if N is not prime, N msut have a prime factor smaller than
√
N .

This can be carried some steps further.

Proposition 12. Suppose that N − 1 = f · r, where f is completely factored into

primes pi, r has all its factors greater than B and gcd(f, r) = 1. Moreover, suppose

that f ·B ≥
√
N . Now suppose that we find ai so that its order is a multiple of the

exact power of pi that divides N − 1. Moreover, we have b so that bN−1 = 1 and

gcd(bf − 1, N) = 1, then N is a prime. Conversely, given such a factorisation of

N − 1, there are a’s as required.



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 25

Proof. Let d be a prime divisor of N . Then, the order of ai in Z/dZ is divisible by

exactly the same power of pi that divides N − 1 (gcd(ap
ei−1

i − 1, N) = 1 implies the
same with N replaced by d). This means that f divides d − 1. Now, let e be the
order of a0 in the units of Z/dZ. Then e divides d− 1 and N − 1 = f · r and does
not divide f = (N − 1)/r. Thus gcd(e, r) > 1. In particular, gcd(e, u) > B (since
every prime factor of r has this property). Thus gcd(e, u) · f divides d− 1, so that

d becomes larger than
√
N . But this cannot be true for every prime factor of N

unless N is prime. (Exercise: find a more group-theoretic proof). ¤

This can be used to provide a primality certificate as follows. We use trial
division upto a bound B0 to obtain a factorisation N − 1 = fr. If fB0 ≥

√
N ,

then we take B = B0 and we are done. Otherwise we check for the primality of r
(say using the Miller-Rabin test). If it is prime then we are done again (we have
a complete factorisation of F = N − 1). Otherwise we increase the bound B and
continue. The main problem (as usual) is with N − 1 having a few large prime

factors; in this case we would have to proceed to a bound B like
√
N . As it turns

out, once we have a factorisation of N−1, then we can proceed more surely, testing
(in succession aN−1/q for each prime factor q of N−1; if we fail for a given a we can
continue with the next a). One can show that the latter will succeed quite quickly.

Lemma 13. Let q be a prime so that qf exactly divides the order of a cyclic group

G. The collection of elements, whose order is exactly divisible by qe for e < f has

cardinality at most 1/q times the cardinality of G.

Thus the probability that a given element a will fail for all q is the product of
(1−1/q) which is very small. The proof of the lemma is easy and left as an exercise.

As we can see the main stumbling block for this method is that we need to factor
N − 1 since the units in Z/NZ is the only group available with us (so far) to apply
this method to. Later we will expand the class of groups (and so we can try to pick
a group with order easily factorisable) and it will be easier to find such primality
certificates.


