
2 KAPIL HARI PARANJAPE

1. Multiple Precision Arithmetic

We need to go back to school and remember how we did basic arithmetic! Recall
that we first learnt how to operate with small numbers i. e. the digits. Then we
learnt how to represent and manipulate bigger numbers. Thus for us “human”-
sized symbols are the symbols 0-9 which we consider “small”; in a similar way the
numbers 0–232 − 1 or the numbers made (in base 2) of thirty-two 0’s and 1’s are
“small” for a computer. We must already know the following operations with these
numbers; we use W to denote the set of basic symbols which represent natural
numbers from 0 to M − 1 (M = 10 for humans and M = 232 for computers):

addition: The operation of addition with carry

add :W ×W × {0, 1} →W × {0, 1}

where (a, b, µ) 7→ (c, ρ) which satisfies

a+ b+ µ = c+ ρ ·M

subtraction: The operation of subtraction with borrow

sub :W ×W × {0, 1} →W × {0, 1}

where (a, b, µ) 7→ (c, ρ) which satisfies

a− b− µ = c− ρ ·M

multiplication: The operation of multiplication with remainder

mul :W ×W →W ×W

where (a, b) 7→ (c, d) which satisfies

a · b = c ·M + d

division: The operation of division with remainder (this is a partial function)

div :W ×W ×W →W ×W

where (a, b, c) 7→ (d, e) when b < a and satisfies

b ·M + c = a · d+ e

with e < a.

There may be some further operations that we may need to check whether on
element of W is less than another or equal to another and so on.
The main aim of this section is to write down methods of computing with integers

written in the “usual” way as strings of symbols u1u2 · · ·up representing u1 ·M
p−1+

· · · + u1. We will also count the number of steps taken to make our calculations
under the assumption that each of the above operations counts as one step.

1.1. Addition and Subtraction Algorithm. We now write the addition recipe
using the usual method

u1 u2 · · · up

v1 v2 · · · vp

ρ w1 w2 · · · wp

Or more concisely

(u1 · · ·up) + (v1 · · · vp) = (w1 · · ·wp) + ρMp = (ρw1 · · ·wp)



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 3

The identities that are satisfied are

(wp, ρ0) = add(up, vp, 0)

(wp−i, ρi) = add(up−i, vp−i, ρi−1)

We can clearly write these identities quite concisely by defining ρ−1 = 0. It is thus
clear how to calculate this inductively for all i upto i = p. At the last stage the
carry over is the extra ρ = ρp in the answer.
A similar technique applies to the subtraction method. We write the identity

(u1 · · ·up)− (v1 · · · vp) = (w1 · · ·wp)− ρMp

And find the identities

(wp, ρ0) = sub(up, vp, 0)

(wp−i, ρi) = sub(up−i, vp−i, ρi−1)

Again, putting ρ−1 = 0 combines the identities and we can easily compute these
inductively. Note that ρ = ρp is the “extra” borrow element and so if this is non-
zero then (v1 · · · vp) is in fact more than (u1 · · ·up). We will see that this calculation
is useful even in this case.
We note that the number of steps taken by both methods is equal to p.

1.2. Multiplication Algorithm. As is to be expected, multiplication is more
complicated. The usual method of multiplication requires simultaneous summation
of multiple rows of decimal numbers. The carry over from addition thus becomes
quite large, whereas our basic routines can only handle a carry of 0 or 1. It is best
to proceed slowly!
First of all we look at a procedure to multiply by a single “digit” u and perform

the calculation, u × (v1 · · · vp) = (w0w1 · · ·wp). Actually we will need the more
general “linear form” operation (we will assume that q ≥ p + 1 by padding t by
zeros if necessary)

u× (v1 · · · vp) + (t0 · · · tq) = (w0 · · ·wq+1)

More diagrammatically,

v1 v2 · · · vp−1 vp

× u
+ t0 t1 t2 t3 · · · tq−1 tq

x1 x2 x3 · · · xp

y1 y2 · · · yp−1 yp

z0 z1 z2 z3 · · · zq−1 zq zq+1

w0 w1 w1 w2 · · · wq−1 wq wq+1

The usual multiplication procedures leads to certain intermediate digits which we
denote by x, y, z as above. We obtain the identities

(xp, yp) = mul(u, vp)

(wq+1, ρ1) = add(tp, y0, 0)

(zq, µ1) = add(tq−1, xp, 0)

(xp−i, yp−i) = mul(u, vp−i)

(wq+1−i, ρi+1) = add(zq+1−i, yp−i, ρi)

(zq−i, µi+1) = add(tq−i−1, xp−i, µi)



4 KAPIL HARI PARANJAPE

As before the first three steps are a special case of the latter three when we put
ρ0 = 0 = µ0 and zp = tp. There are q + 2 cycles. The mul operation actually takes
place only in the first p cycles (in the remaining cases xj and yj are zero). The last
add operation does not take place on the last cycle. Thus, are at most p + 2q + 3
steps.
Now we use the above routine repeatedly to obtain the general linear form,

(where as before we assume that s ≥ p+ q + 1)

(u1 · · ·up)× (v1 · · · vq) + (t0 · · · ts−1) = (w0 · · ·ws)

We see that this is achieved by intermediate computations of the form

up × (v1 · · · vq) + (t0 · · · ts−1) = (z0,p · · · zs,p)

up−i × (v1 · · · vq) + (z0,p−i+1 · · · zs−i,p−i+1) = (z0,p−i · · · zs−i,p−i)

Then ws−i = zs−i,p−i since the (s− i)-th “digit” zs−i,p−i is not affected by subse-
quent computations. If we initialise (z0,p+1 · · · zs,p+1) to be equal to (t0, · · · ts−1),
then first computation is a special case of the second. We will perform p cycles,
each a linear form as above of the length q + 2s + 3. Thus the number of steps is
order of pq + 2ps+ 3p steps.
While this looks a bit complex, it is still not the most efficient when the p and q

are large enough to allow us to use more (order linear in p and q) “book-keeping”
steps in exchange for efficiency.

1.3. Long Division Algorithm. This is by far the most complicated procedure.
The first point to note is that the school method for long division involves a “guess”.
We need to ensure that this guess is replaced a multiple-choice procedure (also
characterised by a “case” statement). Moreover, the number of choices should be
very small and not of the same size as the base M .
As for the case of multiplication we can understand some aspects of the relevant

book-keeping by performing the “short” division

(v1 · · · vq) = u× (w1 · · ·wq) + t

where t < u. We first compute div(u, 0, v1) = (w1, t1). From then on we have
the inductive approach div(u, ti, vi+1) = (wi+1, ti+1). Clearly, the first step is a
special case of the second by putting v0 = 0. At the end t = tq. Moreover, there
are exactly q steps.
There are two procedures for long division, each with its own level of complexity.

We note that in the division

(v0 · · · vq) = (u1 · · ·uq)× w + (t1 · · · tq)

where v0 < u1 and (t1 · · · tq) < (u1 · · ·uq), a “good guess” for w is provided by x
which is obtained by div(u1, v0, v1) = (x, y) (so that y < u1). The following lemma
tells us just how good the guess is

Lemma 1. If 2 · u1 + 1 ≥M then we have x− 2 ≤ w ≤ x.

Proof. Using (u2 · · ·uq) ≤M q−1−1 and (v2 · · · vq) ≤M q−1 we obtain the following
inequalities

u1 ·M
q−1 ≤ (u1 · · ·uq) ≤ u1M

q−1 +M q−1 − 1

(v0 ·M + v1) ·M
q−1 ≤ (v0 · · · vq) ≤ (v0 ·M + v1) ·M

q−1 +M q−1 − 1



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 5

which we can combine with the Euclidean inequalities

u1 · x ≤ v0 ·M + v1 ≤ u1 · (x+ 1)− 1

(u1 · · ·uq)× w ≤ (v0 · · · vq) ≤ (u1 · · ·uq)× (w + 1)− 1

We then obtain

u1 ·M
q−1 · w ≤ (u1 · · ·uq)× w

≤ (v0 · · · vq)

≤ (v0 ·M + v1) ·M
q−1 +M q−1 − 1

≤ (u1 · (x+ 1)− 1) ·M
q−1 +M q−1 − 1

= u1 · (x+ 1) ·M
q−1 − 1

As a consequence w < (x+1) or equivalently (since these are integers) w ≤ x. The
reverse comparison is provided by

u1 · x ·M
q−1 ≤ (v0 ·M + v1) ·M

q−1

≤ (v0 · · · vq)

≤ (u1 · · ·uq)× (w + 1)− 1

≤ (u1M
q−1 +M q−1 − 1) · (w + 1)− 1

= (u1 + 1) · (w + 1) ·M
q−1 − (w + 2)

It follows that u1 · x < (u1 + 1) · (w + 1) or (since we have integers on both sides)
u1 · x ≤ u1 · (w + 1) +w. Now the condition v0 < u1 implies that x ≤ (M − 1). So
if w ≥ M − 1, then we certainly have the inequality x ≤ w + 2 as required. Thus
we may assume that w < M − 1. From the assumption 2 · u1 ≥ M − 1 we obtain
w < u1 · 2. Combining this with the above we see that

u1 · x ≤ u1 · (w + 1) + w < u1 · (w + 3)

or equivalently x ≤ w + 2 as required. ¤

Using this lemma, we see that we can give an algorithm for the long division

(v1 · · · vp) = (u1 · · ·uq)× (w0 · · ·wr) + (t1 · · · ts)

that involves making one out of three choices. In order to apply the lemma we must
first normalise the divisor (u1 · · ·uq). So as a first step we compute add(u1, 1, 0) =
(t, ρ). If ρ = 1, then we take d = 1, other wise we compute div(t, 1, 0) = (d, r).
Thus in every case we have d is the integer part of M/(u1 + 1). We now take

(x1 · · ·xq) = d× (u1 · · ·uq)

(y0 · · · yp) = d× (v1 · · · vp)

Here we take y0 = 0 if necessary. We check easily that this step also ensures that
y0 < x1. Next we initialise (t0,0 · · · t0,q−1) = (y0 · · · yq−1). We can then perform the
long division by induction as follows. Let div(x1, ti,0, ti,1) = (gi, r); then gi is our
guess. We compute (and note that the z sequence cannot be longer than q due to
the choice of gi)

(ti,0 · · · ti,q−1yq+i)− gi × (x1 · · ·xq) = (zi,0 · · · zi,q−1)− ρ ·M q



6 KAPIL HARI PARANJAPE

If ρ = 0 then we take (ti+1,0 · · · ti+1,q−1) = (zi,0 · · · zi,q−1) and wi = gi. Otherwise
(we have ρ = 1 and) we compute

(zi,0 · · · zi,q−1) + (x1 · · ·xq) = (z̃i,0 · · · z̃i,q−1) + µ ·M q

Now, if µ = 1 then we take (ti+1,0 · · · ti+1,q−1) = (z̃i,0 · · · z̃i,q−1) and add(gi, 1, 0) =
(wi, 0). Finally, if we have µ = 0, then we put

(z̃i,0 · · · z̃i,q−1) + (x1 · · ·xq) = (ti+1,0 · · · ti+1,q−1) + µ′ ·M q

We note that µ′ = 1 is ensured by the lemma above. We put add(gi, 2, 0) = (wi, 0)
in this case. After r = p− q steps we obtain the identity

(y0 · · · yp) = (x1 · · ·xq)× (w0 · · ·wr) + (tr+1,0 · · · tr+1,q−1)

From the choices for x’s and y’s we see that d exactly divides the remainder, so we
perform short division to obtain

(tr+1,0 · · · tr+1,q−1) = d× (t1 · · · tq)

This completes the long division which takes about 3rq steps upto terms linear in
p and q (such as additions and subtractions).
Another way to simplify the guessing process is to take (u0u1 · · ·uq) of the form

(10u2 · · ·uq). In this case, the division of (v0 · · · vq) always yields one of v0 or
v0 − 1 as the quotient. The main question is then how to perform the necessary
normalisation (to bring the u into this form). Starting with (u1 · · ·uq) we first
compute add(u1, 1, 0) = (t, ρ) and if ρ = 1 we put d = 1. Otherwise, we compute
div(t, 1, 1) = (d, r). Thus, in every case d is the integer part of (M + 1)/(u1 + 1).
As before, we multiply by d

(x1,0 · · ·x1,q) = d× (u1 · · ·uq)

(y1,0 · · · y1,p) = d× (v1 · · · vp)

Where we put x1,0 = 0 and y1,0 = 0 if there is no carry over. Now, if xi,1 = 0 (then
xi,0 = 1 is forced) we stop. Otherwise, we perform the following steps

sub(0, x1,1, 0) = (ci, 1) add(x1,1), 1, 0) = (ti, ρ)

if ρ = 0 div(ti, ci, 0) = (di, r)

if ρ = 1 di = ci

Thus in every case, we have di is the integer part of M(M − x1,1)/(xi,i + 1). Now,
we multiply by (1.di)

(xi+1,0 · · ·xi+1,q.xi+1,q+1 · · · ) = (1.di)× (xi,0 · · ·xi,q.xi,q+1 · · · )

(yi+1,0 · · · yi+1,p.yi+1,q+1 · · · ) = (1.di)× (yi,0 · · · yi,q.yi,q+1 · · · )

where we use the (.) to keep the notation simple and note that there are only finitely
many terms after it. We now iterate over i.

Lemma 2. For some i ≤ 3 we obtain (xi,0xi,1xi,2 · · · ) = (10xi,2 · · · ) as required.

Assuming this for the moment we see that have removed all div operations in
the iterative part of the long division process. We leave it to the reader to make an
algorithm out of this procedure. The proof of the lemma is a somewhat complicated
exercise which we skip as well.



SOME LECTURES ON NUMBER THEORY, ELLIPTIC CURVES AND CRYPTOLOGY 7

1.4. Using the shift operations. So far we have been discussing things in gen-
eralities but when we make some assumptions about the machine then the above
algorithms can be improved or simplified. For example, in the first algorithm for
division, when M = bn and there is a “left shift” operation on the symbol that
amounts to multiplication by b, it is quicker to multiply iteratively by b to get
something close enough to the required d. In this case division by d in the last step
is also replaced by an appropriate “right shift”.
On the other hand no such simplification is possible in the second algorithm for

division, but (as is often true about “real” machines) if div is a significantly slower
operation than the others, then it may be worthwhile to perform the extra steps.
Since most of our operations are on binary computers (so thatM = 2n), we have

special procedures to multiply and divide by powers of 2. We now describe these
procedures based on some new fundamental operations.

left shift: The operation of multiplication by a power of 2

lshift :W × {0, . . . , n− 1} →W ×W

where (a, k) 7→ (c, d) which satisfies

2k · a = c ·M + d

right shift: The operation of division by a power of 2

rshift :W × {0, . . . , n− 1} →W ×W

where (a, k) 7→ (c, d) which satisfies

a ·M/2k = c ·M + d

zero: The operation of finding out whether something is non-zero; this is also
the “bit-wise and” operation

zero :W → {0, 1}

where a 7→ 0 if a is zero and 1 if it is non-zero.
bitwise negation: The difference from M − 1; this is also the operation of
bitwise negation

bneg :W →W

where a 7→M − a− 1.
integer log to the base 2: The operation of finding the integer part of the
logarithm to base 2

log2 :W → {0, . . . , n− 1}

where a 7→ k which satisfies 2k ≤ a < 2k. This also counts the number of
right shifts possible without carry.

left shift count: The number of left shifts possible without carry.

gol2 :W → {0, . . . , n− 1}

where a 7→ k which satisfies M/2 ≤ 2ka < M .

We can use these operations to produce some special algorithms. We note that we
have already used the zero operation without mention!
Given a small integer k and an integer (u1 · · ·uq), we can construct (v0 · · · vq)

satisfying (v0 · · · vq) = 2
k · · · (u0 · · · vq) as follows. We compute lshift(ui, k) =

(si−1, ti), add(si, ti, 0) = (vi, 0) and v0 = s0. Similarly, we can easily compute
division by 2k. We can also find the precise power of 2 that divides any integer



8 KAPIL HARI PARANJAPE

(u1 · · ·uq) (also called the 2-adic value of this integer). Clearly all these operations
are of order linear in q. We can further extend this procedure quite easily to integers
(k1 · · · kr) of size r with only r extra steps (to divide k by M).
Finally, we can also use the given basic operations to implement comparisons

between integers which are linear in the size of the integers concerned.
We summarise our investigations in the following table

Operation Time taken
Addition/Subtraction Linear
Multiplication/Division by small integers Linear
Multiplication/Division Quadratic
Multiplication/Division by powers of 2 Linear
Comparison Linear
2-adic value Linear

Beyond this point we will not refer to the basic operations like add any more and
make use of the higher level operations on integers mentioned above. If we do find a
need for some specialised higher level operations to be implemented faster we should
come back here and add to this section rather than complicate later sections!

1.5. Faster Algorithms. There are algorithms for multiplication and division
that are asymptotically much faster than the above procedures; when multiply-
ing numbers of size p we have taken p2 steps above, which can asymptotically be
reduced to a constant multiple of p log(p). However, the constant is large and it is
likely that we will not need to look at those methods for the integers of the size we
will be dealing with.
Similarly, we have taken 3p2 steps for division whereas division can be reduced to

multiplication upto a constant factor and hence is again accomplished in a constant
multiple of p log(p) steps.
It will probably suffice for cryptological applications to make the asymmetric

assumption that the cryptographer (encryption/decryption process) uses multipli-
cation that takes p2 steps while the cryptanalyst (the “code-breaker”) uses multi-
plication that takes p log(p) steps. If the cryptosystems that we design are secure
under such asymmetric assumptions they will also be secure under more symmetric
assumptions!

1.6. GMP and other implementations. The GNU multi-precision package im-
plements the algorithms required to make the required computations. It provides
a library of functions that can be used to initialise integers of arbitrarily large size
and make computations with them. It not only implements the algorithms which
we have described in detail but also the “faster” ones that we have not.
There are many other implementations both as libraries and as interpretive pro-

grams. Probably the program gpari is most suitable for our purpose. However, it
is probably worthwhile to read through the code to understand how these things
are implemented and also to spot bugs!


