1 Congruences

1. Solve the following congruences:

```
3x \equiv 2 \pmod{5}, \ 2x \equiv 8 \pmod{11}, \ 12x \equiv 8 \pmod{16}, \ 18x \equiv -12 \pmod{17}
```

- 2. Let x be any integer. Prove that:
 - (a) $x^2 \equiv 0$, 1 or 4 (mod 5).
 - (b) $x^3 \equiv 0, 1 \text{ or } 8 \pmod{9}$.
 - (c) $x^4 \equiv 0, 1, 3 \text{ or } 9 \pmod{13}$.
 - (d) $x^2 \equiv 0, 1, 2 \text{ or } 4 \pmod{7}$.
 - (e) $x^5 \equiv 0$, 1 or 10 (mod 11).
 - (f) $x^5 \equiv x \pmod{5}$.
- 3. Prove that the last digit of a perfect square is either 0, 1, 4, 5, 6 or 9.
- 4. Let a and b be integers such that $7 \mid a^2 + b^2$. Prove that $7 \mid a$ and $7 \mid b$.
- 5. Suppose that $x^2 \equiv 1 \pmod{8}$. Prove that $x^2 \equiv 1 \pmod{16}$.
- 6. Let m, a, b and c be integers such that (c, m) = d. If $ac \equiv bc \pmod{m}$, show that $a \equiv b \pmod{\frac{m}{d}}$
- *7. Integers (x, y, z) are said to form a *Pythagorean Triplet* if $x^2 + y^2 = z^2$, or in other words if x, y and z form the sides of a right angled triangle. For example, (3,4,5) is a pythagorean triplet since $3^2 + 4^2 = 5^2$. Other pythagorean triplets are (5,12,13). (7,24,25) etc. Prove that if (x,y,z) is a Pythagorean triplet, then $60 \mid xyz$.
- *8. Prove that for any choice of integers a and b, one has $30 \mid a^5b ab^5$.
- *9. Prove that $97 \mid 2^{48} 1$ and that $73 \mid 8^{36} 1$.